
HAL Id: hal-04667091
https://hal.science/hal-04667091v1

Submitted on 23 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Work-in-progress: Impact of compilation optimization
levels on execution time variability
Mohamed Amine Khelassi, Yasmina Abdeddaïm

To cite this version:
Mohamed Amine Khelassi, Yasmina Abdeddaïm. Work-in-progress: Impact of compilation optimiza-
tion levels on execution time variability. International Conference on Emerging Technologies and
Factory Automation (ETFA), IEEE, Sep 2024, Padova, Italy. �hal-04667091�

https://hal.science/hal-04667091v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Impact of compilation optimization levels on
execution time variability

Mohamed Amine Khelassi
Univ Gustave Eiffel, CNRS, LIGM
F-77454 Marne-la-Vallée, France
mohamedamine.khelassi@esiee.fr

Yasmina Abdeddaı̈m
Univ Gustave Eiffel, CNRS, LIGM
F-77454 Marne-la-Vallée, France

yasmina.abdeddaim@esiee.fr

Abstract—Compiler optimizations play a crucial role in en-
hancing software performance by improving execution speed and
reducing resource consumption. However, these optimizations
can also introduce variability in execution times, a significant
concern for real-time systems where predictability is paramount.
This paper investigates the relationship between GCC compiler
optimizations and the execution time variability. By compiling a
set of benchmark programs under different optimization levels
(O0, O1, O2, O3), we analyze the impact on execution time
variability using the WCET/BCET ratio, and the dispersion of
the execution times around the WCET.

Index Terms—Compilation optimisation levels, Execution time
variability.

I. INTRODUCTION

Compiler optimization options allow a user to change the
final binary code of a program without changing the original
high level source code. Using compiler optimizations options
may result in a program performing better, in term of execution
time, than the non optimized version. The major challenge in
compilation is choosing the right set of compiler optimization
sequence, taking in fact that these code optimizations are
programming language, application and architecture depen-
dent. Additionally, there is the problem of choosing which
optimization options to apply and the order of applying these
optimizations.

Real-time systems are designed to perform critical tasks
within stringent timing constraints, where the predictability of
execution times is more important than their minimization.
In such systems, the Worst-Case Execution Time (WCET)
is a key metric used to ensure that tasks always meet their
deadlines.

Using compiler optimizations in real-time systems can
enhance programs performances , but it can also negatively
impact their execution times. Indeed, while these optimizations
can lead to performance gains, they can also introduce variabil-
ity in execution times, posing challenges for WCET analysis
and the predictability of real-time systems. By execution time
variability we refer to the variations in the time it takes for a
program to execute across different runs. This variability can
be influenced by several factors, including compiler optimiza-
tions, hardware characteristics, operating system behavior, and
input data variations. While there is no agreement on a formal
definition of time variability, we find in the literature [1]

definitions like ratio between the WCET and the best case
execution time BCET .

The impact of compiler optimizations on execution time
variability is not fully understood. This variability complicates
the task of accurately estimating WCET, which is crucial for
the design and verification of real-time systems. Understanding
how different optimizations affect execution time variability
can lead to more reliable WCET estimations and, conse-
quently, more robust real-time systems.

This work in progress aims to investigate the relationship
between compiler optimizations and execution time variability
in the case of the GCC compiler on the Armv8-A architecture.
The objectives are:

• To identify and analyze the impact of various GCC com-
piler optimizations (O0, O1, O2, O3) on the execution
time variability of programs using WCET/BCET ratios,
and the dispersion of the execution times around the
WCET using the VWCET parameter [2], [3].

• To provide insights and guidelines for selecting compiler
optimizations that balance performance improvements
while managing the variability of execution times in real-
time systems.

II. COMPARATIVE STUDY

Our study involves an examination of a set of benchmark
programs compiled under different GCC optimization levels
(O0, O1, O2, O3). We will analyse the impact of the opti-
mization levels (O0, O1, O2, O3) on the following metrics,
the average execution time ACET, the WCET and the BCET
to see what is the best optimization level for each program if
our goal is to increase the execution time performance. Then
we compare this analysis with the impact of optimization on
time variability. To do this, we use the metrics presented in
the next section.

A. Time variability metrics

To estimate the execution time variability we consider two
parameters the WCET/BCET ratio and the VWCET parameter
[2], [3]. The WCET/BCET is an indicator of the range or
spread of execution times for a program. This ratio provides
insight into the variability of execution times and the potential
unpredictability of a program’s performance. The smaller the



ratio, the less variation there is between the largest and
smallest execution time values.

