
HAL Id: hal-04667088
https://hal.science/hal-04667088

Submitted on 2 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the economic value of the agronomic effects of crop
diversification for farmers: estimation based on farm

cost accounting data
Ibirénoyé Honoré Romaric Sodjahin, Fabienne Femenia, Obafémi, Philippe

Koutchadé, Alain Carpentier

To cite this version:
Ibirénoyé Honoré Romaric Sodjahin, Fabienne Femenia, Obafémi, Philippe Koutchadé, Alain Carpen-
tier. On the economic value of the agronomic effects of crop diversification for farmers: estimation
based on farm cost accounting data. 2023 AAEA ANNUAL MEETING, Agricultural and Applied
Economics Association, Jul 2023, Washingtion, DC, United States. �hal-04667088�

https://hal.science/hal-04667088
https://hal.archives-ouvertes.fr


On the economic value of the agronomic effects of crop diversification for 

farmers: estimation based on farm cost accounting data 

 

 

Ibirénoyé Honoré Romaric SODJAHIN 

SMART, INRAE, Institut Agro, 35000 Rennes, France 

Fabienne FEMENIA 

SMART, INRAE, Institut Agro, 35000 Rennes, France 

Obafémi Philippe KOUTCHADE 

SMART, INRAE, Institut Agro, 35000 Rennes, France 

Alain CARPENTIER 

SMART, INRAE, Institut Agro, 35000 Rennes, France 

 

 

 

Acknowledgements 

This work has received funding from the European Union’s Horizon 2020 research and innovation 

program under grant agreement N°727482 (DiverIMPACTS). 

The authors are very grateful to Blandine Lemercier, from AGROCAMPUS OUEST - UMR SAS, and 

Nicolas Saby, from INRAE - US Infosol, for their availability and efficiency in making available the 

soil data produced in the “SoilServ” project funded by the French National Research Agency (ANR-

16-CE32-0005). 

 

 

Corresponding author 

 

Fabienne Féménia 

INRAE, UMR SMART 

4 allée Adolphe Bobierre, CS 61103 

35011 Rennes cedex, France 

Email: fabienne.femenia@inrae.fr 

Phone: +33(0)2 23 48 56 10 

Fax: +33(0)2 23 48 53 80 



1 

On the economic value of the agronomic effects of crop diversification for farmers: estimation 

based on farm cost accounting data 

 

Abstract 

Despite many benefits provided by diversified cropping systems, there is a dearth of empirical 

evidence on the economic relevance of their effects, mainly due to lack of information on the 

dynamics of farmers’ crop acreages. Our article contributes to fill this gap and, thereby, to shed light 

on a pair of apparently contradictory facts. European farmers tend to stick to specialized crop acreages 

despite agronomic experiments tending to show that crop diversification could reduce chemical input 

uses while maintaining or even enhancing arable crop yield levels 

We provide estimates of the effects of previous crops and crop acreage diversity on yield and chemical 

input use levels based on a sample of 769 arable crop producers covering the Marne département in 

France from 2008 to 2014. Our farm level dataset combines cost accounting data, information on crop 

sequences as well as detailed soil and weather data. Our estimation approach relies on yield functions 

and input use models defined as systems of simultaneous equations. These models feature farm 

specific random parameters for accounting for unobserved heterogeneity across farms and farmers as 

well as for accommodating input use endogeneity in the considered empirical crop yield functions.  

We estimate pre crop and crop acreage diversity effects for four major crops in the area. Pre crops 

effects on yields are estimated relatively accurately and are generally consistent with the rankings 

provided by crop production experts. Estimated pre crop effects on input uses are small and 

insignificant from a statistical viewpoint despite our large sample, suggesting that pre crops don’t 

impact much chemical input requirements or/and that farmers tend to downplay these effects when 

deciding their chemical input use levels. Our results also show that crop acreage diversity positively 

impacts yield levels and tend to induce reductions in pesticide uses, herbicide uses in particular. 

Overall, our results demonstrate statistically significant though economically limited effects of pre 

crops and crop acreage diversity on crop gross margins. They also suggest that policy measures aimed 

to foster crop diversification are unlikely to significantly reduce chemical input uses on major crops 

if they are not supplemented by measures specifically aimed to reduce the uses of these inputs. 

Keywords: crop rotation effects, crop diversification, endogeneity, random parameter, SAEM 

algorithm  

JEL classification: Q12, C33, C63 
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Valeur économique des effets agronomiques de la diversification des cultures pour les 

agriculteurs : estimation à partir de données de comptabilité analytique des exploitations 

agricoles 

Résumé 

Malgré les nombreux bénéfices qu’apportent les systèmes de culture diversifiés, on manque 

aujourd’hui de preuves empiriques sur la valeur économique de leurs effets agronomiques. Ceci est 

principalement dû à un manque d’informations sur la dynamique des assolements des agriculteurs. 

Notre article contribue à combler cette lacune :  nous estimons les effets de précédents culturaux et 

de la diversification des cultures assolées sur les rendements et les utilisations d'intrants chimiques à 

partir d'un échantillon de 769 producteurs de grandes cultures dans la Marne observés entre 2008 et 

2014. Notre ensemble de données combine des données de comptabilité analytique au niveau de 

l'exploitation, des informations sur les séquences de cultures obtenues à partir de données 

administratives ainsi que des données détaillées sur la qualité des sols et sur la météo. Notre approche 

d'estimation repose sur des fonctions de rendement et d’utilisations d’intrants sur les cultures définis 

comme des systèmes d'équations simultanées. Ces modèles comportent des paramètres aléatoires 

spécifiques à chaque exploitation pour tenir compte de l'hétérogénéité non observée des exploitations 

et des agriculteurs ainsi que de l'endogénéité des intrants dans les fonctions empiriques de rendement 

considérées.  

Nous estimons les effets précédents culturaux et diversification des assolements pour les quatre 

cultures principales de la région. Les effets des précédents culturaux sur les rendements sont estimés 

assez précisément et correspondent généralement aux classements fournis par les experts agronomes. 

Les effets estimés des précédents culturaux sur les utilisations d’intrants sont faibles et non 

significatifs d'un point de vue statistique malgré notre large échantillon, ce qui suggère que les 

agriculteurs ont tendance à peu en tenir compte lorsqu'ils décident de leurs niveaux d'utilisation 

d'intrants chimiques. Nos résultats montrent également que la diversité des cultures assolées, 

lorsqu'elle est décrite par un ensemble d'indicateurs approprié, a un impact positif sur les niveaux de 

rendement et tend à induire une réduction des utilisations de pesticides, des herbicides en particulier. 

Dans l'ensemble, nos résultats démontrent des effets statistiquement significatifs mais 

économiquement limités des précédents culturaux et de la diversification des assolements sur les 

marges brutes des cultures. Ils suggèrent également que les mesures politiques visant à encourager la 

diversification des cultures sont peu susceptibles de réduire de manière significative les utilisations 

d'intrants chimiques sur les principales cultures si elles ne sont pas complétées par des mesures visant 

spécifiquement à réduire ces utilisations d’intrants. 

Mots clés : effets des rotations culturales, diversification des cultures, endogénéité, paramètres 

aléatoires, algorithme SAEM.  



3 

On the economic value of the agronomic effects of crop diversification for farmers: estimation 

based on farm cost accounting data 

1. Introduction 

The Common Agricultural Policy (CAP) recently put forward crop diversification at the farm level 

as a primary objective. The 2013 reform introduced a set of “crop diversification” obligations1 as 

eligibility criterion for farmers to receive the green direct payments, although these obligations were 

not constraining for most European farms (Louhichi et al 2018).2 The future CAP will include similar 

standards on farm crop acreages as part of its cross-compliance greening scheme. Current agri-

environmental and climate schemes and future eco-schemes also aim to foster crop diversification in 

EU farms (e.g., Guyomard et al 2020). According to the European Commission (EC), the greening 

obligations and the congruent direct payments aim at “remunerating farmers for their efforts to protect 

the environment and biodiversity, since market prices do not reflect the work involved” (EC 2017).3 

“Crop diversification” obligations are thus expected by the EC to incentivize farmers to produce 

positive externalities -and/or to reduce pollution emissions 

Yet, crop diversity can also yield on-farm benefits (e.g., Ikerd 1993, Lin 2011, Kremen et al 2012, 

Duru et al 2015, Thérond et al 2017). As far as agronomic effects are concerned, these benefits can 

arise from three main channels: pre crop effects, crop rotation effects and spatial crop diversity 

effects, which are defined below. 

(a) Previous crops are expected to deliver pre crop effects to the crops that immediately follow them 

on the considered plot. For instance, legumes deliver nitrogen surpluses to be used by the following 

crops. Previous crops of a given botanic family are expected to deliver break crop effects to the 

following crops if these crops belong to other botanic families, by perturbing the dynamics of crop 

specific pest and weed populations (e.g., Duru et al 2015, Mortensen and Smith 2020). Nitrogen 

surpluses and break crop effects are examples of short run effects that are delivered by previous crops 

                                                                 
1 Along with two others, the “maintenance of permanence grassland” and “ecological focus areas” obligations. 

2 Farms with more than 10 ha of arable land have to grow at least two crops, while at least three crops are required on 

farms with more than 30 ha of arable land. Furthermore, the main crop may not cover more than 75% of the arable land 

(EC 2017). Several exemptions to these rules take account of the individual situation of farmers, notably farmers with a 

large proportion of grassland.  

3 The environmental effects of crop diversity, especially those on natural biodiversity, are supported by the ecological 

and agronomic literatures (e.g., Kremen and Miles 2012, Kremen et al 2012, Bellouin et al 2019 and 2021, Tamburini et 

al 2020). 
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to the following ones. 

(b) Crop rotation diversification is expected, in the medium run, to modify the (periodical) 

equilibrium of agro-ecosystems and, thereby, to increase the delivery of ecosystem services 

supporting agricultural production, at the plot and farm scales (e.g., Davis et al 2012, Duru et al 

2015). These effects are designated as cropping system effects thereafter.4 These ecosystem services 

include both vegetation and natural enemy effects on pest and weed population regulations, 

pollination effects as well as improved soil structure, fertility and health (e.g., Mortensen and Smith 

2020). Cropping system effects, which are fully established after a few rotation cycles, are often cited 

as a reason for advocating crop rotation diversification (e.g., Davis et al 2012, Duru et al 2015, 

Mortensen and Smith 2020). 

(c) Diversified crop rotations concern crop diversity across time on a given plot and generally also 

imply crop acreage diversity across space at the farm level: farmers generally manage diversified 

crop acreages along with diversified crop rotations. Diversified crop acreages yield economic benefits 

that are well-known in the economics literature, including those due to risk spreading and to work 

peak load trimming.5 Yet, crop diversity, as well as the presence of semi-natural habitats (e.g, forests, 

hedgerows), can also yield agro-ecological benefits whether it is implemented at the plot level, at the 

farm level are at a wider scale (i.e., at the landscape level).6 These agro-ecological benefits of crop 

diversity induce complementarities across crops at the plot or farm scales7 and positive production 

externalities when they occur across farms. 

Disentangling crop rotation effects and spatial crop diversity effects is difficult with farm data. 

Farmers simultaneously optimize crop rotation and crop acreage diversities and farm crop acreages 

display significant correlations across time and space. In what follows, crop acreage diversity effects 

will refer to both crop rotation (or cropping system) and spatial crop diversity effects. Indeed, crop 

acreage diversification is a key principle of agro-ecological crop production practices since suitably 

                                                                 
4 See, e.g., Blanco-Canqui and Lal (2008) or Duru et al (2015) for presentations of the cropping system concept.  

5 See, e.g., Carpentier and Letort (2014) for a recent review. 

6 Intercropping, strip cropping or mixed cropping techniques aim to take advantage of within plot crop diversity (e.g., 

Duru et al 2015). Fahrig et al (2015), Sirami et al (2019), Dainese et al (2019) or Martin et al (2019) present the agro-

ecological benefits of heterogeneous crop landscapes and of crop landscapes also including semi-natural habitats such as 

hedgerows. Landscape diversity benefits to biological pest and disease control and, thereby, can lower insecticide and 

fungicide uses (e.g., Larsen and Noack 2017, 2021; Redlich et al 2018; Delaune et al 2021). 

7 These complementarity effects are essentially static whereas those due to crop rotations or pre crop effects are essentially 

dynamic. 
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diversified crop production is expected to achieve relatively high yield levels while reducing chemical 

input requirements (e.g., Kremen and Miles 2012; Kremen et al 2012, Duru et al 2015, Thérond et al 

2017). 

In this article we shed light on a pair of apparently contradictory facts. European farmers tend to stick 

to specialized crop acreages despite agronomic experiments tending to show that crop diversification 

could reduce chemical input uses while maintaining or even enhancing arable crop yield levels (e.g., 

Duru et al 2015, Thérond et al 2017).  

Most studies considering crop acreage diversity or pre crop effects are based on agronomic 

experiments and focus on specific crop sequences or crop mixes8, but little is actually known on how 

crop diversification actually performs in commercial farms and, more generally, on how farmers 

perceive and make use of pre crop and crop acreage diversity effects. Farmers may in fact be reluctant 

to diversify their crop acreages and rotations for many reasons. They may expect diversified cropping 

mixes to be less profitable than specialized ones because crops that can be introduced to diversify the 

acreage are less profitable than major crops or because they tend to understate the value of the agro-

ecological benefits – e.g., the pre crop effects and crop acreage diversity effects – induced by crop 

diversification (e.g., Bues et al 2013, Preißel et al 2015, Zander et al 2016, Magrini et al 2016, Watson 

et al 2017, Meynard et al 2018). While farmers may directly benefit from agro-ecological effects 

induced by diversified crop rotations, for instance those improving soils or lowering pest or weed 

pressures against which no pesticide is available, they may downplay others. Farmers need to monitor 

their crops and to be willing to adjust their input uses for fully benefitting from nitrogen surpluses 

left by legumes or reduced pest or weed pressures against which they usually spray chemical 

pesticides.9 As a result, implicit costs may deter farmers from fully reaping off the benefits of crop 

                                                                 
8 Cropping system effects are mostly investigated through long run experiments in corn and soybean based systems in the 

US (e.g., Davis et al 2012, Hunt et al 2017, Bowles et al 2020, Feng et al 2021) and in wheat based systems, with a 

specific focus on canola grain legumes, in Canada (e.g., Zentner et al 2002, 2011; Gan et al 2015; Thiessen Martens et al 

2015; Smith et al 2017; Liu et al 2019; Khakbazan et al 2017, 2020). Crop yield and return levels and are generally 

primary outcomes of interest. Experiments conducted in Europe mostly concern pre crop effects, with a particular focus 

on the effects of grain legumes on cereal yield and nitrogen fertilization levels (e.g., Meynard et al 2013, Bues et al 2013, 

Preißel et al 2015, Reckling et al 2016, Zander et al 2016, Watson et al 2017, Hufnagel et al 2020). Agronomic 

experiments considering the effects of crop diversification on pesticide use levels are relatively rare and generally focus 

on herbicide use levels (e.g., Liebman and Dyck 1993, Liebman and Staver 2001, Chikowo et al 2009, Hunt et al 2017, 

Colbach and Cordeaux 2018, Adeux et al 2019, Sharma et al 2021). 

9 Due to data availability, the effects of crop rotations on yield levels have been largely investigated, especially in the US. 

For instance, Seifert et al (2017) demonstrate that corn or soybean monocultures induce yield penalties when compared 

to soybean – corn rotations. Investigations of the effects of crop rotations on input use levels are rare, and usually rely on 
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diversification. Agri-food value chain – industrial and/or spatial – organization can also hinder 

adoption of diversified crop acreages and rotations by farmers. Such so-called socio-technical lock-

ins – including lack of suitable extension services or insufficient local outlets for diversification crops 

– are often put forward for explaining this state of fact (e.g., Magrini et al 2016, Meynard et al 2018, 

Mortensen and Smith 2020, Morel et al 2020). Yet, policy instruments aimed to address lock-in issues 

substantially differ from instruments aiming to overcome lack of profitability, whether real or 

perceived. Disentangling the main drivers of current crop choices of farmers (e.g., distinguishing 

profitability and lock-in issues) is thus crucial from an agri-environmental policy perspective and 

assessing the pre crop and crop acreage diversity effects on farm crop production and on farmer 

choices is an important step toward this overall objective. 

The main purpose of this study is therefore to assess pre crop and crop acreage diversity effects based 

on commercial farm data, which in turn enables us to investigate to what extent farmers make use of 

these effects. Our approach enables us to disentangle pre crop and crop acreage diversity effects on 

both yield and chemical input use levels. In particular, we investigate whether farmers relying on 

diversified crop acreages (and, likely, diversified crop rotations) tend to use less chemical inputs and 

whether farmers adjust their chemical inputs uses to the pre crop of the considered crops. 

Agricultural economists who explicitly considered pre crops effects (generally on yield levels) in 

mathematical programming models aimed to optimize dynamic crop acreage choices (e.g., El-Nazer 

and McCarl 1986, Hennessy 2006, Cai et al 2012, Akplogan et al 2013, Dury et al 2013, Livingston 

et al 2015, Liu et al 2016, Ridier et al 2016, Boyatbatli et al 2019) or investiged the drivers of farmers’ 

acreage choice dynamic features based on econometric models (e.g., Ozarem and Miranowski 1994, 

Thomas 2003, Hendricks et al 2014).  

Others considered the effects of crop acreage diversity at the farm level on several types of outcomes. 

Most studies considered productivity effects of crop diversity. They measured the effects of crop 

acreage diversity indicators on crop production (value) aggregates (e.g., Omer et al 2007, Di Falco 

and Chavas 2008, Di Falco et al 2010, Groom and Pereira Fontes 2021), on expected return measures 

or/and return risk measures (e.g., Di Falco and Perrings 2005, Bozzola and Smale 2020). Our 

objective here is to assess pre crop and crop acreage diversity effects on a crop per crop basis in order 

to consider precisely defined agronomic effects and to circumvent the composition effects uncovered 

                                                                 

small and specific datasets. For instance, Nave et al (2013) showed that the French farmers they interviewed tend to 

downplay nitrogen surpluses left by legumes in their plots while cereal yields were significantly higher after legumes than 

after cereals or, even, oilseeds. Andert et al (2016) showed that crop sequence diversity tends to lower herbicide and 

fungicide uses in the German farms they observed. 
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by Groom and Pereira Fontes (2021) when considering crop (value) aggregates. 

Chavas and Kim (2007, 2010), Chavas (2009) and, Chavas and Di Falco (2012b) proposed to analyze 

the interest of crop diversification by relying on producer theory in various multi-output settings.10 

The analytical frameworks proposed by these authors provide theoretically grounded measures of the 

benefits of crop diversification as well as useful decompositions of these measures. These 

decompositions highlight the effects of production complementarities across crops, which are closely 

related to the agronomic effects considered in this article, from other beneficial effects of crop 

diversification, which are linked to general production management.11 These theoretical frameworks 

are however essentially static, while, by considering pre crop effects we aim at accounting for 

dynamic features of crop production underlying crop rotation effects. 

The recent study of Bareille and Letort (2018) is the closest to ours. It measures the effects of crop 

acreage diversity, which is related to the crop acreage diversity effects considered in this article, on 

crop yield and chemical input use levels based on farm cost accounting data. They generally 

demonstrate positive effects of crop diversity on crop yield levels, and negative effects on chemical 

input uses and on yield variability. Yet, this study ignores pre crop effects. Indeed, most empirical 

analyses of crop diversity ignore pre crop effects, probably due to data lacking on crop sequence 

acreages.  

To achieve our main objective, we organized a rich dataset by matching crop sequence acreage, 

weather and soil data to a cost accounting panel dataset covering 769 farms located in the Marne 

département and its neighborhood , which is a small district located 150 km east from Paris, from 

2008 to 2014. This particular area counts among the most productive and the most diversified arable 

crop production areas in Europe. The Marne département provides local outlets to major grain crops 

(including grain legumes) but also to sugar beet, (starch and consumption) potatoes and alfalfa. The 

accountancy dataset reports the yearly crop acreages of the sampled farms but do not include 

                                                                 
10 Chavas and Kim (2010) proposed the concept of economies of diversification as an extension of the concept of 

economies of scope of Panzar and Willig (1981) and Baumol et al (1982). Whereas economies of scope compare 

production diversification to complete production specialization based on production costs economies of diversification 

consider situations of partial specialization. Chavas and Kim (2007) and Chavas (2009) proposed measures of the effects 

of crop diversification in a primal framework. Kim et al (2012) and Chavas and Di Falco (2012a) provide applications of 

this theoretical framework. Chavas and Di Falco (2012b) proposed an analytical framework including risk management 

considerations, thereby adding risk spreading to the economic benefits of crop diversity. 

11 For instance, Chavas and Kim (2010) provide a decomposition of economies of diversification into four additive parts: 

a part measuring complementarity among outputs, a part reflecting economies of scale, a part reflecting convexity and a 

part reflecting the role of fixed costs. 
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information on acreages for pairs of current and previous crops. These acreages of crop sequences for 

the sampled farms were obtained by processing Integrated Administration and Control System 

(IACS), which enables to uncover the allocation of current crop acreages to the crops grown the 

previous year on the considered piece of land, hereafter crop sequence acreages.. 

We also developed purposely designed yield response and input use microeconometric models. These 

models feature pre crop and crop acreage diversity effects, thereby enabling us to investigate 

important (mostly dynamic) features of crop production. Considering crop yield response models 

together with chemical input demand models enable us to estimate the effects of pre crops and crop 

acreage diversity on both crop yield and chemical input use levels. Our models also incorporate 

random parameters for accounting for farm and farmer heterogeneity in crop yield and input use 

levels, and in input productivity levels (e.g., Suri 2011, Koutchadé et al 2018). Importantly, the rich 

information content of our dataset and our considering random parameter systems enable us to control 

the well-known input use endogeneity issues that arise when considering the estimation of production 

functions (e.g., Grilliches and Mairesse 1995, Ackerberg et al 2015). 

The contributions of this article are thus threefold. 

First, we provide a modelling framework that enables us to identify pre crop and crop acreage 

diversity effects on both yield and chemical input use levels. This modelling framework also (i) 

accounts for the effects of farms’ and farmers’ unobserved heterogeneity on yield, input use and 

productivity levels and (ii) controls for potential input use endogeneity in the considered econometric 

yield functions. We also consider extensions of standard crop acreage diversity measures that prove 

to be empirically useful when the number of grown crops vary significantly across observation units. 

Second, our data and models enable us to obtain original empirical results on the effects of crop 

diversification on important agronomic features of crop production in commercial farms. Our 

estimation results demonstrate statistically significant pre crop and crop acreage diversity effects on 

crop yield levels and statistically significant crop acreage diversity effects on pesticide use levels, 

especially on herbicide use levels. The implied effects on crop returns are significant from a statistical 

viewpoint but rather limited from an economic viewpoint. 

Third, our data and models enable us to obtain original empirical results on farmer choices regarding 

the effects of crop diversification. Our crop sequence acreage data demonstrate that farmers’ crop 

sequence choices are rational from both agronomic and economic viewpoints. The considered farmers 

basically choose the best available pre crops for the major crops of their crop mix. This reduces the 

scope of the crop diversification effects that can be assessed based on farm data. 

Taken together our results show that pre crop effects can be uncovered from farm data, but only for 
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the most frequent crop sequences. They also suggest that pre crop and crop acreage diversity effects 

provide insufficient economic benefits to farmers, especially insufficient savings of chemical inputs, 

for leading them to adopt diversified crop acreages.12 

The rest of the article is organized as follows. In section 2, we present the models we use for 

uncovering pre crop and crop diversity effects from cost accounting data. In section 3, we describe 

our estimation strategy, with special emphasis on the issues raised by input use endogeneity and 

random parameters. Section 4 presents the different datasets we use and how we combine them. 

Section 5 presents and discusses the estimation results while section 6 provides concluding remarks.  

2. Modelling framework 

Our primary interest lies in the magnitude of two types of effects on crop yield and input use levels: 

pre crop effects, i.e. the effects of previous crops of the crop grown on the same plot, on the one hand 

and the effect of crop acreage diversity at the farm level on the other hand. We c estimate these effects 

based on  a panel data set describing the production choices and performances of a large sample of 

farmers, 1,...,i N= , over a short time period, 1,...,t T= . Term K  denotes the set of crops that are 

potentially grown by the sampled farmers, with {1,..., }K=K . 

The yield level of crop k obtained by farmer i in year t is denoted by ,k it
y . The corresponding use level 

of input j is denoted by , ,j k it
x  for j∈ J . In our application, input set {1,..., }J=J  includes nitrogen 

fertilizers, herbicides and other pesticides, which mostly include fungicides and insecticides.  

Pre crop effects imply that the observed yield level of crop k, ,k it
y , is a weighted average of the yield 

levels obtained for each previous crop after which crop k was grown by farmer i in year t. Let ,mk it
y  

denote the yield level of crop k when this crop is grown after crop m and let ,mk it
z  denote the share of 

acreage of crop k grown after crop m (i.e., ,mk it
z  is the share of the acreage of crop k, which is grown 

in year t, that is grown on land on which crop m was grown in year −1t )The observed yield level of 

crop k is given by 

, , ,k it mk it mk itm
y z y

∈
=∑ K

 for k∈K       (1a) 

                                                                 

12 Moreover, these results are consistent with results obtained by Koutchadé et al (2021) in the considered area. These results tend to show that the 

considered farmers don’t produce protein pea, which is a typical diversification crop for agronomists (e.g., Bues et al 2013, Meynard et al 2018),  

mostly due to profitability issues. For instance, simulation results suggest that standard area based payments would significantly increase pea 

acreages in the Marne area, by leading producing farmers to increase their pea acreages but mostly by leading others to include pea in their crop 

rotations. 
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Similarly, accounting for potential pre crop effects on input use levels supposes to define input uses 

at the crop sequence levels. Let , ,j mk it
x  denote the quantity of input j used by farmer i in year t for crop 

k when this crop is grown after crop m. The observed use level of input j for crop k is given by 

, , , , ,j k it mk it j mk itm
x z x

∈
=∑ K

 for k∈K  and j∈ J       (1b) 

Crop yields and input uses being unobserved at the crop sequence level, we replace them by relatively 

simple models. 

2.1. Yield and input use models at the crop sequence level 

We define yield functions at the crop sequence level, with  

( ) ( ) ( ) ( ) ( ) ( )

, ,0 , , ,0 , , ,0 ,0 ,

y y y y y y

mk it mk k i k t mk it k i it k it k k it
y a µ α ε′ ′ ′= + + + + + +x β c λ d δ  for m∈K  and k∈K      (2a) 

for the yield of crop k when it is grown after crop m. Vector , , ,( , )
mk it j mk it

x j= ∈x J  collects the input uses 

of farmer i for crop k after crop m in year t. We consider crop yield functions instead of crop supply 

functions for disentangling the effects of pre crops or of crop acreage diversity that directly impact 

yield levels from those that may impact yield levels through adjustments in input use levels , )x
mk it . 

Indeed, yield functions (2a) allow controlling  the effects of the intensity in chemical inputs on yield 

levels when estimating the effects of crop diversity. Parameters ( )

,0

y

mk
a and ( )

,0
δ

y

k  are our main interest 

parameters. Parameter ( )

,0

y

mk
a  defines the pre crop effects of crop m on the yield of crop k. These are 

defined with respect to a reference pre crop (the mean of random parameter µ( )

,

y

k i
 is left unconstrained). 

Indeed, we impose the normalization constraint stating that =( )

,0 0y

rk
a  if crop r is the reference pre crop 

of crop k. Accordingly, parameter ( )

,0

y

mk
a  defines the yield effect of using crop m instead of crop r as 

the pre crop of crop k. 

Although these effects may vary across farms and years we specify these effects as fixed parameters 

due to data constraints. Uncovering the distribution of pre crop effects across farms and/or time 

requires crop sequence acreages to sufficiently vary across farms and time. As discussed below, crop 

sequence acreages reported in (or reconstructed from) farm datasets are likely to lack the variability 

needed to uncover year specific or the distribution of farm specific pre crop effects. 

Vector 
it
d  contains a set of crop acreage diversity indicators aimed to capture crop acreage diversity  

effects. These indicators combine grown crop numbers and Shannon indices. More precisely, vector 

it
d  includes two subsets of variables. It includes a set of dummy variables, one for each number of 

crops grown observed in our data, for capturing the effect of the size of the crop set considered by 

farmers. Vector 
it
d  also includes the cross products of these dummy variables with the corresponding 
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crop acreage Shannon indices, for capturing the effects of the land allocation chosen by farmers.13 

Using this set of crop acreage diversity indicators has two main advantages. This allows estimating 

the effects of the number of grown crops without any parametric restriction on the one hand, and this 

allows circumventinga shortcoming of the Shannon index, explained in what follows, when the 

number of crops is variable on the other hand. 

Let ,k it
s  denote the share of the acreage of crop k in the arable land area of farmer i in year t. Provided 

that , [0,1]
k it

s ∈  for k∈K  and 
,

1
k itk

s
∈

=∑ K
, the Shannon index of crop acreage ,( , )

it k it
s k= ∈s K  is defined 

by ( ) ln
it it it

h ′=−s s s .14 Function ( )
it

h s  is upper bounded by ln ( )
it

n s  where ( )
it

n ∈s K  is the number of crops 

actually grown in 
it
s .15 This implies that the Shannon index is a questionable measure of crop diversity 

when numbers of grown crops vary widely across farms, since the upper bound of this index, ln ( )
it

n s

, grows at a rate that decreases in the number of crops that are actually grown, ( )s
it

n . The set of 

indicators contained in 
it
d  allows disentangling the effects of grown crop numbers and those of the 

crop acreage diversity given grown crop numbers. 

Vector 
it
c  contains control variables aimed to capture the effects of production conditions that impact 

farmers’ crop production choices. We use a rich set of variables describing soil properties at the farm 

level and weather conditions at the municipality level.  

Parameters ,k i
β  give the marginal productivity levels of the considered inputs. Like farm specific 

effects ( )

,

y

k i
µ , these parameters are assumed to be farm specific. Models featuring such random 

parameters allow to account for unobserved heterogeneity (e.g., Wooldridge 2010, Arellano and 

Bonhomme 2011). In the case of agricultural production choices, this heterogeneity is due to 

unobserved characteristics of the sampled farmers (e.g., skills, motivations) or farms (e.g., spatial 

distribution of the plot, available machinery, unobserved soil or climate features) that do not vary or 

vary little over the considered time period (e.g., Koutchadé et al 2018, 2021). For instance, they may 

capture the effects of farm specific factors (that are not controlled by 
it
d ) impacting pressures of pests, 

diseases or weeds. These parameters are expected to significantly vary across farmers and farms. 

                                                                 
13 Shannon indices are centered at their sample means by crop number for facilitating the interpretation of the direct 

effects of the crop number indicators. 

14 Given that 
, ,lnk it k its s  can be set at 0 if 

, 0k its =  by continuity extension, following the continuity of function ( ) lng x x x=  in 

*
x +∈ℝ  and 

0
lim ( ) 0

x
g x+→

= . 

15 Entropy function ( )h s  achieves its (unique) maximum in 
1( ,..., )Ks s=s   at ( ) lnh K=s  and ( ) lnh K=s  if and only if 1 /ks K=  

for k∈K . 
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Year specific effects ( )

, ,0

y

k t
α  capture the effects of large scale factors impacting all farms, such as 

weather driven pest and disease outbreaks or widely adopted (technological or agronomic) 

innovations. 

The models of input use at the crop sequence level are defined similarly, with 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , , , , ,0 , ,0 , ,0 , ,

x x x x x x

j mk it j mk j k i j k t it j k it j k j k it
x a µ α ε′ ′= + + + + +d δ c λ  for m∈K , k∈K  and j∈ J     (2b) 

Parameter ( )

, ,0

x

j mk
a  is the pre crop effects of crop m on the use of input j for crop k and random term ( )

, ,

x

j k i
µ  

is a standard additively separable farm specific effect.16 Year specific effects ( )

, , ,0

x

j k t
α  capture the effects 

of large scale factors, such as weather driven pest and disease outbreaks, widely adopted innovations 

or economic factors, including prices or changes in the value chains. 

Due to the limited time span of our dataset, the effects of prices are difficult to disentangle from those 

of unobserved (to the analyst) temporal shocks or trends that impact all farmers. The effects on 

chemical uses of crop and input prices, which mostly vary across years,17 are expected to be captured 

by year specific terms ( )

, , ,0

x

j k t
α . These price patterns also significantly impact our strategy for identifying 

the parameters of crop yield models (2a) since they basically prevent us from using prices as 

instrumental variables for input uses in the yield function equations we consider. 

2.2. Yield and input use models at the crop level 

Combining equations (1) and (2) yields crop k yield model 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , , , ,0 ,0 ,0 ,

y y y y y y

k it k i k t k it k i k it k it k it k k it
y µ α ε′ ′ ′ ′= + + + + + +x β z a d δ c λ        (3a) 

and the corresponding input use models 

( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,0 , , ,0 , ,0 , ,0 , ,

x x x x x x

j k it j k i j k t k it j k it j k it j k j k it
x µ α ε′ ′ ′= + + + + +z a d δ c λ  for j∈ J       (3b) 

for k∈K . We use here the fact that the elements of vector ,k it
z , that is to say the shares of crop k on 

its potential pre crops, sum to 1.  

The yield function models given in equation system (3) are linear in input use vector ,k it
x , which is 

                                                                 

16 Pre crop effect parameters ( )

,0

y

mka  and ( )

, ,0

x

j mka  need to be normalized. They are set at 0 for the most frequent previous crop 

of crop k (i.e., the reference pre crop of crop k), which is rapeseed for wheat and wheat for the other considered crops in 

our application. 

17 The intra-farm variance of output prices is does not exceed 20% of the total variance of crop prices in our sample. In 

our application, input prices are measured by price indices, which are supplied by the French ministry of agriculture, only 

vary in the time dimension.  
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unusual and, thereby, deserves a few comments. Admittedly, the linearity in input uses of crop 

sequence yield models (2a) in crop sequence input use levels ,mk it
x  greatly facilitates the aggregation 

process of these models at the crop level as shown by equation (3a).18 Yet, linear crop sequence yield 

models can be interpreted as first order Taylor expansion in ,mk it
x  of any (sufficiently smooth) model 

of ,mk it
y . Importantly, the intercept and the coefficients of ,mk it

x  in the model of ,mk it
y , which are 

collected in vector ,k i
β , are farm specific. Yield functions considered in equations (2a) and (3a) can 

thus be interpreted as farm specific approximates of the underlying “true” yield functions. Also, 

coefficient , ,j k i
β  delivers a direct measure of the marginal productivity of input j for crop k in farm i. 

3. Identification and estimation 

Equations (3) define the production choice equations that we consider for estimation purpose. These 

are collected in the following equation system: 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , ,0 , , ,0 , ,0 ,

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 ,0 ,0 , ,0 ,

y y y y y y

k it k i k t k it k k it k i it k k it k k it

x x x x x x

k it k i k t it k it k k it k k it

y µ α ε ′ ′ ′ ′ = + + + + + + = + + + + +

z a x β d δ c λ

x μ α Z a D δ C λ ε
       (4) 

Vectors ( )

,

x

k i
μ , ( )

, ,0

x

k t
α  and ( )

,

x

k it
ε  are given by ( ) ( )

, , ,( : )x x

k i j k i
jµ= ∈μ J , ( ) ( )

, ,0 , , ,0( : )x x

k t j k t
jα= ∈α J  and ( ) ( )

, , ,( : )x x

k it j k it
jε= ∈ε J  while 

matrices 
it
Z , 

it
D  and ,k it

C  are defined by it J it
′= ⊗Z ι z , it J it

′= ⊗D ι d  and 
, ,k it J k it

′= ⊗C ι c . 

Estimating equation system (4) requires identification assumptions. Let vector ,k i
γ  collect the random 

parameters of model (4), with , , ,( , )
k i k i k i
=γ μ β  and ( ) ( )

, , ,( , )y x

k i k i k i
µ=μ μ  and let vector ( ) ( )

, , ,( , )y x

k it k it k it
ε=ε ε  collect its 

error terms. We assume that vectors ,k i
γ , ,k it

ε  and , ,( , , )
k it k it it it
=w z d c  are mutually independent and that 

the regressors collected in ,k it
w  are strictly exogenous in the considered equation system. Finally, we 

assume that error terms ,k it
ε  are serially uncorrelated. This last assumption makes use of the fact that 

farm specific random parameters are expected to capture the most persistent (unobserved) features of 

the dynamics of the considered crop production processes. Assuming that error terms ,k it
ε  and random 

parameters ,k i
γ  are independent is standard, and required for identifying the probability distribution 

of ,k i
γ . 