The VWCET parameter measures the dispersion of a set
of n execution times {X1, . . . Xn} of a program around the
WCET.

VWCET =

∑n
i=1(WCET−Xi)

n

WCET
× 100 (1)

This parameter was proposed to compensate the fact that
the ratio gives no information on how the execution times
are distributed. This information is important to properly
dimension a system. Indeed, execution times that are more
concentrated on the BCET may indicate that using the WCET
as a program execution time may lead to under-utilization of
the platform, whereas if the data is more concentrated on the
WCET, it may be easier to estimate the WCET. Given that the
VWCET is based on the sum of deviations, (WCET −Xi),
between the WCET and the other execution times, the smaller
it is the more likely the data are shifted towards the WCET.

B. Experiments and discussion

We perform experiments on the Zynq ZCU104 platform,
featuring a quad-core Arm Cortex A53. We generate a set of
execution times by executing 4 programs (bubble sort, dijkstra,
powerwind, matrix1) 1000 times using RT-bench an Extensible
Benchmark Framework for the Analysis and Management of
Real-Time Applications [4], we note that the input of the
programs are not changed.

We consider in our study that a program is more predictable
if it has the lowest ratio value and the lowest VWCET value
suggesting that the WCET is not a rare event.

We identify 4 different cases depending on the similarity
of the obtained results between the execution time metrics
(WCET, BCET, ACET) and the time variability metrics:

• Case 1: Concordant results
In Fig. 1 we notice that increasing the optimization
level from O0 to O3 decreases the WCET,BCET
and the ACET . We notice that O3 produces the lowest
WCET,BCET and ACET .
Concerning time variability, in Fig. 2 O3 also produced
the lowest ratio and the lowest VWCET. This means that
O3 decreases the gap between the BCET and WCET ,
and according to the VWCET the execution times are
more shifted towards the WCET .

• Case 2: Adversarial results
In Fig. 3 the optimization level O2 yields the best so-
lution considering the WCET,BCET and the ACET .
Concerning the time variability in Fig. 4 O0 is the best
solution, however the WCET, BCET, ACET results of O0
are the worst ones.

• Case 3: Trade off results
In Fig. 5 we notice that O3 yields the best
WCET,BCET and ACET . For the time variability re-
sults in Fig. 6 we notice O2 is the best solution. Although
O2 is not the optimal optimization for WCET,BCET
and ACET , it is not far from the optimal solution, so

Fig. 1: bubble sort execution times

Fig. 2: bubble sort VWCET and quotient

we can say that O2 is a good trade-off solution to ensure
both execution time optimisation and time variability
minimisation.

• Case 4: Objective-dependant results
In Fig. 7 O0 yields the best solution for optimizing the
WCET , O3 yields the best solution for optimizing the
BCET and ACET . For the time variability in Fig. 8,
O0 is the best solution.

Throughout these first experiments we can draw some
conclusions :

• We confirm that applying increased compiler optimization
options (O3 instead of O0) doesn’t necessarily produce
the desired outcome, we take as en example the program
’matrix1’, if the goal is to decrease the WCET applying
the different compiler optimizations actually increases the
WCET , same thing for the program ’dijkstra’ increasing
the optimization level from O2 to O3 actually increases
the WCET,BCET and ACET

• In case 1, the execution time metrics yields the same
results as the time variability results suggesting O3 as an
optimal optimization level, we call it concordant results
as the suggestion of the execution time metrics matches
that of the time variability parameters.



Fig. 3: dijkstra execution times

Fig. 4: dijkstra VWCET and quotient

• In case 2, the results are adversarial in the sense that the
best case in execution time metrics gives the worst results
in time variability, if it is critical to ensure predictability
of execution times we should choose optimization level
O0 even if it is the one with the highest execution time.
However, it is important to note that there is no universal
solution, each scenario needs to be studied according the
designers objectives.

• In case 3, the best result is trade off in the sense that the
best solution suggested by the time variability (O2) is not
far from the best solution suggested by the execution time
metrics, hence the best solution suggested by the time
variability parameters (O2) is a balanced choice, offering
a compromise that minimizes execution time variability
while maintaining acceptable execution performance.

• In case 4, the results in execution time metrics are not
the same, BCET and ACET suggest O3 and WCET
suggests O0. If our aim is to minimize the WCET, O0
optimization level, is the best option as it also minimize
the time variability. This is not the case if our goal is to
optimize the BCET or the ACET . The best choice is
objective dependant in the sense that it depends on the
metric that we want to optimize.