3.1. Identification 

The exogeneity assumption related to crop sequence acreage share vector ,itzℓ  deserves some 

                                                                 
18 The same remark holds for the additive separability of the pre crop effects in the crop sequence level yield and input 

use models. 
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comments. These variables describe choices of farmers. Exogeneity of ,itzℓ  is partly supported by the 

fact that crop sequence acreage decisions are taken prior to the occurrence of most random events 

impacting crop yield and input use levels. Yet, omitted variable biases may still arise. For instance, 

soils of farms with relatively large acreage shares of potatoes and/or sugar beet are generally deep 

and well structured. These soil properties have positive impacts on the production of most arable 

crops (e.g., Carpentier and Letort 2014). In our models soil property effects are controlled for by a 

rich set of variables describing the soils of the sampled farms.19 

Similar observations hold regarding crop acreage diversity indicator vector, 
it
d . In our empirical 

application this vector is evaluated by considering previous year crop acreage shares, that is to say 

based on 
1it−s . This eliminates potential endogeneity issues related to error terms ,k it

ε .20 Our results 

on the effects of crop acreage diversity are robust to alternative construction approaches for the 

diversity indicator set 
it
d , that is to say based on current acreages, on whole crop acreage (observed) 

history of farmers or on one year lagged crop acreages (as in our application). This reflects the fact 

that farmers’ crop acreages are relatively stable over time. This also provides support to our 

interpreting our empirical results on the effects of 
it
d  as cropping system effects, at least to some 

extent. These are long run effects that are induced by the crop acreage history of the considered farm, 

which in turn determines the state of the farm agroecosystem. Importantly, the variables describing 

soil properties prevent our crop diversity indicators to capture the effects of soil quality. As discussed 

above, good soils enlarge the set of profitable arable crops for farmers. Failing to control for soil 

quality is likely to bias our empirical measure of crop acreage diversity effects through crop acreage 

diversity indicators 
it
d . 

We impose parametric distributional assumptions on random vectors ,k i
γ  and ,k it

ε , mostly for 

facilitating the estimation of the fixed parameters of the models and of the probability distribution of 

,k i
γ  by Maximum Likelihood (ML). We assume that ,k i

γ  is multivariate normal, with , ,0 ,0( , )
k i k k
γ η Ω∼N  

and that error terms ( )

,

y

k it
ε  and ( )

,

x

k it
ε  are normal, with ( )

, ,0(0, )y y

k it kk
ε ψ∼N  and ( ) ( )

, ,0( , )x x

k it k
ε 0 ψ∼N . Of course, the 

correlation structure of ( )

,

y

k i
µ , ( )

,

x

k i
µ and ,k i

β  is defined by variance-covariance matrix ,0k
Ω . 

Our last assumption concerns the status of the input use vector, ,k it
x , in the yield function model. This 

point is crucial as the endogeneity of input use in production function is a longstanding issue that has 

                                                                 
19 The control variables describing farm soils include measures of soil depth, cationic exchange capacity, pH, water 

holding capacity as well as organic matter, clay, silt and sand contents. 

20 Even if the magnitude of these effects are likely to be limited. 
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originated a considerable, and still lively, econometric literature (e.g., Mundlak 1996 and 2001, Just 

and Pope 2001, Ackerberg et al 2015).21 We assume that error terms ( )

,

x

k it
ε  and 

,

y

k it
ε  are uncorrelated, 

implying input choices are assumed exogenous in the yield models conditionally on farm specific 

parameter ,k i
γ . This exogeneity assumption is admittedly restrictive, though common for panel data 

production function models (e.g., Blundell and Bond 2000, Suri 2011). 

Assuming that input uses ,k it
x  are exogenous with respect to 

,

y

k it
ε  appears reasonable in our application, 

due to our using a rich set of control variables and our specifying farm specific random parameters. 

We basically assume that control variables ,k it
w , year specific effects ( )

, ,0

y

k t
α  and farm specific random 

parameters ( )

,

y

k i
µ  and ,k i

β  capture most of the effects of the factors that simultaneously impact yield and 

input use levels. Importantly, the variance-covariance matrix, ,0k
Ω , of random parameter vectors ,k i

γ  

is left unrestricted.22 Accordingly, input use levels ,k it
x  can be correlated with the random parts of the 

corresponding yield model, albeit only through correlations of the farm specific parameters of the 

yield model, ( )

,

y

k i
µ  and ,k i

β , and those of the input use equations, ( )

,

x

k i
μ . As a matter of fact, the considered 

yield models accommodate a fairly rich set of input use endogeneity sources, albeit these only involve 

farm specific random parameters. 

3.2. Estimation 

Equation (4) describes a recursive simultaneous equation system since input uses ,k it
x  are used as 

explanatory variables of yield levels ,k it
y  while ,k it

y  is not part of the models of ,k it
x . The input use and 

yield models featured in equation (4) rely on identical sets of exogenous variables, year specific 

dummy variables included. As argued above, we do not identify the parameters of our production 

choice models by relying on instrumental variables.23 Our identification strategy relies on a full 

                                                                 
21 See, e.g., Ackerberg et al (2015). Mundlak (1996, 2001) and Just and Pope (2001) specifically consider agricultural 

production. Ackerberg et al (2015) state that the long history of production function estimation in applied economics 

cannot be deemed an unqualified success, as many issues hampering early estimations are still an issue today. 

22 Implying that the considered yield models are so-called correlated random coefficient (linear) models (e.g., Wooldridge 

2005a and 2005b, Suri 2011) 

23 As a matter of fact, it is difficult to find suitable instrumental variables for input uses in crop production functions when 

crop and input prices do not display sufficient variations for suitably instrumenting input uses. Most exogenous factors, 

other than prices, that impact input uses do so because they also impact the crop production process, input uses being 

used for taking advantage or compensating the effects of the considered exogenous factors. As a result, it is difficult to 

find non-price exogenous factors (e.g., weather effects, soil characteristics) that impact input uses without directly 

impacting yield levels. 
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information approach. It combines the use of a rich set of control variables and the parametric 

specification of the multivariate probability distribution function of the random parameters of the 

considered models. Basically, we assume that the control variables and the random parameters of the 

model enable us to assume that error terms ( )

,

x

k it
ε  and 

,

y

k it
ε  are uncorrelated conditionally on ,k it

w  and 

,k i
γ . Then, we manage the issues raised by the endogeneity of ,k it

x  in the model of ,k it
y  (which are due 

to random parameter vector ,k i
γ  in our modelling framework) by explicitly modelling (i) endogenous 

variable vector ,k it
x  and (ii) the correlation structure linking the farm specific random terms of the 

model of ,k it
x , ( )

,

x

k i
μ , on the one hand and those of the model of ,k it

y , ( )

,

y

k i
µ and ,k i

β , on the other hand. 

Although it is unusual, this approach is suitable given our data and objectives. As input use models 

(3b) are standard random parameter models, the estimation issues we face are mostly due to correlated 

random coefficient crop yield models (3a). Breitung and Salish (2021) and Woodridge (2019) 

recently proposed alternative approaches for estimating correlated random coefficient models. These 

approaches do not require any distribution assumption on the random terms of the considered 

equation. They make use of extensions of Mundlak’s device (Mundlak 1978). This device relies on 

linear dependency assumptions across the elements of ,k i
γ  that are closely linked to those implicitly 

imposed by the joint normality of ,k i
γ  in equation systems (4). Also, the approaches proposed by 

Breitung and Salish (2021) and Woodridge (2019) primarily focus on the estimation of random 

parameter means whereas we are also interested in there variance and covariance.  

Since our models are fully parametric, we consider ML estimators of the parameters of equation 

systems (4). Apart from their being relatively large equation systems, two issues have to be dealt with 

when estimating these systems.  

First, our models feature standard fixed parameters but also random coefficients, the parametric 

probability distribution of which is to be estimated. We circumvent this issue by using an Expectation-

Maximization (EM) type algorithm (Dempster et al 1977, Wu 1983) for computing the ML estimators 

of the parameters of our models. EM type algorithms are particularly well suited for estimating 

models featuring unobserved variables, of which random parameters are prominent examples (e.g., 

Lavielle 2014).24 Importantly, the interaction terms 
, ,k it k i
′x β  featured in the yield functions and the 

random parameters appearing in the input use models imply that the equation system we consider 

involve products of random parameters, which raises non trivial estimation issues in our models. 

                                                                 
24 These algorithms are easy to code for our models and have interesting robustness and global convergence properties, 

their main drawback being their linear convergence rate (even of computing time remains reasonable in our application). 
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Relying on stochastic extensions to standard (deterministic) EM algorithms is necessary in such 

nonlinear settings. The conditional expectation that constitutes the E step of EM algorithm cannot be 

integrated either analytically or numerically and, thereby, requires simulation methods. We devised 

a Stochastic Approximation Expectation Maximization (SAEM) algorithm for estimating our models. 

SAEM algorithms were proposed by Delyon et al (1999). They make a more efficient use of 

simulations than competing stochastic EM type algorithms. The SAEM algorithm we used is 

presented in Appendix A. 

Second, attrition is the rule rather than the exception in microeconomic panel data. Attrition is not an 

issue when units are missing at random, that is to say when the decision to drop out is not related to 

factors that are correlated with the response variables (e.g., Wooldridge 2010). Our panel dataset is 

not balanced, for two reasons. First, farmers enter in and leave the customer base of the accountancy 

firm that made these data available to us. Also, data can be lost or observations can be incompletely 

recorded. The resulting attrition processes can be considered as random regarding the modelled 

processes. Second, farmers can decide not to produce some crops. In our application most sampled 

farmers produce the considered crops every year (wheat, barley or rapeseed) or do not produce them 

at all (sugar beet). Ignoring that observations are available depending on farmers’ choice potentially 

raises endogenous sample selection issues when this choice depends on important unobserved factors 

that impact input use and yield levels.25 Yet, accounting for sample selection is relevant when the 

objective of the study is to infer the features of a process for an entire population while the process is 

only observed for a specific sub-population. The objective of our study is much simpler. We aim to 

estimate pre crop and crop acreage diversity effects and to investigate how farmers use them in the 

sample that is available to us. We do not seek for results that can be extrapolated to situations in 

which the considered crops could be produced whereas they are not produced in our data.  

 

 

 

 

 

                                                                 
25 Following the pioneering work of Heckman (1976), agricultural production economists developed specific modelling 

frameworks for dealing with such issues when analyzing farmer production choices. See, e.g., Lacroix and Thomas (2011) 

or Koutchadé et al (2021), for recent examples. 
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4. Data 

Our dataset is primarily based on a large sample of farm cost accounting data and combines 

information from different sources for supplementing these basic data. We used data recorded by the 

Integrated Administration and Control System (IACS) in France for uncovering the crop sequence 

acreages of the sampled farms. We also used data from the GlobalSoilMap initiative (e.g., Arrouays 

et al 2020) for obtaining measures of the main characteristics of the soils of the sampled farms. 

Finally, we used data from Meteo France for obtaining detailed information on the weather conditions 

that prevailed in the considered area over the considered time span.  

4.1. Farm cost accounting data 

Our main dataset consists of an unbalanced panel accountancy dataset of 769 farms mostly located in 

the Marne départment, which provides a detailed description of farmers’ choices in terms of acreages, 

crop yields as well as fertilizers and pesticides expenditures per crop. Aggregate fertilizers and 

pesticides volumes are computed from the corresponding expenditures by using price indices 

provided by the French ministry of agriculture at the regional level and expressed in constant 2010 

euros per ha. Importantly, uses of the major nutrient elements – namely N, P and K – are also reported 

in kg for each crop. 

We consider farms observed from 2008 to 2014 and displaying at least three consecutive years of 

observations. These farms mostly grow eight crops: (winter) wheat, (mostly spring) barley, (winter) 

rapeseed, corn, protein pea, alfalfa, sugar beet and (starch and consumption) potatoes. We aim at 

estimating the pre crop effects of these eight crops on the yield and input uses of the four major crops 

of the sample: wheat, barley, rapeseed and sugar beet. Tables 1 reports some descriptive statistics on 

farmers’ production choices for these four crops and on farms’ acreage diversification. Wheat appears 

to be the dominant crop in our sample, as it is grown every year by all farms and represents on average 

one-third of farms’ acreage. As shown in table 1b, farms’ acreages are quite diversified, with an 

average of more than five crops grown each year and most farmers (92% of them) growing at least 

four crops. 
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Table 1a: Descriptive statistics: yield and chemical input use levels 

 Crops 

 Wheat Barley Rapeseed Sugar beet 

Average yield (ton/ha) 8.65 (1.06) 7.00 (1.19) 3.88 (0.65) 93.02 (13.15) 

Average output price (€/ton) 160 (33) 164 (35) 357 (71) 26 (4) 

Average use of nitrogen (kg/ha) 217 (34) 147 (25) 214 (38) 137 (36) 

Average use of herbicides (€/ha) 63 (19) 30 (12) 99 (31) 160 (53) 

Average use of other pesticides (€/ha) 125 (36) 76 (25) 109 (38) 96 (31) 

Average acreage share  0.34 (0.10) 0.21 (0.10) 0.14 (0.08) 0.12 (0.08) 

Note: Sample standard deviation are in parentheses. 

 

Table 1b: Descriptive statistics: crop acreage diversity 

 Sample 

share 

Average number of 

grown crops 

Average Shannon index 

Farms growing 3 or less crops 0.08 2.85 (0.18) 1.09 (0.18) 

Farms growing 4 crops 0.17 4.00 (-) 1.31 (0.10) 

Farms growing 5 crops 0.37 5.00 (-) 1.48 (0.09) 

Farms growing 6 crops 0.30 6.00 (-) 1.63 (0.08) 

Farms growing 7 or more crops 0.08 7.04 (0.04) 1.76 (0.08) 

Total sample  5.33 (1.02) 1.49 (0.21) 

Note: Sample standard deviation are in parentheses. 

 

4.2. IACS data 

The IACS ensures the management of agricultural payments across EU countries26. It consists of 

several interconnected databases, which are updated on a yearly basis. We focus here on one 

particular database, the Land Parcel Identification System (LPIS). This database provides detailed 

information on crop acreages implemented on block of plots. Each block of plots is georeferenced, 

has a unique identifier and is associated to a unique farm identifier. We used the LPIS dataset for 

uncovering the crop sequence acreages of the farms of our sample. This dataset is very rich but, 

because farm and plot blocks identifiers vary from one year to the other, and because each block may 

contain more than one plot each year, specific data processing is required to extract information on 

farm crop sequences. For this purpose, we used the RPG explorer software developed by Martin et al 

(2017). By relying on established rules on how the crops match up from one year to the next, this 

                                                                 
26 More details can be found in European Commission (2019). 
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software offers the possibility to recover crop sequence acreages shares at the farm level.27  This was 

performed for all farms of the area from which the farms of our sample are drawn. These data were 

then matched to our cost accounting dataset using the farm level crop acreage seriesbserved in both 

datasets as matching criteria. This allowed us to perfectly match28 two-thirds of the farms of sample 

of cost accounting data with a farm in the IACS data. More flexible matching criteria, combined with 

manual checks, then resulted in a matching rate of 78% of our initial sample.29 

4.3. Soil and climate data 

A significant part of the heterogeneity in yields and input uses among farms may be due to the 

heterogeneity in the soil and climatic conditions they face. To control for these heterogeneous factors 

in our econometric estimations, we also introduce soil and climate data in our dataset. We use weather 

indicators provided at the municipality level by Meteo France, the French National Weather Service, 

and soil quality indicators provided at the farm level30 by the team of the “SoilServ” project funded 

by the French National Research Agency (ANR-16-CE32-0005).  Statistics summing up these 

climate, respectively soil, indicators are reported in tables C1, respectively C2, of Appendix C. 

4.4. Expert knowledge information 

Expert knowledge information was gathered through interviews with three agricultural scientists and 

an extension agent of the considered area. These experts provided a list of unwarranted crop 

sequences, which are less likely to be chosen or never chosen by farmers and rankings of the effects 

of crop sequences on yield and input use levels. We use the information on the expected rankings of 

                                                                 
27 These rules are based on the knowledge of the crop acreages declared in each block from one year to the next. A 

succession of 10 rules implemented one after the other can be used to determine the sequences of crops. Rule 1 (only one 

crop in the block in one year and the next) is considered as giving certain results, rules 2 (two crops per year, distributed 

over equal areas from one year to the next but different from each other) and 3 (one crop in one year is "broken down" 

into two crops in the next year  with equal total acreage) are supported by solid hypotheses, from rule 4 onwards the 

probability of error in identifying the sequence increases. In our case, it hasn’t been necessary for the software to 

frequently make use of rules beyond rule 3. More details on each rule can be found in Martin et al (2017). 

28 We consider a match as perfect when, for each the eight selected crops, the discrepancy of the acreages between the 

two datasets is less than 0.1 hectare 

29 It should be noted here that, although very unlikely, a farm in our sample may have been matched with the wrong farm 

in the IACS sample. This could happen if the two farms are the same size and have very similar acreages each year. 

However, this would not have a significant impact on our estimation results, since two farms with similar cropping 

patterns are expected to show similar effects of crop sequences and crop diversification on yields and input uses. 

30 Soil quality indicators were actually first provided at the plot level and aggregated at the farm level by using the 

correspondence between farms and plots provided by the IACS data. 
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the effects on crop yield and input use levels to assess the consistency of our estimation results. The 

expected rankings of the effects of crop sequences on yields and input uses are reported in Table 2. 

Empty cells correspond to the crop sequences strongly unwarranted by the experts we have consulted. 

Wheat yields are expected to be the highest when wheat is grown after pea, alfalfa or rapeseed, while 

growing wheat after wheat or barley is expected to lead to the lowest yields according to the experts. 

Growing barley after rapeseed or corn is expected to boost yield level for barley, while growing barley 

after barley is expected to penalize barley’s yield level. In fact, growing a crop after the same crop is 

generally either unwarranted, or should lead to the lowest yield levels for that crop because this type 

of crop sequence favors the development of weed and/or pest pressures (corn being a notable 

exception in this respect). 

Legumes fix significant amounts of atmospheric nitrogen that are made available for the following 

crops. Accordingly, the interviewed experts’ rankings displayed in Table 2 show that growing cereals 

(wheat, barley or corn) after legumes (pea or alfalfa) is expected to lower fertilizer uses compared to 

growing cereals after cereals. Stated another way, a targeted output of cereals could be achieved with 

a lower level of fertilizers when using a legume-cereal sequence rather than a cereal-cereal sequence. 

The rankings displayed in table 2 also depend on the ability of crops to uptake fertilizers and, as a 

result, on the fertilizer surplus left by pre crops in soils. For instance, fertilizer uses are expected to 

be the highest after corn due to the efficiency of the use of soil nitrogen by these crops. 

Experts’ rankings regarding pesticide uses displayed in Table 2 mostly depend on the fact that 

monoculture tends to increase pressures of weeds, pests and diseases. Accordingly, crop sequences 

involving a single crop or crops belonging to similar botanic families are expected to induce higher 

pesticide use levels. Conversely, crop sequences involving different crops tend to reduce crop 

protection needs, according to so-called break crop effects. 
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Table 2: Rankings of the expected effects of pre crops on crop yield, 

fertilizer use and pesticide use levels per crop 

 
 Current crop 

 

 Yield level rankings per crop 

 

 Wheat Barley Rapeseed Sugar beet 

P
re

v
io

u
s 

cr
o

p
 Wheat 5 2 2 1 

Barley 6 3 2 1 

Rapeseed 2 1  2 

Corn 4 1  2 

Protein pea 1 3 1  

Alfalfa 1 3  3 

Sugar beet 3 2  3 

Potatoes 3 2  2 

  Fertilizer use level rankings per crop 

  Wheat Barley Rapeseed Sugar beet 

P
re

v
io

u
s 

cr
o

p
 

Wheat 1 1 1 1 

Barley 1 1 1 1 

Rapeseed 2 2  1 

Corn 1 1  1 

Protein pea 3 3 2  

Alfalfa 3 3  2 

Sugar beet 2 2  1 

Potatoes 2 2  1 

 

 Pesticide use level rankings per crop 

 

 Wheat Barley Rapeseed Sugar beet 

P
re

v
io

u
s 

cr
o

p
 Wheat 1 1 1 1 

Barley 1 1 2 1 

Rapeseed 2 2  1 

Corn 2 1  1 

Protein pea 2 2 2  

Alfalfa 2 2  1 

Sugar beet 2 2  1 

Potatoes 2 2  1 

Note: 1 = highest expected level, 2 = second highest expected level, etc. 

 

5. Results 

Our application considers four crops: (winter) wheat, (spring) barley, (winter) rapeseed and sugar 

beet. These crops are the major crops in the considered area since they account for 82% of the arable 

crop acreage. We present here three sets of results. First, we briefly discuss the crop sequence 

acreages based on IACS data for our farm sample. Second, we present the estimation results of our 

equation systems composed of a yield equation and three inputs equations for nitrogen fertilizers, 
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herbicides and other pesticides for each of the considered crops. We focus our discussion on the pre 

crop and crop acreage diversity effects. Third, we provide a set of results aimed to assess the economic 

value of the pre crop and crop acreage diversity effects that we uncover. 

5.1. Crop sequence acreages 

The average crop sequence acreage shares recovered from IACS data and matched to our data sample 

are reported in Table 3. These shares describe how farmers allocate the acreage of their current crops 

to plots with specific previous crops on average (i.e., they correspond to the means of terms ,mk it
z  over 

our sample). A striking feature of the results displayed in Table 3 is that farmers tend to rely on the 

most favorable crop sequences from an agronomic viewpoint. For instance, they avoid growing wheat 

after wheat (i.e., the acreage share of wheat grown after wheat in the wheat acreage equals 0.06) and 

prefer growing wheat after rapeseed or sugar beet. Indeed, pea and rapeseed are considered as 

favorable pre crops for wheat by agronomists and our results show that land previously used to grow 

rapeseed or pea is mostly devoted to wheat production. The rapeseed – wheat sequence accounts for 

39% of wheat crop acreage on average, the sugar beet – wheat sequence for 16%. 

Conversely, the average acreage shares of many crop sequences are almost null, implying that these 

crop sequences are almost never observed in our data. Many of these unobserved crop sequences are 

strongly unwarranted from an agronomic viewpoint and thus (almost) never used by farmers. For 

instance, growing rapeseed after rapeseed foster pest and disease issues. These first results suggest 

that farmers’ crop sequence acreage choices are particularly rational from an agronomic viewpoint 

and, as a result, from an economic viewpoint. 

Crop sequence acreage share choices are also subject to constraints, such as the limited availability 

of favorable pre crops for the major crops of farmers’ acreages. Of course, available previous crop 

acreages depend on famers’ previous acreage choices. For instance, wheat and barley account for 

about half of the arable crop acreage in the considered area. The average acreage share of wheat 

amounts to 0.34 and that of barley to 0.21. This implies that wheat and barley are major pre crops in 

the area, according to purely “mechanical” effects. For instance, wheat and barley are the pre crops 

of 97% of rapeseed acreages and of 91% of sugar beet acreages, and wheat is the pre crop of 56% of 

barley acreages. Conversely, despite pea being among the most favorable previous crops for wheat 

and pea production being almost always followed by wheat production, the pea–wheat sequence only 

accounts for 6% of wheat crop acreage on average, because the average acreage share of pea only 

amounts to 0.02 in the area. 

Farmers favoring the most profitable crop sequences and tending to avoid the least favorable ones 

significantly affects the econometric analysis of pre crop effects. First, the effects of pre crops 
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involved in never or rarely used crop sequences are poorly identified, when they can be identified, 

because the corresponding crop sequence acreages display insufficient variability. Second, minor 

crops are generally grown on a few previous crops (which are often major crops31), if not on only one 

previous crop. Third, major crops are the only ones displaying allocations to pre crop acreages that 

significantly vary across farms. These observations sum up the main shortcoming of farm data (i.e., 

of observed data as opposed to experimental data) for investigating the effects of crop sequences on 

crop yield and input use levels. Our estimation results on pre crop effects largely support the points 

made here. 

Table 3a: Average allocation of the acreages of the major crops to previous crop 

acreages 

  Current (major) crops  

Previous crop 

acreage shares   Wheat Barley Rapeseed Sugar 

beet 

P
re

v
io

u
s 

cr
o

p
s 

Wheat 0.06 0.56 0.38 0.59 0.35 

Barley 0.02 0.13 0.59 0.32 0.22 

Rapeseed 0.39 0.03 0.00 0.01 0.14 

Corn 0.06 0.03 0.00 0.00 0.03 

Protein pea 0.06 0.00 0.00 0.00 0.02 

Alfalfa 0.08 0.01 0.00 0.00 0.08 

Sugar beet 0.16 0.18 0.01 0.02 0.12 

Potatoes 0.05 0.02 0.00 0.02 0.02 

Other pre crops 0.10 0.03 0.01 0.03 0.02 

Current crop acreage 

shares 

0.34 0.21 0.14 0.12  

 

 

Table 3b: Frequency of crop production and crop sequences 

  Current (major) crops Previous crop 

frequency 

  Wheat Barley Rapeseed Sugar 

beet 

P
re

v
io

u
s 

cr
o

p
s 

Wheat 0.30 0.81 0.60 0.62 1 

Barley 0.13 0.41 0.77 0.44 0.87 

Rapeseed 0.81 0.12 0.02 0.03 0.91 

Corn 0.21 0.10 0.00 0.01 0.36 

Protein pea 0.28 0.02 0.01 0.01 0.28 

Alfalfa 0.33 0.04 0.01 0.02 0.65 

Sugar beet 0.50 0.40 0.02 0.06 0.79 

Potatoes 0.16 0.05 0.01 0.03 0.19 

Other pre crops 0.50 0.23 0.09 0.10 - 

Current crop frequency 1 0.87 0.91 0.79  

      

                                                                 
31 Straw cereals in our application. 
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5.2. Crop input use and yield models: general results 

Tables 4 display selected parameter estimates of the yield, nitrogen, herbicides and other pesticides 

equations for the four considered crops. Due to space limitation we focus here on the estimation 

results for our parameters of interest, that is to say the parameters capturing the effects of crop 

sequences (i.e., fixed parameters ( )

,0

y

k
a  and ( )

,0

x

k
a ) and crop acreage diversity (i.e., fixed parameters ( )

,0

y

k
δ  

and ( )

,0

x

k
δ ) on yield and input use levels. Those characterizing the intensity of farmers’ production 

practices (i.e., the distribution of random parameters ,k i
γ ) are also of special interest, as they allow 

investigating, to some extent, the rationality underlying farmers’ chemical input choices. The other 

estimation results, the effects of the control variables in particular, are reported in Appendix C.32 

Tables 4 display the estimates of the parameters characterizing the distribution of the model random 

parameters, that is to say the means and standard deviations of the elements of vectors , , ,( , )
k i k i k i
=γ μ β , 

as well as general statistics. The reported simulated R2 measures correspond to standard R2 measures 

applied to models in which farm specific parameters are replaced by their estimates based on the 

estimated models and farm specific observations (e.g., Koutchadé et al 2018, 2021). These simulated 

R2 demonstrate that our models provide a better fit to the yield data than to the chemical input use 

data. The estimated crop yield models explain from 63% to 70% of the observed yield variance. The 

pesticide use models explain from 50% to 65% of the observed herbicide and other pesticide use 

variances. The corresponding percentages drop down to 38% and 44% for the nitrogen fertilizer use 

models. 

The estimates of the parameters characterizing the (multivariate normal) distribution of the farm 

specific parameters in the considered models are accurately estimated. The estimates of the standard 

deviations of these parameters demonstrate that farmers’ choices and crop production processes are 

strongly impacted by farm specific unobserved factors (despite our controlling for the effects of soil 

characteristics at the farm level). 

 

 

 

 

 

                                                                 

32 Tables C3-C6 mostly report estimation results of the effects of weather and soil property variables. Including these 

variables in our models appears to be significantly improve their estimation from a statistical viewpoint. 
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Our estimates also show that random coefficients of the crop yield models – i.e., elements of vector 

,k i
β  – are statistically correlated with random parameters of the corresponding crop input use models 

– i.e., elements of vector ( )

,

x

k i
μ  – for all considered crops. This indicates that the considered crop yield 

equations really contain correlated random coefficients (see Appendix C8). Moreover, when the 

estimated correlations are negative when they are statistically non-null. This suggests that the crop 

yield functions that are approximated by our crop yield models display decreasing returns to input 

uses. 

 

 

 

 

 

 

Table 4a: Selected parameter estimates of the crop yield models: random farm specific 

parameters and general statistics 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 8.60** (0.07) 6.10** (0.08) 0.50** (0.04) 83.8** (0.83) 

Intercept, standard deviation 0.70** (0.07) 0.50** (0.09) 0.50** (0.04) 8.40** (1.04) 

Nitrogen, mean (x100) 0.03 (0.03) -0.06 (0.05) 0.08** (0.01) -0.40 (0.39) 

Nitrogen, std deviation (x100) 0.21** (0.03) 0.30** (0.06) 0.15** (0.01) 1.95** (0.45) 

Herbicides, mean (x100) 0.14** (0.05) 0.02 (0.11) 0.04** (0.02) 0.55 (0.32) 

Herbicides, std deviation (x100) 0.38** (0.07) 0.63** (0.15) 0.22** (0.02) 2.42** (0.40) 

Other pesticides, mean (x100) 0.34** (0.03) 0.27** (0.06) 0.13** (0.02) 0.80 (0.61) 

Other pesticides, Standard 

deviation  (x100) 

0.17** (0.03) 0.37** (0.07) 0.20** (0.02) 5.39** (0.80) 

Average yield level 8.65 7.00 3.88 93.07 

Simulated R2 0.68 0.63 0.64 0.70 

Observation number 3,982 3,327 3,530 3,085 

Farm number 769 654 692 607 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, 

respectively 10%, level. Estimated standard deviations of the parameter estimates are in parentheses. 
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The farm specific coefficients of the input use variables in the crop yield models (i.e., random 

parameters ,k i
β ) give the marginal productivity of the considered chemical inputs at the farm level. 

Their means, which are reported in Table 4a, yield the average marginal productivity of these inputs. 

The estimated average marginal productivities of nitrogen fertilizers are of either sign and small in 

absolute value. Such results are common in the agricultural production economics literature, at least 

for conventional production practices. Responses of crop production to nitrogen uses are known to 

generally exhibit a plateau at high nitrogen use levels.33 The estimated average marginal productivity 

levels are positive for pesticides, and small for herbicides. Farmers usually use herbicides for 

                                                                 
33 See, e.g., Tembo et al (2008) for a recent empirical analysis of this feature of the productivity of nitrogen fertilizers. 

Table 4b: Selected parameter estimates of the input use models: random farm specific 

parameters and general statistics 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 249.2** (0.63) 151.1** (0.56) 115.8* (0.77) 356.2** (0.87) 

Intercept, Std 

deviation 

13.46** (0.54) 11.29** (0.43) 15.92* (0.62) 17.20** (0.55) 

Average use of N 217.95  147.19  215.19  138.55  

Simulated R2 0.38  0.42  0.42  0.44  

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 171.6** (0.42) 85.7** (0.28) 285.6* (0.75) 319.9** (1.38) 

Intercept, std 

deviation 

10.0** (0.29) 5.7** (0.18) 16.8* (0.54) 30.5** (0.99) 

Average herbicide use 63.08 30.47 99.27 160.55 

Simulated R2 0.55 0.50 0.55 0.67 

 
Other pesticide use models (€/ha, 2010 prices) 

 Wheat 
Barley Rapeseed Sugar beet 

Intercept, mean 144.7** (1.00) 143.7** (0.66) 127.7** (1.03) 109.8** (0.79) 

Intercept, std 

deviation 

25.43** (0.71) 14.72** (0.46) 24.32** (0.69) 16.86** (0.55) 

Average pesticide use 125.1 76.0 109.0 96.2 

Simulated R2 0.65 0.55 0.60 0.55 

 
Observation and farm numbers 

 Wheat 
Barley Rapeseed Sugar beet 

Observation number 3,982 3,327 3,530 3,085 

Farm number 769 654 692 607 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, 

respectively 10%, level. Estimated standard deviations of the parameter estimates are in parentheses. 
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controlling weeds following a long run strategy (e.g., Colbach and Cordeau 2018). Herbicides aim to 

control current weed populations as well as weed seed banks. Parameters , ,j k i
β  capture the short run 

effects of input j on the yield level of crop k. They fail to capture their long run effects, which are 

expected to be positive for herbicides. 

Let assume that input j is purchased at price ( )

,

x

j k
p  and crop k is sold at price ( )y

k
p . According to our crop 

yield models, the marginal net return of crop k to input j is given by ( ) ( )

, , ,

y x

k j k i j k
p pβ −  for farm i. Since 

input prices or price indices are close to one in our application this expression basically provides the 

net return to the last Euro of input j used for crop k. Table 5 reports the sample means and standard 

deviations of the estimated marginal net returns of crops to chemical inputs at the sample mean prices. 

According to these results, chemical inputs, nitrogen fertilizers and herbicides in particular, are used 

above their respective expected profit maximizing levels by most farmers. These results suggest that 

the farmers of our sample seek for relatively high yield levels, which supposes to rely on relatively 

high crop protection and fertilization levels. Yet, assessing the extent of the revealed overuses of 

chemical inputs would require assessing the concavity properties of the considered crop yield 

functions, which is out of the scope of this study.34 

Table 5: Estimated means and standard deviations of crop marginal net returns 

to chemical inputs (at average price levels, 2008–2014) 

 Chemical input use models 

 Means of the estimated crop marginal net returns to inputs 

 Nitrogen fertilizers Herbicides Other pesticides 

Wheat -0.95 (0.05) -0.78 (0.08) -0.46 (0.05) 

Barley -1.10 (0.08) -0.97 (0.18) -0.56 (0.10) 

Rapeseed -0.71 (0.04) -0.86 (0.07) -0.54 (0.07) 

Sugar beet -1.10 (0.10) -0.86 (0.08) -0.79 (0.16) 

 
Standard deviations of the estimated of crop marginal net returns to 

inputs 

 
Nitrogen fertilizers Herbicides Other pesticides 

Wheat 0.34 (0.05) 0.61 (0.11) 0.27 (0.05) 

Barley 0.49 (0.10) 1.03 (0.25) 0.61 (0.11) 

Rapeseed 0.54 (0.04) 0.79 (0.07) 0.71 (0.10) 

Sugar beet 0.51 (0.12) 0.63 (0.10) 1.40 (0.21) 

Note: Estimated standard deviations of the parameter estimates are in parentheses 

                                                                 
34 If these overuse levels are significant they are unlikely to be “massive”. As reminded above, crop yields are known to 

exhibit a plateau at high nitrogen use levels. Similarly, the marginal productivity of pesticides is known to sharply 

decrease in pesticide use levels (e.g., Frisvold 2019). 
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5.3. Pre crop effects on yield and input use levels 

Tables 6 report the effect of pre crops on the outcome (yield, nitrogen, herbicide and other pesticide 

use levels) of the considered crops compared to that of a reference pre crop. The reference pre crop 

of a given crop is its most frequent one in our data, which is rapeseed for wheat and wheat for the 

other crops. As evidenced by the relatively large estimates of the standard deviation of the estimated 

effects reported in Table 6, previous crop effects are poorly identified in our models.35 Previous crop 

effects on input uses are particularly poorly estimated. As discussed above, such results can partly be 

due to crop sequence acreage choices patterns. Farmers tend to select the most favorable pre crop for 

their major crops as well as to choose similar crop acreages across years. This implies that their crop 

sequence acreages display similar patterns.36 The implied limited variability in crop sequence 

acreages prevents obtaining accurate estimates of the corresponding pre crop effects. 

Table 6a: Selected parameter estimates of the crop yield models: selected pre crop effects 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat   -0.32** (0.10) 0.00 (-) 0.00 (-)  0.00 (-) 

Barley -0.19 (0.16)  -0.16** (0.07) 0.04 (0.03) -0.25 (0.55) 

Rapeseed 0.00 (-) 0.16 (0.20)    1.25 (3.03) 

Protein pea    0.20** (0.10) 0.17 (0.41) 0.05 (0.25)   

Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 

Sugar beet  0.01 (0.06)  0.21** (0.07)   -0.51 (1.69) 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 

5%, respectively 10%, level. Estimated standard deviations of the parameter estimates are in 

parentheses. 

 

As an illustration, the acreage share of the pea–barley sequence is almost null on average while the 

barley–barley one equals 0.13 (Table 3a). The estimated standard errors of the pre crop effects of pea 

are at least fivefold those of barley when going through the equations related to the yield or input use 

levels of barley (Tables 6). This comes to illustrate our concerns regarding the identification of crop 

rotation effects for rarely used crop sequences. 

                                                                 
35 Even if their signs are generally consistent with experts’ views. 

36 Small pre crop effects in absolute value could also be due to the well-known attenuation biases induced by measurement 

errors (e.g., Wooldridge 2010) since crop sequence acreage shares are reconstructed in our data, with a reconstruction 

process that may be prone to errors. Yet, attenuation biases are associated to downward biased estimates of the standard 

deviation of the estimated effects (e.g., Wooldridge 2010). Taken together these observations suggest that our pre crop 

effect estimates are unlikely to be impacted by significant attenuation biases in our application. 
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Table 6b: Selected parameter estimates of the input use models: selected pre crop effects 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 0.32 (3.79) 0.00 (-) 0.00 (-) 0.00 (-) 

Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 

Rapeseed 0.00 (-) -0.74 (4.53)   6.36 (7.93) 

Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   

Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 

Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat -0.11 (2.29) 0.00 (-) 0.00 (-) 0.00 (-) 

Barley 1.37 (4.13) 1.94** (0.95) -0.57 (1.44) -2.57 (2.52) 

Rapeseed 0.00 (-) 0.62 (2.46)   7.78 (11.21) 

Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   

Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 

Sugar beet -1.35 (1.58) -1.68* (0.97)   8.41 (8.50) 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 4.07 (4.08) 0.00 (-) 0.00 (-) 0.00 (-) 

Barley -15.63** (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 

Rapeseed 0.00 (-) -3.34 (4.93)   -2.23 (6.85) 

Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   

Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 

Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, 

respectively 10%, level. Estimated standard deviations of the parameter estimates are in 

parentheses. 

 

Unsurprisingly, the most accurate estimated pre crop effects are those of the wheat yield equation. 