Fig. 5: powerwind execution times

Fig. 6: powerwind VWCET and quotient

As a general conclusion we conclude that relying only on
the WCET , BCET and ACET as a criteria when choosing
the best compiler optimization level is not sufficient for the
design of real-time systems.

Note that in this analysis, we have considered that the
solution with the execution time closest to WCET is the best.
However, we can consider that for some tasks, we allow some
deadline misses and that for these programs, we give priority
to optimization leading to execution times closer to BCET
and therefore with the highest VWCET .

III. RELATED WORK

Compiler optimizations are crucial for enhancing the per-
formance and efficiency of software applications. Their use
depends on the objectives, in the literature [5] we find that
these objectives aim to optimize the mean execution time, the
code size, the power consumption, the runtime memory used,
trying to balance between these objectives is a challenging
task [6]. Take in mind that there is no guarantee that the
transformed code will behave better than the original code
[5], in fact aggressive optimizations can even degrade the
performance of the code that they are trying to optimize. Our
work in progress is the first work that aims to deal with the link



Fig. 7: matrix1 execution times

Fig. 8: matrix1 VWCET and quotient

between execution time variability and compiler optimizations
as opposed to the previously mentioned objectives of using
compiler optimizations. We also find in the literature research
done on compilation for predictability [7] where the goal is to
transform the source code into sequential pieces of predicated
code of the same functional behavior in order to enforce equal
timing for all the different contexts, this can be achieved
by means of inserting/removing instructions into the code,
contrary to our approach where we do not want change the
high level source code.

IV. CONCLUSION AND FUTURE WORK

In this study, we examined the behavior of execution
times of programs compiled under different GCC optimization
levels. Different compiler optimization levels may enhance
the performance or average execution time of a program,
however, in real-time systems execution time variability is
more important than the average execution time to ensure
predictability.

Using a set of experiments we noticed that there is no
universal solution for choosing the best compiler optimiza-
tion level, each scenario requires its appropriate optimization

strategy, in this paper we identified four different case studies
with different solutions.

We plan to continue investigating this problem by examining
the hardware performance counters, including the number of
instructions executed and cache miss rates (L1 instruction and
data cache misses, L2 cache misses) and their behavior with
different optimizations sequences, to gain a deeper understand-
ing of the underlying causes of execution time variability.

Inspired by [8], [9] that uses machine learning models
to choose the appropriate compiler optimization sequence to
minimize the WCET and the runtime memory footprint, we
also plan to develop models for choosing the best compiler
optimization sequence in order to control the execution time
variability.

REFERENCES

[1] M. Schoeberl, “Is time predictability quantifiable?” in 2012 International
Conference on Embedded Computer Systems (SAMOS). IEEE, 2012, pp.
333–338.

[2] M. A. Khelassi and Y. Abdeddaı̈m, “Leveraging mixed criticality task
budgets,” in 2024 IEEE 29th International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2024, accepted.

[3] M. A. Khelassi and Y. Abdeddaı̈m, “Execution time budget assignment
for mixed criticality systems,” in 10th International Workshop on Mixed
Criticality Systems at the Real Time Systems Symposium (RTSS 2023),
2023.

[4] M. Nicolella, S. Roozkhosh et al., “Rt-bench: An extensible benchmark
framework for the analysis and management of real-time applications,” in
Proceedings of the 30th International Conference on Real-Time Networks
and Systems, 2022, pp. 184–195.

[5] A. H. Ashouri, W. Killian et al., “A survey on compiler autotuning using
machine learning,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp.
1–42, 2018.

[6] G. Palermo, C. Silvano et al., “Multi-objective design space exploration
of embedded systems,” Journal of Embedded Computing, vol. 1, no. 3,
pp. 305–316, 2005.

[7] E. J. Maroun, M. Schoeberl et al., “Compiling for time-predictability with
dual-issue single-path code,” Journal of Systems Architecture, vol. 118,
p. 102230, 2021.

[8] V. Pasquale and I. Puaut, “Winston: Revisiting iterative compilation for
wcet minimization,” in Proceedings of the 30th International Conference
on Real-Time Networks and Systems, 2022, pp. 151–161.

[9] J. Chang and D. Park, “Work-in-progress: Searching optimal compiler
optimization passes sequence for reducing runtime memory profile using
ensemble reinforcement learning,” in Proceedings of the International
Conference on Embedded Software, 2023, pp. 3–4.