They tend to show that growing wheat after rapeseed instead of after wheat increases expected yield 

levels by 0.32 t/ha while growing wheat after pea instead of after wheat increases expected yield 

levels by 0.52 t/ha (which amounts to 6% of the sample average wheat yield level). These results are 

in line with experimental results (e.g., Meynard et al 2013, Jeuffroy et al 2015, Preißel et al 2015). 

The estimated pre crop effects on barley yield levels are also in the expected ranges (e.g., Meynard 

et al 2013, Jeuffroy et al 2015, Reckling et al 2016). 

Our results demonstrate very limited adjustments, if any, of farmers’ chemical input uses to the pre 

crops of their crop acreages. In particular, we decided to focus on nitrogen uses instead of aggregated 
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fertilizer uses for investigating the effects on nitrogen uses of legumes as pre crops. Our results tend 

to show that farmers do not reduce their nitrogen uses after legumes. These estimation results are 

consistent with the results obtained by Nave et al (2013) based on French farmers interviews. They 

are also consistent with our estimates of the marginal productivity of nitrogen fertilizers, at least to 

some extent. Farmers tend to overuse nitrogen fertilizers when they downplay legume nitrogen 

surpluses while deciding their uses of mineral nitrogen. Nitrogen surpluses are not lost, as they can 

induce higher yields, but total nitrogen applications exceed their economically optimal levels. 

Three phenomena may underlie these results. First, data issues may prevent our obtaining accurate 

estimates of pre crop effects. As discussed above, our data may not contain sufficient information for 

uncovering pre crop effects on input uses. Moreover, recorded crop input use levels are likely to be 

less accurate than recorded yield levels. These data issues cannot be ruled out but they are unlikely 

to fully explain our low estimates of pre crop effects on input uses. As will be shown below, these 

data allow us to uncover relatively precise crop acreage diversity effects on pesticide uses, thereby 

suggesting that the sampled farmers adjust their pesticide uses, especially their herbicide uses, to the 

conditions prevailing in their fields. 

Second, if farmers automatically reap off the benefits of pre crop effects on yield levels they need to 

be willing to adjust their chemical input uses for benefiting from the effects of pre crops on soil 

nutrient contents and/or on pest and weed pressures. Farmers are likely to be aware of nitrogen 

surpluses left by legumes or of the break effects of diversified crop sequences on pest and weed 

pressures but they may be reluctant to adjust their input uses. Nitrogen surpluses and break crop 

effects on pest and weed pressures are random. Assessing them is costly and may only yield limited 

savings in chemical input expenditures. 

Third, pre crop effects on chemical inputs may be limited in our data. Indeed, our data enable us to 

uncover the effects of a few crop sequences only, those involving pre crops with sufficiently variable 

acreages for a given crop. These pre crops, those of wheat excepted, may not induce contrasted effects 

either on yield levels or on chemical input uses. For instance, wheat and barley are by far the most 

frequent pre crops of sugar beet in our sample. Despite wheat being mostly a winter crop and barley 

being mostly a spring crop in the considered area, these crops are both straw cereals sharing many 

agronomic features. As a matter of fact, barley and wheat are expected to have similar effects on 

sugar beet production by the experts we have consulted (Tables 2). Accordingly, wheat being the 

reference pre crop of sugar beet in our application, the absence of statistically significant pre crop 

effects of barley on sugar beet production is not particularly surprising. Finally, farmers’ production 

practices may also induce limited pre crop and crop acreage diversity effects. Experimental results of 

Coulter et al (2011) regarding corn based cropping systems in the US suggest that high yielding 
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cropping management practices attenuate the effects of crop diversity. Indeed, high yielding crop 

management practices are known to call for both high fertilization and high crop protection levels. 

High yields require high nutrient loads and high yielding crop cultural techniques (e.g., high seeding 

densities, early sowing, high nitrogen fertilization) tend to enhance pest, weed and disease pressures.37 

These effects of high yielding cropping management practices may swamp those of crop diversity.  

5.4. Crop acreage diversity effects on yield and input use levels 

Tables 7 report the effects of the number of grown crops, our main crop acreage diversity effects, on 

the outcomes of the considered crops. These effects are measured as differences with respect to effect 

of the reference number of grown crops, which is five (the most frequent number of grown crops in 

our data) in our empirical application. The “Crop diversity effects: Shannon index per crop number” 

sub-panels report the effects of the crop acreage Shannon index interacted with the grown crop 

number dummy variables. These effects measure the effects of crop acreage diversity holding fixed 

the number of crops actually grown. 

Table 7a: Selected parameter estimates of the crop yield models: crop acreage diversity effects 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Crop diversity effects: crop number 

3 crops or less -0.19** (0.07) -0.35** (0.13) 0.01 (0.07) -7.67 (4.39) 

4 crops -0.10* (0.05) -0.19** (0.07) -0.04 (0.04) -1.08 (1.29) 

5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

6 crops 0.06 (0.04) 0.02 (0.05) 0.06* (0.03) 1.38** (0.61) 

7 crops or more 0.20* (0.07) 0.15* (0.08) 0.18** (0.04) 1.90* (0.93) 

 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -0.13 (0.41) 0.69 (0.62) -0.26 (0.36) -13.27 (29.80) 

4 crops x Shannon index 0.72** (0.27) 1.33** (0.47) 0.21 (0.20) 6.57 (6.89) 

5 crops x Shannon index 0.73** (0.31) 0.88** (0.36) 0.33 (0.20) 9.79** (4.58) 

6 crops x Shannon index 0.28 (0.33) 0.40 (0.41) 0.59** (0.23) 14.38** (4.42) 

7 crops x Shannon index 1.44** (0.58) 0.87 (0.64) 0.93** (0.30) 15.73** (6.48) 

Note. Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, 

respectively 10%, level. Estimated standard deviations of the parameter estimates are in parentheses. 

 

                                                                 
37 The most productive seeds are also often more susceptible to pests and diseases. High nitrogen fertilization levels also 

increase competition with weeds and increase the susceptibility of crops to diseases (and straw cereals to lodging). Early 

sowing increases the exposure of crops to pests and diseases while dense uniform sowing may foster the occurrence and 

the severity of pest and disease outbreaks. Such effects were discussed and documented by Loyce and Meynard (1997) 

and Loyce et al (2008, 2012) in the case of winter wheat. 
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Crop diversity is expected by agronomists (e.g., Meynard et al 2013, Duru et al 2015) to increase 

crop yield levels (e.g., by decreasing pest and weed pressures that cannot be controlled by pesticides, 

by impacting soil structure at various depth levels), to decrease pesticide use levels (by decreasing 

pest and weed pressures that can be chemically controlled) and, to a lesser extent, to decrease fertilizer 

use levels (e.g., by improving soil properties that in turn enhance nutrient efficiency of crops). Our 

estimation results tend to support these hypotheses. Yield levels increase and pesticide use levels 

decrease as the grown crop number and the related Shannon index increase. Yet, the estimated effects 

are non-null from a statistical viewpoint only for yield and herbicide use levels. 

According to our results, wheat yield levels are 0.20 t/ha higher when wheat is grown in a 7 crop farm 

than in a 5 crop farm, and wheat yield levels are 0.39 t/ha higher when wheat is grown in a 7 crop 

farm than in a 3 crop farm. Moreover, crop acreage diversity as measured by the Shannon index also 

tends to increase wheat yield levels holding constant the number of grown crops. Other crops display 

similar patterns regarding crop acreage diversity effects.38 Such results are fully consistent with 

agronomists’ views and experimental results (e.g., Lin 2011, Kremen and Miles 2012, Meynard et al 

2013, Hufnagel et al 2020). 

Our results also tend to demonstrate that crop acreage diversity significantly impacts herbicide uses, 

although with less accurate estimates than for crop yields. Overall, these results are consistent with 

agronomists’ experimental results (e.g., Liebman and Dyck 1993, Liebman and Staver 2001, Smith 

and Gross 2007, Chikowo et al 2009, Adeux et al 2019, Sharma et al 2021). Andert et al (2016) 

obtained similar results for a (small) sample of (large) German farms. For instance, farms growing 5 

crops use 4.7 €/ha (at the 2010 price levels) less herbicides on wheat than farms growing 3 crops, 

farms spending 63.1 €/ha on herbicides for wheat on average. Similarly, farms growing 5 crops use 

11.1 €/ha less herbicides on rapeseed than farms growing 3 crops, farms spending 99.3 €/ha on 

herbicides for rapeseed on average. 

 

 

 

                                                                 
38 According to our results, sugar beet yield levels are 7.67 t/ha lower when wheat is grown in a 5 crops farm than in a 3 

crops farm. Yet, this estimated effect is very inaccurate, the related estimation standard deviation being estimated at 4.39 

t/ha. Indeed, farmers producing sugar beet rarely grow less than three other crops. Most of them also grow wheat, barley 

and rapeseed. 
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Table 7b: Selected parameter estimates of the input use models: crop acreage diversity effects 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

 Crop diversity effects: crop number 

3 crops or less -0.38 (3.20) -1.41 (4.31) -2.01 (4.82) 6.08 (24.09) 

4 crops 0.40 (1.64) 0.69 (1.63) -1.59 (2.28) 3.27 (4.41) 

5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

6 crops 1.55 (1.40) 0.54 (1.12) 3.45* (1.68) -0.44 (1.91) 

7 crops or more 2.65 (2.19) 1.37 (2.04) 3.72 (2.48) -3.03 (2.60) 

 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -3.74 (17.91) -13.71 (26.74) -12.25 (19.33) -83.64 (107.95) 

4 crops x Shannon index 10.54 (9.13) -6.55 (10.83) -3.94 (14.56) 1.24 (24.56) 

5 crops x Shannon index -12.98 (11.09) -12.00 (8.20) -13.53 (13.49) -36.25** (16.84) 

6 crops x Shannon index -1.56 (11.34) -4.22 (8.88) 12.62 (12.46) 1.78 (13.29) 

7 crops x Shannon index -3.28 (20.36) -7.39 (17.68) 0.22 (22.09) -25.68 (21.83) 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

 Crop diversity effects: crop number 

3 crops or less 4.66** (1.54) 3.56 (2.02) 11.05** (3.63) 12.11 (59.26) 

4 crops 1.93 (1.03) 1.20 (0.84) 8.14** (1.88) 4.21 (3.53) 

5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

6 crops -1.64* (0.88) -1.37** (0.58) -2.42 (1.49) -1.41 (2.39) 

7 crops or more -2.37 (1.74) -1.34 (0.99) -3.29 (2.48) -5.30 (4.27) 

 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 1.99 (8.68) -12.01 (11.14) 15.37 (23.84) -38.16 (372.78) 

4 crops x Shannon index -9.35 (5.15) -10.32** (4.98) -8.71 (11.66) -31.32 (18.48) 

5 crops x Shannon index -4.12 (6.13) -8.88** (3.68) -12.98 (10.83) -4.11 (19.37) 

6 crops x Shannon index -7.27 (8.17) -3.05 (5.66) -23.70* (12.69) 3.41 (18.70) 

7 crops x Shannon index 7.57 (15.25) -0.67 (9.88) -18.79 (20.45) -11.79 (30.71) 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Crop diversity effects: crop number 

3 crops or less -3.73 (3.28) -2.44 (3.33) -0.82 (4.15) 3.11 (18.21) 

4 crops -3.17 (2.07) 0.14 (1.66) 2.94 (2.37) 0.92 (2.53) 

5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 

6 crops -0.25 (1.76) -0.72 (1.32) -1.35 (1.89) 1.00 (1.62) 

7 crops or more 1.90 (2.89) -2.16 (2.22) 0.75 (3.10) -1.50 (2.79) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 5.99 (14.46) 1.52 (25.08) -16.66 (28.23) 55.79 (73.47) 

4 crops x Shannon index 1.83 (10.94) -1.28 (8.37) -1.55 (12.14) -10.12 (13.18) 

5 crops x Shannon index -13.95 (11.38) -6.53 (8.91) -29.88** (13.92) -26.92** (12.69) 

6 crops x Shannon index 1.58 (13.52) -5.49 (11.55) 23.23 (14.91) 3.80 (12.42) 

7 crops x Shannon index 5.31 (17.92) -1.52 (17.93) 4.22 (19.47) 10.15 (21.19) 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. Estimated 

standard deviations of the parameter estimates are in parentheses. 
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The estimated effects of the crop acreage Shannon index per grown crop number also suggest that 

crop acreage diversity tends to lower weed pressures. Yet, the related estimates are generally 

inaccurate and lack statistical significance. In the same vein, the estimated effects of the crop acreage 

diversity indicators on sugar beet herbicide use levels have expected signs. They are also relatively 

large, but, these effects are estimated too inaccurately for being meaningful from a statistical 

viewpoint. Indeed, herbicide uses on sugar beet are both relatively large (sugar beet is a root crop) 

and heterogeneous across farms. Their sample average amounts to 160.6 €/ha and their between-farm 

standard deviation to 30.5 €/ha. This may be explained by heterogeneous tillage practices, which 

significantly impact weed control, across our sample. 

Also, the effects of crop acreage diversification on herbicide uses may not solely be due to agro-

ecological weed regulation effects. For instance, in our sample most farms growing at most 3 crops 

do not produce sugar beet or potatoes, implying that comparing farms growing 3 crops (or less) and 

farms growing at least 4 crops largely consists of comparing farms not growing sugar beet to farms 

growing sugar beet or potatoes. As these root crops require high level weed control, the effects of 

crop acreage diversity on herbicide use on grain crops may be due to carry-over effects of the 

chemical weed control implemented for protecting root crops.39 

It is worth noting that our results on crop acreage diversity effects in the yield and herbicide equations 

are not driven by farm size (at least in our sample, which mostly contains relatively large farms), as 

the inclusion of the farm size among the control variables turns out to be statistically insignificant 

regardless the equation in which it is included. Also, our results are not driven by soil quality effects. 

Our including a rich set of soil property measures in our models controls for the well-known fact that 

good soils both widen the scope of profitable crops (e.g., root crops require deep and suitably 

structured soils) and enhance crop profitability.40 Yet, the fact that farmers using more diversified 

crop acreages may be more skilled from a technical viewpoint cannot be ruled out. 

Finally, measuring crop acreage diversity by the usual Shannon index yields results pointing to the 

absence of crop diversity effects, whatever the considered crop. These results suggest crop mix 

diversity and crop acreage evenness given crop mix are features of crop acreages (and rotations) that 

need to be distinguished for uncovering the agro-ecolological effects of crop diversity. 

 

                                                                 
39 This comes to illustrate the point recently made by Colbach et al (2020) on the analysis of farm versus experimental 

data when considering crop rotations, weed populations and their effects on crop yields, and herbicide uses. 

40 Notwithstanding our data covering a limited geographical area. 
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5.5. Economic assessment of pre crop and crop acreage diversity effects 

In order to assess the economic value of the pre crop and crop acreage diversity effects uncovered by 

our modelling framework, we compute the effects of changes in pre crops or in crop acreage diversity 

on farmers’ crop returns to chemical inputs. We compute these effects for an “average farmer” and 

at the mean prices of our sample. Appendix B provides the related technical details. 

Table 8a: Economic assessment of selected pre crop effects (€/ha), average effects at average price 

levels (2008–2014) 

 Economic value of the effect of a pre crop, versus the considered crop reference pre 

crop (€/ha) 

 Yield value Nitrogen 

fertilizer 

cost 

Herbicide 

cost 

Other 

pesticide cost 

Return to 

chemical inputs 

 (1) (2) (3) (4) (1) - (2) - (3) - (4) 

Wheat (reference pre crop: rapeseed) 

Wheat -48.9** (15.9) 0.1 (1.7) -0.1 (2.3) 4.1 (4.1) -53.1** (16.0) 

Protein pea 30.0* (17.2) 0.8 (1.6) 1.5 (2.4) -5.3 (3.5) 32.9* (16.8) 

Yield value or input 

cost sample mean 
1,377 240 63 125 949 

Barley (reference pre crop: wheat) 

Barley -27.1** (11.5) 0.6 (1.3) 1.9** (0.9) -0.5 (1.9) -29.1** (11.9) 

Corn -46.6** (20.1) -0.1 (2.8) -2.1 (1.5) -7.4** (3.3) -37.0 (20.5) 

Sugar beet 34.6** (11.5) -0.1 (1.1) -1.7 (1.0) 0.9 (1.9) 35.5** (11.8) 

Yield value or input 

cost sample mean 
1,141 181 30 76 854 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimates are in parentheses. 

 

Table 8a reports the effects of changing the pre crop of wheat and barley from their respective 

reference pre crop to pre crops that have significant effects according to our estimation results. 

Growing wheat after wheat rather than after rapeseed entail an average loss of 53 €/ha, which amounts 

to 4.6% of the average wheat return to chemical inputs. On the contrary, growing wheat after protein 

pea rather than after rapeseed increases wheat crop return by 33 €/ha on average. Most of these effects 

on wheat return are due to pre crop effects on wheat yield levels, as pre crop effects on input uses are 

fairly limited in general. 

Changing the pre crop of barley to corn or barley entails losses while changing to sugar beet implies 

gains of around 35€/ha. As in the case of wheat, these effects on barley return are mostly due to pre 

crop effects on barley yield levels. Their magnitude is limited as they represent around 4% of the 
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average barley return to chemical inputs. 

Table 8b reports the average effects of crop acreage diversity, as measured here by the number of 

grown crops, on crop returns to chemical inputs. Farmers growing wheat as part of a 7 crops acreage 

improves wheat return by 31.8 €/ha on average compared to growing wheat as part of a 5 crop 

acreage. Similarly, growing wheat as part of a 3 crops acreage instead of a 5 crop one entails an 

average loss of 32.1 €/ha. 

Comparable results are obtained for the other considered crops. For instance, the return of barley is 

improved by 85.2 €/ha on average when the number of grown crops increases from 3 to 7. Increasing 

the number of grown crops from 5 to 7 leads to average return increases of 67.2 €/ha for rapeseed and 

of 57.7 €/ha for sugar beet. 

Table 8b: Economic assessment of crop diversity effects (€/ha), average effects at average price levels 

(2008–2014) 

 Economic value of the number of grown crops, versus 5 grown crops (€/ha) 

 Yield value Nitrogen 

fertilizer cost 

Herbicide cost Other 

pesticide cost 

Return to chemical 

inputs 

 (1) (2) (3) (4) (1) - (2) - (3) - (4) 

Wheat (reference: 5 crops) 

3 crops or less -31.4** (12.1) -0.2 (1.5)    4.7** (1.5) -3.7 (3.3)   -32.1** (12.7) 

4 crops -17.8** (8.5)  0.2 (0.8)   1.9* (1.0) -3.2 (2.1)   -16.8** (8.7) 

6 crops  9.2 (6.9)  0.7 (0.6)  -1.6* (0.9) -0.3 (1.8) 10.4 (6.7) 

7 crops or more   32.5** (11.3)  1.2 (1.0) -2.4 (1.7)  1.9 (2.9)    31.8** (11.7) 

Sample mean 1,377 240 63 125 948 

Barley (reference: 5 crops) 

3 crops or less -58.1** (21.0) -1.0 (2.9) 3.6 (2.0) -2.4 (3.3) -58.4** (21.2) 

4 crops -31.6** (11.7)  0.5 (1.1) 1.2 (0.8)  0.1 (1.7) -33.3** (11.9) 

6 crops  3.0 (8.4)  0.4 (0.8)   -1.4** (0.6) -0.7 (1.3) 4.8 (8.4) 

7 crops or more 24.1* (12.6)  0.9 (1.4) -1.3 (1.0) -2.2 (2.2)  26.8** (12.5) 

Sample mean 1,141 181 30 76 854 

Rapeseed (reference: 5 crops) 

3 crops or less     4.5 (24.8) -0.9 (2.2)    11.1** (3.6) -0.8 (4.2)  -4.6 (24.6) 

4 crops -10.4 (13.3) -0.7 (1.1)     8.1** (1.9)  2.9 (2.4) -20.6 (13.4) 

6 crops      21.9** (9.8) 1.6** (0.8) -2.4 (1.5) -1.3 (1.9)      23.6** (9.6) 

7 crops or more       

66.9** 

(15.9) 1.7 (1.2) -3.3 (2.5)  0.8 (3.1)     67.2** (15.6) 

Sample mean 1,381 233 99 109 940 

Sugar beet (reference: 5 crops) 

3 crops or less -198.8 (104.3) 4.4 (17.4) 12.1 (59.3) 3.1 (18.2) -217.9 (153.1) 

4 crops -27.9 (34.1) 2.4 (3.2) 4.2 (3.5) 0.9 (2.5) -35.1 (34.3) 

6 crops 36.1** (15.9) -0.3 (1.4) -1.4 (2.4) 1.0 (1.6)    36.8** (16.6) 

7 crops or more 48.9** (24.3) -2.2 (1.9) -5.3 (4.3) -1.5 (2.8)    57.7** (25.5) 

Sample mean 2,424 294 161 96 1,874 

Note. Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimates are in parentheses. 
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As in the case of pre crop effects, crop acreage diversity effects are mostly due to effects on yield 

levels. Crop acreage diversity also significantly impacts herbicide uses from a statistical viewpoint 

although the related economic effects are limited. For instance, increasing the number of grown crops 

from 3 to 5 leads to savings in herbicide expenses on rapeseed of 11 €/ha on average, which equals 

to 11% of herbicide costs on rapeseed on average. 

6. Concluding remarks 

The main objective of this article is to estimate effects of crop diversity on yields and input uses. 

Because usually available datasets lack information regarding crop sequence acreages, we combine 

farm accounting data with IACS data, enriched with soil quality and weather data, and devise 

statistical models of yields and input uses. These models, which are defined as simultaneous equation 

systems, account for both input use endogeneity and unobserved heterogeneity of farms and farmers. 

In our application considering major arable crops in the Marne area, pre crops effects on yield levels 

are estimated relatively accurately and are generally consistent with the rankings provided by crop 

production experts. Estimated pre crop effects on input uses are small, suggesting that farmers tend 

to downplay them when deciding their chemical input use levels. Our results also show that crop 

acreage diversity, at least when described by a suitable set of indicators, increases yield levels and 

reduces pesticide uses, herbicide uses in particular. Taken together our results uncover statistically 

significant albeit economically limited effects of pre crops and crop acreage diversity on crop gross 

margins, at least in the economic context prevailing from 2008 to 2014. 

Crop sequence acreages in our dataset are highly concentrated on the most profitable ones. This 

demonstrates that farmers’ crop sequence acreages are economically rational but this also underlies 

an important drawback of farm data for estimating pre crop effects. Farmers’ crop sequence choice 

patterns imply that pre crop effects can only be estimated for a limited number of previous crops and 

only for major crops. We interpret the fact that estimated effects on input uses are small as a 

consequence of farmers’ neglecting these effects. Yet, other explanations can be put forward, 

including measurement errors in crop sequence acreages. 

Although our application reveals statistically significant crop acreage diversity effects on both crop 

yield and herbicide use levels, our approach does not enable us to disentangle (long run) cropping 

system effects from (current) spatial crop diversity effects. Our constructing the crop acreage 

diversity indicators that we use based on lagged acreage and results obtained by using the farm crop 

acreage histories suggest, but do not prove, that our estimated crop acreage diversity effects mostly 

capture cropping system effects. More generally, our approach identifies crop diversity effects by 

comparing the production choices and performances of farms characterized by heterogeneous crop 
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acreages. Although we control for confounding factors by relying on detailed soil property measures, 

we cannot control for farmer skill heterogeneity that may impact both crop level production choices 

and crop acreage choices. 

Our modelling framework accounts for significant unobserved heterogeneity effects in crop input 

demand and yield function models. However, it also relies on simplifying assumptions that can impact 

our empirical results to some extent. For instance, our crop yield models allow for heterogeneous 

productivity effects of chemical inputs but they assume homogenous pre crop and crop acreage 

diversity effects. Our crop sequence yield models are linear in input uses and entail additively 

separable pre crop effects. Control variable effects are assumed not to depend on the considered pre 

crop. These features of the crop sequence yield models we consider are convenient for aggregating 

them at the crop level but investigating their impacts on our estimation results is worthy albeit 

challenging. 

Our empirical results tend to show that crop diversification positively impacts the yield levels of 

major crops, that is to say of the crops that contribute the most to farmers’ revenue– i.e., straw cereals, 

rapeseed and sugar beet in our application. They also suggest that crop diversification has limited 

effects on chemical input uses on these major crops. Despite their being significant from a statistical 

viewpoint, the agronomic effects revealed by our study have relatively small impacts on the returns 

of major crops. This may explain why EU farmers keep on using relatively specialized crop rotations 

and crop acreages. Typical diversification crops such as grain legumes are minor crops in the UE, 

mostly due to their insufficient profitability in comparison to that of major crops (e.g., Bues et al 

2013, Magrini et al 2016, Zander et al 2016, Watson et al 2017). The positive effects of crop diversity 

on the economic returns of major arable crops are unlikely to suffice for covering the opportunity 

cost of inserting typical diversification crops in otherwise specialized crop mixes (e.g., Carpentier et 

al 2021). 

Given our results, policy measures aimed to foster crop diversification are unlikely to significantly 

reduce chemical input uses on major crops if they are not supplemented by measures specifically 

aimed to reduce the uses of these inputs. Significant increases in the prices of pesticides and chemical 

fertilizers may partly solve this issue. First, this would increase the value of the chemical input use 

reductions on the major crops permitted by crop diversification and, as a result, could lead farmers to 

pay more attention to these reductions. Second, this would reduce the impact of the opportunity cost 

of inserting legumes in farmers’ crop mixes since these typical diversification crops don’t require 

nitrogen fertilization. Setting incentive taxes on chemical inputs would, however, significantly 

impacts arable crop producers’ income. This calls for specific measures aimed to neutralize, at least 

partly, the income effects of the considered taxing scheme, even if only for acceptability purpose. 
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Despite the limitations of our modelling framework and of the information content of our dataset we 

are confident in the internal validity of our empirical measures of the pre crop and crop acreage 

diversity effects on yield and chemical input use levels in the arable crop sector of the Marne area. 

The external validity of our results is, however, more debatable since our case study displays salient 

specific features. The Marne area counts among the most productive arable crop production basin in 

the EU and farmers in this area rely on both relatively high yielding – and, thus, intensive in chemical 

inputs – cropping practices and relatively diversified cropping systems. In particular, results obtained 

by Coulter et al (2011) related to corn based cropping systems in the US tend to demonstrates that 

high yielding cropping practices attenuate the effects of crop rotation diversification. This may 

explain why farmers downplay pre crop effects such as legume nitrogen surpluses or break crop 

effects on biotic pressures. These effects may induce too limited chemical input use savings for 

farmers to put much effort for valuing them. Also, pre crop effects, break crop ones in particular, may 

be less pronounced in diversified crop rotations than they are in specialized ones. Of course, further 

investigations, by economists and agronomists, are required for supporting or refuting these 

hypotheses.  
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Appendix A. Sketch of the SAEM algorithm 

The crop yield and input use models considered in our study is a simultaneous equations model 

featuring both fixed and random parameters: 

(A.1) 
( ) ( ) ( )

0

( ) ( ) ( ) ( )

0
           

y y y

it it i i it it

x x x x

it i it it

y µ ε ′ ′ − = + + = + +

x β w a

x μ W a ε
 

where ( )x

it J it
′= ⊗W ι w . Equation system (A.1) is a typical recursive (linear) simultaneous equation 

system. Dependent variable 
it
x  appears in the structural equation of 

it
y  while dependent variable 

it
y  

does not appear in the structural equation of 
it
x . 

We assume that ( ) ( )

0 0( , , ) ( , )y x

i i i i
µ=γ μ β η Ω∼N , ( ) ( )

0(0, )y y

it
ε ψ∼N  and ( ) ( )

0( , )x x

it
ε 0 ψ∼N . Random terms 

i
γ , 

( ) ( )( : 1,..., )y y

i it
t Tε= =ε  and ( ) ( )( : 1,..., )x x

i it
t T= =ε ε  are assumed mutually independent and independent of 

( : 1,..., )
i it

t T= =w w . Terms ( )y

it
ε  and ( : 1,..., )

i it
t T= =x x  are assumed independent. These assumptions 

imply that equation system (A.1) only contains regression equations conditionally on 
it

w  and 
i
γ , 

which is the main statistical feature of the so-called seemingly unrelated regression (SUR) systems 

of Zellner (1962). Finally, terms ( )y

it
ε  and ( )x

it
ε  are assumed serially uncorrelated. 

We consider the following compact form: 

(A.2) 
0i it i it it

= + +B q μ W a ε , 

where ( ) ( )( , )y x

i i i
µ=μ μ , ( , )

it it it
y=q x , 

1it J it+ ′= ⊗W ι w , ( ) ( )

0 0 0( , )y x=a a a , 
0

( , )
it
ε 0 ψ∼N , and 

(A.3) 
1

i

i

J

 −
 =   

β
B

0 I
 and 

( )

0

0 ( )

0

y

x

ψ 
 =  
 

0
ψ

0 ψ
.  

The considered model being fully parametric, estimation of its parameters is considered in the ML 

estimation framework. EM type algorithms are convenient for computing ML estimators for models 

featuring random parameters (e.g., Dempster et al 1977, Lavielle 2014). We proceed in two steps for 

presenting the computation procedure we employ for estimating our models. First, we present how a 

classical (i.e., deterministic) EM algorithm could be designed for estimating our models in theory. 

This enables us to present the main concepts underlying the design of EM type algorithm. Second, 

we explain why a stochastic version EM algorithm is needed in our case and present the stochastic 

approximate EM (SAEM) we use. SAEM algorithms were proposed by Delyon et al (1999) and 

further developed afterwards (e.g., Kuhn and Lavielle 2005, Lavielle 2014). 

Let ( )( ) ( )

0 0 0 0 0 0, , ( ), , ( )
y x

vech vechψ=θ a ψ γ Ω  be the vector of parameters to be estimated. Let define vectors 

( : )
i it i

t= ∈q q H  and ( : )
i it i

t= ∈w w H  where set {1,..., }
i

T⊆H  denotes the time span on which farm i is 

observed. The observed data are given by ( , )
i i
q w  for 1,...,i N= . The complete data are given by 
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( , , )
i i i
q w γ  and 1,...,i N= . Let function ( ; )ϕ u Ξ   denote the probability distribution function of ( , )0 ΞN  at 

u. The contribution of observation i to the sample likelihood function at θ  (conditional on exogenous 

variables 
i
w ) is given by 

(A.4) ( )( ) ( ; ) ( ; )
i

i it itt
dϕ ϕ

∈
= − − −∏∫θ Bq μ W a ψ γ η Ω γℓ

H
, 

which is difficult to integrate due to the dimension of γ . Note, however, that 

(A.5)  ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0ln ( ; ) ln ( ; ) ln ( ; )y y y x x x x

it it it it it it it
yϕ ϕ µ ψ ϕ′ ′− + = − − − + − −Bq μ W a ψ x β w a x μ W a ψ  

since 
it
x  is exogenous in the model of 

it
y  conditionally on 

i
γ . The contribution of observation i to the 

complete sample log-likelihood function at θ  (conditional on exogenous variables 
i
w ) is given by  

(A.6) ln ( ; ) ln ( ; ) ln ( ; )
i

c

i i i it i it it
ϕ ϕ

∈
= − − + −∑θ γ B q μ W a ψ γ η Ωℓ

H
, 

Implying that the complete data log-likelihood function is given by 

(A.7) 
1 1 1

ln ( ) ln ( ; ) ln ( ; ) ln ( ; )
i

N N Nc c

i i i it i it ii i t i
L ϕ ϕ

= = ∈ =
= = − − + −∑ ∑ ∑ ∑θ θ γ B q μ W a ψ γ η Ωℓ

H
 

or, equivalently, by 

(A.8) 
{ }

{ }

1 1

2 1

1 1

2 1

ln ( ) lndet( ) ( ) ( )

                       lndet( ) ( ) ( )

i

Nc

i it i it i it i iti t

N

i ii

L cst
−

= ∈

−

=

′= − + − − − −

′− + − −

∑ ∑
∑

θ ψ B q μ W a ψ B q μ W a

Ω γ η Ω γ η

H
 

or 

(A.9) 
( ){ }

( ){ }

1 1

2 1

1 1

2 1

ln ( ) lndet( ) ( )( )

                       lndet( ) ( )( )

i

Nc

i it i it i it i iti t

N

i ii

L cst tr

tr

−

= ∈

−

=

′= − + − − − −

′− + − −

∑ ∑
∑

θ ψ ψ B q μ W a B q μ W a

Ω Ω γ η γ η

H
. 

Let function ( | , ; )π γ q w θ  denote the probability distribution function of 
i
γ  at γ  conditionally on 

i
=q q  

and 
i
=w w  when 

0
=θ θ . In our setting, the EM algorithm consists of iterating a sequence composed 

of two steps until numerical convergence. Let term ( )n
θ  denote the estimate of 

0
θ  obtained at the end 

of iteration n. At iteration 1n+  the expectation (E) consists of computing the expectation of the 

complete data log-likelihood function at θ , ln ( )
c

L θ , conditionally on the observed data (i.e., on ( , )
i i
q w  

for 1,...,i N= ) assuming that ( )

0

n=θ θ . The resulting conditional expectation is given by 

( ) ( )

1
( | ) ln ( ; ) ( | , ; )

Nn c n

i i ii
dπ

=
=∑ ∫θ θ θ γ γ q w θ γℓL . The corresponding maximization (M) step consists of 

computing ( 1) ( )argmax ( | )n n+ =
θ

θ θ θL   for updating the ML estimate of 
0
θ . Due to the interaction term

it i
′x β  in the yield function, density function ( | , ; )π γ q w θ  is not standard in our case. 

Monte Carlo or stochastic versions of the EM algorithm can be used for managing the expectation 

integration issue raised above (e.g., McLachlan and Peel 2007, Lavielle 2014). As their competing 

counterparts, SAEM algorithms involve integration with simulation methods. They, however, make 

a more efficient use of simulation draws by recycling past draws for constructing a stochastic 

approximate of the sample log-likelihood function (Lavielle et al 2014). SAEM algorithms proceed 
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by iterating a sequence composed of three steps until numerical convergence: a simulation (S) step, 

a stochastic approximation (SA) step and a maximization (M) step. 

At iteration 1n+  the S step consists of drawing ( )n
R  simulations of 

i
γ  from the density ( )( | , ; )n

i i i
π γ q w θ

, for 1,...,i N= . Let term ( )

,

n

i r
γɶ  denote these draws for ( )1,...,

n
r R=  and 1,...,i N= . Simulation numbers vary 

in the course of the algorithm. They need to be small (10 in our case) at the beginning, for exploring 

the parameter space, and large (100 in our case) near the end of the iterative procedure, for speeding 

up the convergence process. To perform the S step, we rely on a MCMC sampler that has 

( )( | , ; )n

i i
π γ q w θ  as its stationary distribution density at iteration n for farm i. Specifically, we use a 

Metropolis-Hasting sampler with a normal random walk kernel. We draw ( )n
R  simulations ( )

,

n

i r
γɶ  (

( )1,...,
n

r R= ) after “burning” the first fifty draws for each sampled farm. The transition kernel 

distribution used for drawing ( )

,

n

i r
γɶ  is given by ( ) ( )

, 1
( , )n n

i r−γ ΦɶN  where ( )n
Φ  is a diagonal matrix that is 

adaptively adjusted for reaching acceptance rates between 0.24 and 0.4. The acceptance probability 

is given by ( ) ( ) 1

, , 1
min{1, ( ; ) ( ; ) }n c c n

i r i i i r
τ −

−= θ γ θ γɶ ɶℓ ℓ  when is γɶ  a candidate for ( )

,

n

i r
γɶ , that is to say γɶ  is accepted 

(and, thus, ( )

,

n

i r
=γ γɶ ɶ ) with probability ( )

,

n

i r
τ , and a new value of γɶ  is drawn otherwise. 

The SA step consists of updating the stochastic approximate of the sample log-likelihood function 

based on the following recursive formula: 

(A.10) 
( )1

( )

( )

( ) ( ) ( 11) ( ) ,1
( ) (1 ) ( ) log ( ; )

nN c n

n n n n i i

R

n r ri
Rλ λ −

=− =
= − + ∑ ∑θ θ θ γɶℓQ Q  

where weight parameter ( ) 0
n
λ >  needs to decrease in n provided that (1) 1λ = , ( )1 nn

λ
+∞

=
=+∞∑  and 

2

( )1 nn
λ

+∞

=
<+∞∑ . We follow Kuhn and Lavielle (2005) and define ( )n

λ  as 

(A.11) 1

( ) 3/4

1 1

1 for 1

( 1)  for 
n

n n

n n n n
λ

 ≥ ≥=  − + >
. 

for implementing the SAEM algorithm in our application.  

Finally, the M step consists of updating the estimate of 
0
θ  from ( )n

θ  to according to 

( 1)

( )
argmax ( )n

n

+ =
θ

θ θQ . Parameter 
1

n  needs to be chosen such that ( )n
θ  for 

1
n n≥  lies in the neighborhood 

of the solution to the considered optimization process, that is say as soon as ( 1) ( )n n+
θ θ≃  while the 

elements of ( )n
θ  don’t demonstrate any specific trend as n grows. 

SAEM algorithms are particularly well suited when the complete data likelihood function belongs to 

the exponential family. In this case, the SA step consists of updating sufficient statistics while the M 

step only involve simple analytical computations. In our setting, the SA step at iteration n just consists 

of applying the following recursive formulas: 
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while the corresponding M step just consists of applying the following recursive formulas: 
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where 
1

N

ii
M H

=
=∑  is the number of observations in the considered sample, term 

i
H  being the 

cardinality of set 
i

H  (i.e., the number of observations related to farm i in the sample). 
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Appendix B. Economic value of pre crop and crop diversity effects 

Let rewrite the model of the use of input j for crop k as:  

(B.1) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,0 , ,0 , , ,0 , , , ,0 , ,

y x x x x x

j mk it j k i j k t j mk j n k j k it j k j k it
x aµ α δ ε′= + + + + +v ζ  

when crop m is the pre crop and the number of grown crops, , 1i t
κ − , equals n. Vector , ,j k it

v  collects the 

control variables of the model (dummy variables indicating year t and , 1i t
nκ − =  excepted). Parameter 

( )

, ,0

x

j mk
a  defines the effect of pre crop m on the use of input j for crop k given that crop ( )r k  is the reference 

crop of crop k (i.e., ( )

, ( ) ,0
0x

j r k k
a = ). It corresponds to , , , ( ) ,j mk it j ref k k it

x x−  and it is value at 

(B.2) ( ) ( ) ( )

, , , , ,0
( )x x x

pre j k j k j mk
m p a∆ =   

when input j is purchased at price ( )

,

x

j k
p . 

Parameter ( )

, , ,0

x

j n k
δ  defines the effect of growing n crops on the use of input j for crop k given that growing 

5 crops is the reference situation (i.e., ( )

,5, ,0
0x

j k
δ = ). The effect of growing crop k as part of n crop set 

rather than a 5  crop set on the use of input j is valued at 

(B.3) ( ) ( ) ( )

, , , , , ,0
( )x x x

div j k j k j n k
n p δ∆ = . 

Let rewrite the yield function crop k as:  

(B.4) ( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 ,0 , ,0 , , , , , ,0 ,

y y y y y y

mk it k i k t mk n k j k i j mk it k it k k itj
y a xµ α δ β ε

∈
′= + + + + + +∑ v ζ

J
 

when crop m is the pre crop and the number of grown crops, , 1i t
κ − , equals n. Vector ,k it

v  collects the 

control variables of the model (dummy variables indicating year t and , 1i t
nκ − =  excepted). Parameter 

( )

,0

y

mk
a  defines the direct effect of pre crop m on the yield of crop k given that crop ( )r k  is the reference 

crop of crop k (i.e., ( )

( ) ,0
0y

r k k
a = ). The effect of pre crop m on the yield of crop k that pass through 

adjustments in input uses is given by ( )

, , , ,0

x

j k i j mkj
aβ

∈∑ J
. Accordingly, the total effect of pre crop m on the 

yield of crop k (given that crop ( )r k  is the reference crop of crop k) is given by 

( ) ( )

, ( ) , ,0 , , , ,0

y x

mk it ref k k it mk j k i j mkj
y y a aβ

∈
− = +∑ J

. It is valued at 

(B.5) ( ) ( ) ( ) ( ) ( )

, ,0 , ,0 , ,0
( )

y y y y x

pre k k mk k j k j mkj
m p a p aβ

∈
∆ = + ∑ J

 

when crop k is sold at price ( )y

k
p  and parameter , , ,( : )

k i j k i
jβ= ∈β J  is set at its mean value, ,0 ,[ ]

k k i
E=β β  

with ,0 , ,0( : )
k j k

jβ= ∈β J . The corresponding effect on crop k return to chemical inputs is given by 

(B.6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , ,0 , ,0 , , ,0
( ) ( ) ( ) ( )

y x y y y x x

pre k pre k pre j k k mk k j k j k j mkj j
m m m p a p p a

π β
∈ ∈

∆ =∆ − ∆ = + −∑ ∑J J
. 

Parameter ( )

, ,0

y

n k
δ  defines the direct effect of growing n crops on the yield of crop k given that growing 

5 crops is the reference situation (i.e., ( )

5, ,0
0y

k
δ = ) while term ( )

, , , ,0

x

j k i j nj
β δ

∈∑ J
 gives the effect that pass 

through adjustments in input uses. The total effect of growing n crops instead of 5 crops on the yield 
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of crop k is valued at 

(B.7) ( ) ( ) ( ) ( ) ( )

, , ,0 , ,0 , ,0
( )

y y y y x

div k k j n k j k j nj
n p pδ β δ

∈
∆ = + ∑ J

 

when crop k is sold at price ( )y

k
p  and , ,0k i k

=β β  . The congruent effect on crop k return to chemical 

inputs is given by 

(B.8) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

y x y y y x x
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n n n p p p

π δ β δ
∈ ∈

∆ =∆ − ∆ = + −∑ ∑J J
. 

The economic values of pre crop or acreage diversity effects on input use, yield or crop return levels 

presented above –  i.e., terms ( )

, ,
( )x

pre j k
m∆ , ( )

,
( )y

pre k
m∆ , ( )

,
( )

pre k
m

π∆ , ( )

, ,
( )x

div j k
n∆ , ( )

,
( )y

div k
n∆  and ( )

,
( )

div k
n

π∆  – are defined 

as functions of fixed parameters – i.e., parameters ( )

,0

y

mk
a , ( ) ( )

,0 , ,0
( : )x x

mk j mk
a j= ∈a J , ( )

,0

y

n
δ , ( ) ( )

,0 , ,0
( : )x x

n j n
jδ= ∈δ J  and 

,0k
β  – and of chosen price levels – i.e., ( )y

k
p  and ( ) ( )

,
( : )x x

k j k
p j= ∈p J . Let collect the involved parameters in 

vector ( ) ( ) ( ) ( )

0 ,0 ,0 ,0 ,0 ,0
( , , , , )y x y x

mk mk n n k
a δ=ξ a δ β .  

Consistent estimates of economic values of pre crop or acreage diversity effects are obtained by 

replacing 
0
ξ  by its ML estimator ˆ

M
ξ , which is 1/2

M  consistent (i.e., asymptotically normal in M). The 

approximate asymptotic distribution of these value estimates can easily be obtained from that of ˆ
M
ξ  

by using the so-called delta method (e.g., Wooldridge 2010), which is based on the following well-

known result. If term ˆ
M
ξ  is a 1/2

M  consistent estimator of 
0
ξ  with 1/2

0 0
ˆ( ) ( , )

D

M M
M →+∞− →ξ ξ 0N ϒ  and 

function ( )g ξ  is continuously differentiable in ξ  on the support of ˆ
M
ξ  then term ˆ( )

M
g ξ  is a 1/2

M  

consistent estimator of 
0

( )g ξ  with 1/2

0 0 0 0
ˆ{ ( ) ( )} ( , )

D

M M
M g g →+∞

′− →ξ ξ 0 g gN ϒ  where 
0 0( )g

∂
∂=
ξ

g ξ . If ˆ
M
ϒ  is a 

consistent estimator of 
0
ϒ  then the variance of ˆ( )

M
g ξ  can be approximated by 1 ˆ ˆ ˆ( ) ( )

M M M
M g g

∂ ∂−
′∂ ∂ξ ξ
ξ ξϒ . 
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Appendix C. Supplementary results 

Climate is an important driver of agricultural output. We gathered several weather variables provided 

by Meteo France, the French National Weather Service, at the municipality level and used them to 

build different weather indicators, which were matched to our farm accountancy data through the 

municipality codes lying in the two datasets. Our weather indicators include a rainfall indicator, which 

corresponds to the total rainfall, measured in meters, during the growing season of each crop ; an 

evapotranspiration41 indicator, which is computed as the difference between the actually measured 

average evapotranspiration level during the growing season and a potential evapotranspiration level 

of the season; a growing degree-days (in thousands) indicator which is useful to predict when a certain 

plant stage will occur, for instance when a crop will reach maturity; a cumulative visible radiation 

indicator (which is divided by 105 for rescaling purpose), and an average temperature indicator.  

 

Table C1: Summary statistics on weather indicators 

 Crops 

 Wheat Barley Rapeseed Sugar beet 

Rainfall (a) 0.61 0.33 0.60 0.74 

 (0.08) (0.12) (0.07) (0.07) 

Evapotranspiration -1.39 -0.66 -1.30 -2.26 

 (0.47) (0.37) (0.35) (0.47) 

Growing degree days (b) 1.55 0.92 1.52 2.27 

 (0.08) (0.13) (0.13) (0.14) 

Visible radiation (c) 3.13 2.08 2.92 3.97 

 (0.29) (0.32) (0.30) (0.32) 

Average temperature 9.25 10.70 8.76 10.53 

 (0.49) (1.41) (0.59) (0.68) 

 a: in meters; b: Growing degree-days (in thousands); c: divided by 10^5 for rescaling purposes. 

 

 

 

 

                                                                 
41 Evapotranspiration is the process by which water is transferred from the land to the atmosphere by evaporation from 

the soil and by transpiration from plants. 



59 

 

Table C2: Soil quality indicators 

 Mean Std 

dev. 

Min. Max. 

Organic carbon content (a) 15.03 1.60 10.57 23.12 

Clay content (b) 2.61 0.27 1.57 3.72 

Cation exchange capacity (c) 13.13 1.01 10.65 21.00 

pH 7.84 0.28 6.58 8.14 

Soil depth (d) 10.68 2.34 5.21 21.96 

Water holding capacity (e) 13.78 1.32 10.85 18.44 

Sand content (b) 1.92 0.47 0.71 3.74 

Silt content (b) 5.09 0.42 3.28 6.91 

(a): in g/kg; (b): in hg/kg; (c): in 10^(-2)*mol/kg; (d): in meters; (e): in millimeters. 
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Table C3: Other control variable estimates for yield equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon 0.09*** 0.07** 0.04* 1.96*** 

 (0.03) (0.03) (0.02) (0.51) 

Clay -0.24 -0.07 0.02 -7.81** 

 (0.19) (0.23) (0.14) (3.12) 

Cation exch. cap -0.09*** -0.04 -0.08*** -0.80 

 (0.03) (0.03) (0.02) (0.52) 

pH 0.43*** 0.28 0.11 4.14* 

 (0.14) (0.18) (0.10) (2.39) 

Soil depth -0.04** -0.02 -0.02** -2.03*** 

 (0.02) (0.02) (0.01) (0.30) 

Water holding cap 0.13*** 0.11*** 0.09*** 1.57*** 

 (0.03) (0.03) (0.02) (0.49) 

Sand 0.08 0.01 -0.09 3.61** 

 (0.10) (0.11) (0.06) (1.51) 

Silt 0.20** 0.08 0.09 5.66*** 

 (0.09) (0.11) (0.06) (1.38) 

Weather conditions     

Rainfall -3.26*** -3.48*** -0.40 -20.39** 

 (0.69) (0.78) (0.42) (9.53) 

Evapotranspiration 0.19 0.67*** -0.09 9.06*** 

 (0.13) (0.21) (0.10) (1.74) 

Growing degree days -1.95 1.41* -4.69*** 80.96*** 

 (1.37) (0.79) (1.01) (19.72) 

Visible radiation -0.12 -0.19 -0.23** 6.27*** 

 (0.13) (0.26) (0.10) (1.75) 

Average temp. -0.00 -0.26*** 1.07*** -24.03*** 

 (0.29) (0.05) (0.21) (5.28) 

Year dummies     

2008 -1.07*** -0.03 -0.74*** 18.52*** 

 (0.18) (0.14) (0.12) (4.27) 

2009 -0.04 0.51*** 0.20*** 24.96*** 

 (0.11) (0.10) (0.07) (2.93) 

2011 -0.07 -1.35*** 0.42*** 35.81*** 

 (0.05) (0.16) (0.05) (4.70) 

2012 -0.60*** 0.26* -0.23*** 19.19*** 

 (0.16) (0.14) (0.08) (3.16) 

2013 -0.14 -0.06 -0.73*** 15.66*** 

 (0.17) (0.21) (0.15) (2.97) 

2014 0.95*** 0.15 -0.53** 36.42*** 

 (0.30) (0.10) (0.22) (6.35) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C4: Other control variable estimates for nitrogen equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -0.52 -0.04 0.76 -2.26 

 (0.93) (0.89) (1.19) (1.78) 

Clay 18.72*** 16.64*** 17.39** 11.57 

 (6.10) (5.93) (7.37) (10.94) 

Cation exch. cap -3.31*** -2.48*** -2.86*** -2.60* 

 (0.89) (0.89) (1.08) (1.51) 

pH 4.02 -1.10 7.67 -13.18* 

 (5.06) (5.03) (6.09) (7.51) 

Soil depth -1.36** -0.96* -0.97 -1.25 

 (0.57) (0.56) (0.74) (1.08) 

Water holding cap 0.38 -0.94 -0.95 0.10 

 (0.99) (0.94) (1.18) (1.70) 

Sand 1.45 4.52 7.08* -2.88 

 (3.81) (3.53) (4.01) (6.54) 

Silt 4.82 6.70** 9.05** 0.45 

 (3.22) (3.16) (3.61) (5.57) 

Weather conditions     

Rainfall 0.79 10.78 10.21 -48.35 

 (25.21) (25.28) (30.33) (37.22) 

Evapotranspiration 3.24 -5.47 -7.55 15.30** 

 (5.26) (6.71) (6.88) (6.62) 

Growing d-d 71.06 9.94 41.29 54.72 

 (50.27) (20.10) (66.20) (71.20) 

Visible radiation -13.04** -16.05** -8.67 1.13 

 (5.09) (6.96) (6.68) (6.38) 

Average temp. -15.78 -0.59 -8.36 -11.12 

 (11.06) (1.60) (14.24) (18.98) 

Year dummies     

2008 4.51 -6.94* 6.59 -3.54 

 (7.07) (4.22) (8.45) (14.73) 

2009 -3.40 -3.99 7.64 -3.99 

 (4.74) (2.95) (4.93) (10.14) 

2011 0.11 -1.79 4.63 6.23 

 (2.09) (4.28) (3.05) (15.86) 

2012 -0.07 -7.46** -4.66 -4.88 

 (6.19) (3.61) (5.15) (10.92) 

2013 -3.87 -3.86 2.07 4.40 

 (6.01) (6.06) (10.01) (10.65) 

2014 9.93 2.26 5.27 -1.93 

 (11.13) (2.58) (14.33) (22.41) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C5: Other control variable estimates for herbicides equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -4.55*** -2.78*** -4.87*** -7.84*** 

 (0.61) (0.45) (1.05) (2.33) 

Clay 24.72*** 11.28*** 29.35*** 49.51*** 

 (3.96) (2.75) (6.93) (15.25) 

Cation exch. cap 0.94* -0.15 0.28 -1.84 

 (0.56) (0.40) (0.88) (2.16) 

pH -12.84*** -5.72*** -14.54*** -33.42*** 

 (2.75) (1.96) (4.60) (11.32) 

Soil depth 0.33 -0.48* 0.08 -0.22 

 (0.34) (0.26) (0.58) (1.35) 

Water holding cap -0.95 0.13 -1.45 1.39 

 (0.64) (0.42) (1.12) (2.34) 

Sand 1.36 0.98 2.55 18.27** 

 (1.96) (1.50) (3.56) (8.62) 

Silt -1.91 0.38 -3.07 7.48 

 (1.87) (1.41) (3.09) (7.52) 

Weather conditions     

Rainfall -11.86 25.06** -38.91* 15.25 

 (15.20) (10.35) (22.61) (43.47) 

Evapotranspiration 0.44 -6.70** 13.57** -1.70 

 (3.09) (2.88) (5.32) (7.91) 

Growing d-d 12.26 -38.05*** 86.85* 74.81 

 (29.80) (9.21) (50.46) (84.14) 

Visible radiation 9.50*** 6.38** 3.36 -17.71** 

 (2.70) (2.63) (4.64) (7.04) 

Average temp. -4.98 0.85 -17.23 -9.75 

 (6.30) (0.65) (10.96) (22.14) 

Year dummies     

2008 -3.75 0.11 -9.21 9.66 

 (3.99) (1.62) (6.13) (17.37) 

2009 2.14 4.70*** -11.33*** -5.42 

 (2.63) (1.28) (3.87) (12.05) 

2011 4.35*** 5.70*** -5.20** 21.26 

 (1.24) (2.07) (2.59) (18.70) 

2012 14.98*** 8.06*** -5.79 20.41 

 (3.56) (1.48) (4.22) (12.70) 

2013 12.07*** 4.72* 20.60*** 40.14*** 

 (3.47) (2.44) (7.06) (12.76) 

2014 17.34*** 10.96*** 28.15*** 66.51** 

 (6.57) (1.31) (10.87) (26.24) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C6: Other control variable estimates for other pesticides equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -4.37*** -1.48 -5.31*** -0.86 

 (1.20) (1.00) (1.40) (1.27) 

Clay 25.17*** 8.02 24.01*** 14.83* 

 (8.64) (6.53) (8.95) (8.25) 

Cation exch. cap -0.20 0.00 -1.18 0.35 

 (1.18) (0.83) (1.28) (1.30) 

pH -1.63 -4.13 -6.94 -14.79** 

 (6.28) (5.04) (7.19) (6.08) 

Soil depth -0.39 -0.33 -1.46* -1.39* 

 (0.69) (0.51) (0.75) (0.72) 

Water holding cap 0.82 0.51 2.03 -1.81 

 (1.37) (1.04) (1.41) (1.30) 

Sand 3.35 -0.23 1.32 -1.51 

 (4.51) (3.10) (4.50) (4.36) 

Silt 5.69 -2.96 2.57 4.80 

 (4.32) (3.38) (4.49) (4.10) 

Weather conditions     

Rainfall -16.12 -24.00 -5.55 -37.48 

 (25.89) (21.78) (25.61) (27.46) 

Evapotranspiration 2.15 -2.30 6.57 4.09 

 (5.31) (6.47) (5.66) (5.14) 

Growing d-d 113.61* 26.46 112.70* -160.8*** 

 (58.75) (21.95) (63.39) (51.01) 

Visible radiation -14.8*** -11.37* 10.43* 1.37 

 (5.08) (6.23) (5.93) (4.56) 

Average temp. -18.86 -1.90 -17.89 47.64*** 

 (12.29) (1.38) (13.75) (13.35) 

Year dummies     

2008 29.83*** 8.60** -8.73 -23.62** 

 (7.42) (3.91) (7.80) (10.18) 

2009 17.04*** 13.81*** 9.12** -18.45*** 

 (4.39) (3.09) (4.54) (6.98) 

2011 -2.84 -7.77* -1.06 -36.49*** 

 (2.30) (4.37) (3.02) (10.82) 

2012 1.69 1.59 8.52 -4.98 

 (6.94) (3.73) (5.75) (7.79) 

2013 19.69*** 14.37*** 29.36*** 1.14 

 (7.01) (5.52) (9.95) (7.98) 

2014 35.14*** 7.22** 25.39* -26.93* 

 (12.97) (3.00) (14.35) (15.82) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C7: Variance-covariance estimates of the distribution error terms 

 Yield Nitrogen Herbi-

cides 

Other 

pesti-

cides 

Yield Nitrogen Herbicides Other 

pesti-

cides 

 Wheat Barley 

Yield 0.43***    0.60***    

 (0.01)    (0.01)    

Nitrogen  643.26*** 5.43 37.47***  378.04*** 5.90* 22.68*** 

  (8.47) (5.35) (9.97)  (5.71) (3.09) (5.97) 

Herbicides  5.43 183.27*** 27.17***  5.90* 80.25*** 14.51*** 

  (5.35) (2.30) (3.58)  (3.09) (0.87) (2.07) 

Other pesticides  37.47*** 27.17*** 542.95***  22.68*** 14.51*** 333.10*** 

  (9.97) (3.58) (8.78)  (5.97) (2.07) (3.51) 

 Rapeseed Sugar beet 

Yield 0.18***    62.84***    

 (0.00)    (1.18)    

Nitrogen  815.82*** -4.23 35.67**  745.03*** 14.98 15.90 

  (13.56) (11.30) (14.37)  (11.74) (16.79) (10.20) 

Herbicides  -4.23 505.50*** 52.06***  14.98 1,072.63*** 59.84*** 

  (11.30) (4.60) (7.72)  (16.79) (12.34) (11.38) 

Other pesticides  35.67** 52.06*** 696.06***  15.90 59.84*** 451.78*** 

  (14.37) (7.72) (9.97)  (10.20) (11.38) (6.81) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated variances.  

  



65 

Table C8: Variance-covariance matrix of the random parameters 

 Intercept 

Yield 

Intercept 

Nitrogen 

Intercept 

Herbicide 

Intercept 

Other Pest. 

Nitrogen 

Coeff. 

Herbicide 

Coeff. 

Other Pest. 

Coeff. 

Wheat        

Intercept Yield 0.49* 0.03* 0.01 0.05* -0.08* -0.03 -0.04 

 (0.09) (0.01) (0.01) (0.02) (0.03) (0.06) (0.03) 

Intercept Nitrogen 0.03* 0.02* 0.00 0.01* -0.00 0.00 -0.01 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Herbicide 0.01 0.00 0.01* 0.01* -0.01* -0.01* 0.00 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Other Pest. 0.05* 0.01* 0.01* 0.06* 0.01 -0.02 -0.02* 

 (0.02) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) 

Nitrogen Coeff. -0.08* -0.00 -0.01* 0.01 0.05* -0.01 -0.01 

 (0.03) (0.00) (0.00) (0.01) (0.01) (0.02) (0.01) 

Herbicide Coeff. -0.03 0.00 -0.01* -0.02 -0.01 0.15* -0.00 

 (0.06) (0.01) (0.01) (0.01) (0.02) (0.05) (0.02) 

Other Pest. Coeff. -0.04 -0.01 0.00 -0.02* -0.01 -0.00 0.03* 

 (0.03) (0.00) (0.00) (0.01) (0.01) (0.02) (0.01) 

Barley        

Intercept Yield 0.20* 0.03* -0.01 0.02 -0.02 0.02 -0.06 

 (0.08) (0.01) (0.00) (0.01) (0.04) (0.09) (0.05) 

Intercept Nitrogen 0.03* 0.01* 0.00 0.01* -0.01 0.00 -0.00 

 (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.01) 

Intercept Herbicide -0.01 0.00 0.00* 0.00* -0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Other Pest. 0.02 0.01* 0.00* 0.02* 0.01 0.01 -0.03* 

 (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.01) 

Nitrogen Coeff. -0.02 -0.01 -0.00 0.01 0.09* -0.01 -0.07* 

 (0.04) (0.01) (0.00) (0.01) (0.03) (0.06) (0.03) 

Herbicide Coeff. 0.02 0.00 0.00 0.01 -0.01 0.40* -0.03 

 (0.08) (0.02) (0.01) (0.02) (0.06) (0.19) (0.07) 

Other Pest. Coeff. -0.06 -0.00 0.00 -0.03* -0.07* -0.03 0.14* 

 (0.05) (0.01) (0.00) (0.01) (0.03) (0.07) (0.05) 

Rapeseed        

Intercept Yield 0.22* 0.00 0.00 0.06* -0.03* -0.04* -0.04* 

 (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Intercept Nitrogen 0.00 0.03* 0.00* 0.01* 0.00 0.00 0.00 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Intercept Herbicide -0.00 0.00 0.03* 0.01* 0.00 0.00 -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Intercept Other Pest. 0.06* 0.01* 0.01* 0.06* 0.00 -0.02* -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Nitrogen Coeff. -0.03* 0.00 0.00 0.00 0.02* 0.00 -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Herbicide Coeff. -0.04* 0.00 0.00 -0.02* 0.00 0.05* 0.00 

 (0.01) (0.00) (0.00) (0.01) (0.00) (0.01) (0.01) 
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Other Pest. Coeff. -0.04* 0.00 -0.01* -0.01* -0.01* 0.00 0.04* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) 

Sugar beet        

Intercept Yield 69.87* -1.96 -4.13 1.60 -0.02 3.49 -34.97* 

 (17.45) (1.77) (2.65) (1.55) (4.08) (0.38) (10.61) 

Intercept Nitrogen -1.96 2.96* 0.69* 0.48* 1.16 1.08 -1.50 

 (1.77) (0.19) (0.27) (0.20) (0.72) (0.09) (1.54) 

Intercept Herbicide -4.13 0.69* 9.31* 1.64* -2.19 0.89 0.59 

 (2.65) (0.27) (0.60) (0.26) (1.37) (0.11) (2.33) 

Intercept Other Pest. 1.60 0.48* 1.64* 2.84* -0.60 2.11* -0.94 

 (1.55) (0.20) (0.26) (0.19) (0.79) (0.06) (1.08) 

Nitrogen Coeff. -0.02 1.16 -2.19 -0.60 3.80* 0.07 -2.07 

 (4.08) (0.72) (1.37) (0.79) (1.77) (0.15) (3.05) 

Herbicide Coeff. 3.49 1.08 0.89 2.11* 0.07 5.84* -4.88(*) 

 (3.80) (0.86) (1.09) (0.62) (1.48) (0.19) (2.84) 

Other Pest. Coeff. -34.97* -1.50 0.59 -0.94 -2.07 -4.88(*) 29.02* 

 (10.61) (1.54) (2.33) (1.08) (3.05) (0.28) (8.62) 

 Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimators are in parentheses below the 

parameter estimates.  
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Table 4a: Selected parameter estimates of the crop yield models 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts 

Intercept, mean 8.6* (0.07) 6.1* (0.08) 0.5* (0.04) 83.8* (0.83) 

Intercept, std dev 0.7* (0.07) 0.5* (0.09) 0.5* (0.04) 8.4* (1.04) 

Farm specific input use coefficients (x 102) 

Nitrogen, mean 0.03 (0.03) -0.06 (0.05) 0.08* (0.01) -0.40 (0.39) 

Nitrogen, standard deviation 0.21* (0.03) 0.30* (0.06) 0.15* (0.01) 1.95* (0.45) 

Herbicides, mean 0.14* (0.05) 0.02 (0.11) 0.04* (0.02) 0.55 (0.32) 

Herbicides, standard deviation 0.38* (0.07) 0.63* (0.15) 0.22* (0.02) 2.42* (0.40) 

Other pesticide, mean 0.34* (0.03) 0.27* (0.06) 0.13* (0.02) 0.80 (0.61) 

Other pesticides, standard deviation 0.17* (0.03) 0.37* (0.07) 0.20* (0.02) 5.39* (0.80) 

Pre crop effects         

Wheat -0.32* (0.10) ref (-) ref 2 ref (-) 

Barley -0.19 (0.16) -0.16* (0.07) 0.04 (0.03) -0.25 (0.55) 

Rapeseed ref (-) 0.16 (0.20)   1.25 (3.03) 

Corn -0.06 (0.13) -0.26* (0.12)   -3.81 (4.29) 

Protein pea 0.20(*) (0.10) 0.17 (0.41) 0.05 (0.25)   

Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 

Sugar beet 0.01 (0.06) 0.21* (0.07)   -0.51 (1.69) 

Potatoes -0.02 (0.11) 0.23 (0.22)   2.79 (3.62) 

Other pre crops -0.02 (0.10) 0.36* (0.14) -0.03 (0.18) -0.98 (2.17) 

Crop diversity effects: crop number 

3 crops or less -0.19* (0.07) -0.35* (0.13) 0.01  -7.67 (4.39) 

4 crops -0.10(*) (0.05) -0.19* (0.07) -0.04 (0.18) -1.08 (1.29) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops 0.06 (0.04) 0.02 (0.05) 0.06(*) (0.03) 1.38* (0.61) 

7 crops or more 0.20* (0.07) 0.15(*) (0.08) 0.18* (0.04) 1.90(*) (0.93) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -0.13 (0.41) 0.69 (0.62) -0.26 (0.36) -13.27 (29.80) 

4 crops x Shannon index 0.72* (0.27) 1.33* (0.47) 0.21 (0.20) 6.57 (6.89) 

5 crops x Shannon index 0.73* (0.31) 0.88* (0.36) 0.33 (0.20) 9.79* (4.58) 

6 crops x Shannon index 0.28 (0.33) 0.40 (0.41) 0.59* (0.23) 14.38* (4.42) 

7 crops x Shannon index 1.44* (0.58) 0.87 (0.64) 0.93* (0.30) 15.73* (6.48) 

General statistics         

Average yield level 8.65 7.00 3.88 93.07 

Simulated R2 0.68 0.63 0.64 0.70 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note. Symbol “*”, respectively “(*)”, indicates that the parameter is tested non null at the 5%, 

respectively 10%, level. Estimated standard deviations of the parameter estimators are in parentheses 

below the parameter estimates. 
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Table 4b: Selected parameter estimates of the nitrogen use models 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 249.2* (0.63) 151.1* (0.56) 115.8* (0.77) 356.2* (0.87) 

Intercept, standard deviation 13.46* (0.54) 11.29* (0.43) 15.92* (0.62) 17.20* (0.55) 

Pre crop effects         

Wheat 0.32 (3.79) ref (-) ref (-) ref (-) 

Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 

Rapeseed ref (-) -0.74 (4.53)   6.36 (7.93) 

Corn -1.96 (4.56) -0.11 (4.19)   8.99 (28.49) 

Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   

Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 

Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 

Potatoes 4.68 (4.10) -2.50 (4.98)   7.58 (7.10) 

Other pre crops -1.36 (3.54) 1.25 (3.97) 11.30 (9.28) 1.03 (5.69) 

Crop diversity effects: crop number 

3 crops or less -0.38 (3.20) -1.41 (4.31) -2.01 (4.82) 6.08 (24.09) 

4 crops 0.40 (1.64) 0.69 (1.63) -1.59 (2.28) 3.27 (4.41) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops 1.55 (1.40) 0.54 (1.12) 3.45* (1.68) -0.44 (1.91) 

7 crops or more 2.65 (2.19) 1.37 (2.04) 3.72 (2.48) -3.03 (2.60) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -3.74 (17.91) -13.71 (26.74) -12.25 (19.33) -83.64 (107.95

) 

4 crops x Shannon index 10.54 (9.13) -6.55 (10.83) -3.94 (14.56) 1.24 (24.56) 

5 crops x Shannon index -12.98 (11.09) -12.00 (8.20) -13.53 (13.49) -36.25* (16.84) 

6 crops x Shannon index -1.56 (11.34) -4.22 (8.88) 12.62 (12.46) 1.78 (13.29) 

7 crops x Shannon index -3.28 (20.36) -7.39 (17.68) 0.22 (22.09) -25.68 (21.83) 

General statistics         

Average use of N 217.95  147.19  215.19  138.55  

Simulated R2 0.38  0.42  0.42  0.44  

Observation number 3982  3327  3530  3085  

Farm number 769  654  692  607  

Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimators are in parentheses below the 

parameter estimates. 
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Table 4c: Selected parameter estimates of the herbicide use models 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 171.6* (0.42) 85.7* (0.28) 285.6* (0.75) 319.9* (1.38) 

Intercept, standard deviation 10.0* (0.29) 5.7* (0.18) 16.8* (0.54) 30.5* (0.99) 

Pre crop effects         

Wheat -0.11 (2.29) ref (-) ref (-) ref (-) 

Barley 1.37 (4.13) 1.94* (0.95) -0.57 (1.44) -2.57 (2.52) 

Rapeseed ref (-) 0.62 (2.46)   7.78 (11.21) 

Corn -1.98 (2.19) -2.08 (1.50)   -5.82 (22.55) 

Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   

Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 

Sugar beet -1.35 (1.58) -1.68(*) (0.97)   8.41 (8.50) 

Potatoes -2.05 (1.87) -1.39 (2.43)   -4.36 (11.18) 

Other pre crops 2.87 (1.85) 1.55 (1.96) 5.70 (7.32) 6.86 (6.43) 

Crop diversity effects: crop number         

3 crops or less 4.66* (1.54) 3.56 (2.02) 11.05* (3.63) 12.11 (59.26) 

4 crops 1.93 (1.03) 1.20 (0.84) 8.14* (1.88) 4.21 (3.53) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops -1.64(*) (0.88) -1.37* (0.58) -2.42 (1.49) -1.41 (2.39) 

7 crops or more -2.37 (1.74) -1.34 (0.99) -3.29 (2.48) -5.30 (4.27) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 1.99 (8.68) -12.01 (11.14) 15.37 (23.84) -38.16 (372.78) 

4 crops x Shannon index -9.35 (5.15) -10.32* (4.98) -8.71 (11.66) -31.32 (18.48) 

5 crops x Shannon index -4.12 (6.13) -8.88* (3.68) -12.98 (10.83) -4.11 (19.37) 

6 crops x Shannon index -7.27 (8.17) -3.05 (5.66) -23.7(*) (12.69) 3.41 (18.70) 

7 crops x Shannon index 7.57 (15.25) -0.67 (9.88) -18.79 (20.45) -11.79 (30.71) 

General statistics         

Average herbicide use 63.08 30.47 99.27 160.55 

Simulated R2 0.55 0.50 0.55 0.67 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimators are in parentheses below the 

parameter estimates. 
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Table 4d: Selected parameter estimates of the other pesticides (mostly fungicides and 

insecticides) use models 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 144.7* (1.00) 143.7* (0.66) 127.7* (1.03) 109.8* (0.79) 

Intercept, standard deviation 25.43* (0.71) 14.72* (0.46) 24.32* (0.69) 16.86* (0.55) 

Pre crop effects         

Wheat 4.07 (4.08) ref (-) ref (-) ref (-) 

Barley -15.63* (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 

Rapeseed ref (-) -3.34 (4.93)   -2.23 (6.85) 

Corn -7.80 (4.16) -7.44* (3.33)   7.74 (14.76) 

Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   

Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 

Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 

Potatoes 1.27 (3.81) -4.99 (5.98)   1.22 (8.93) 

Other pre crops 0.89 (3.53) -2.45 (4.49) -6.33 (15.74) -1.07 (3.91) 

Crop diversity effects: crop number         

3 crops or less -3.73 (3.28) -2.44 (3.33) -0.82 (4.15) 3.11 (18.21) 

4 crops -3.17 (2.07) 0.14 (1.66) 2.94 (2.37) 0.92 (2.53) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops -0.25 (1.76) -0.72 (1.32) -1.35 (1.89) 1.00 (1.62) 

7 crops or more 1.90 (2.89) -2.16 (2.22) 0.75 (3.10) -1.50 (2.79) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 5.99 (14.46) 1.52 (25.08) -16.66 (28.23) 55.79 (73.47) 

4 crops x Shannon index 1.83 (10.94) -1.28 (8.37) -1.55 (12.14) -10.12 (13.18) 

5 crops x Shannon index -13.95 (11.38) -6.53 (8.91) -29.88* (13.92) -26.92* (12.69) 

6 crops x Shannon index 1.58 (13.52) -5.49 (11.55) 23.23 (14.91) 3.80 (12.42) 

7 crops x Shannon index 5.31 (17.92) -1.52 (17.93) 4.22 (19.47) 10.15 (21.19) 

General statistics         

Average pesticide use 125.1 76.0 109.0 96.2 

Simulated R2 0.65 0.55 0.60 0.55 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note. Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 

10%, level. Estimated standard deviations of the parameter estimators are in parentheses below the 

parameter estimates. 
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Table 6: Selected parameter estimates of the crop yield and input use models: 

selected pre crop effects 

 
Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat -0.32* (0.10) 0 (-) 0 (-) 0 (-) 

Barley -0.19 (0.16) -0.16* (0.07) 0.04 (0.03) -0.25 (0.55) 

Rapeseed 0 (-) 0.16 (0.20)   1.25 (3.03) 

Corn -0.06 (0.13) -0.26* (0.12)   -3.81 (4.29) 

Protein pea 0.20(*) (0.10) 0.17 (0.41) 0.05 (0.25)   

Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 

Sugar beet 0.01 (0.06) 0.21* (0.07)   -0.51 (1.69) 

Potatoes -0.02 (0.11) 0.23 (0.22)   2.79 (3.62) 

Other pre crops -0.02 (0.10) 0.36* (0.14) -0.03 (0.18) -0.98 (2.17) 

 
Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 0.32 (3.79) 0 (-) 0 (-) 0 (-) 

Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 

Rapeseed 0 (-) -0.74 (4.53)   6.36 (7.93) 

Corn -1.96 (4.56) -0.11 (4.19)   8.99 (28.49) 

Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   

Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 

Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 

Potatoes 4.68 (4.10) -2.50 (4.98)   7.58 (7.10) 

Other pre crops -1.36 (3.54) 1.25 (3.97) 11.30 (9.28) 1.03 (5.69) 

 
Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat -0.11 (2.29) 0 (-) 0 (-) 0 (-) 

Barley 1.37 (4.13) 1.94* (0.95) -0.57 (1.44) -2.57 (2.52) 

Rapeseed 0 (-) 0.62 (2.46)   7.78 (11.21) 

Corn -1.98 (2.19) -2.08 (1.50)   -5.82 (22.55) 

Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   

Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 

Sugar beet -1.35 (1.58) -1.68(*) (0.97)   8.41 (8.50) 

Potatoes -2.05 (1.87) -1.39 (2.43)   -4.36 (11.18) 

Other pre crops 2.87 (1.85) 1.55 (1.96) 5.70 (7.32) 6.86 (6.43) 

 
Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 4.07 (4.08) 0 (-) 0 (-) 0 (-) 

Barley -15.63* (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 
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Rapeseed 0 (-) -3.34 (4.93)   -2.23 (6.85) 

Corn -7.80 (4.16) -7.44* (3.33)   7.74 (14.76) 

Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   

Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 

Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 

Potatoes 1.27 (3.81) -4.99 (5.98)   1.22 (8.93) 

Other pre crops 0.89 (3.53) -2.45 (4.49) -6.33 (15.74) -1.07 (3.91) 

Note. Symbol *, respectively (*), indicates that the parameter is tested non null at the 

5%, respectively 10%, level. Estimated standard deviations of the parameter 

estimators are in parentheses below the parameter estimates. 

 

 


