
HAL Id: hal-04667081
https://hal.science/hal-04667081v1

Submitted on 23 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Leveraging mixed criticality task budgets
Mohamed Amine Khelassi, Yasmina Abdeddaïm

To cite this version:
Mohamed Amine Khelassi, Yasmina Abdeddaïm. Leveraging mixed criticality task budgets. Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Sep 2024,
Padova, Italy. �hal-04667081�

https://hal.science/hal-04667081v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Leveraging mixed criticality task budgets
Mohamed Amine Khelassi

Univ Gustave Eiffel, CNRS, LIGM
F-77454 Marne-la-Vallée, France
mohamedamine.khelassi@esiee.fr

Yasmina Abdeddaı̈m
Univ Gustave Eiffel, CNRS, LIGM
F-77454 Marne-la-Vallée, France

yasmina.abdeddaim@esiee.fr

Abstract—In mixed-criticality systems, classical models assume
an estimated execution time budget for tasks in each possible
criticality, and when a job presents a budget overrun, they tend
to drop the lower criticality tasks to preserve the schedulability
of the higher criticality tasks. However, few studies focus on
how the different execution time budgets are calculated, and
it has been emphasized that tasks of lower criticality must
provide a minimum service for the system to function properly.
In this paper, we present a greedy heuristic for calculating
the execution time budget to be allocated to real-time tasks
according to their criticality and the shape of their execution
time distribution. This budget is calculated with the aim of
minimizing potential budget overruns. We first introduce a new
statistical dispersion parameter called the maximum coefficient
of variation (VWCET). This parameter describes the tendency of
execution times towards the worst-case execution time and can be
adjusted according to the criticality of the task. We show through
experiments that the proposed heuristic reduces the probability
of exceeding the time budget allocated to the task, and improves
the performance of low-criticality tasks.

Index Terms—Mixed criticality systems, Execution time vari-
ability, Statistical dispersion parameter

I. INTRODUCTION

With the growing complexity of processor architectures,
one of the issues in real-time systems is ensuring the time
predictability of a critical system. Indeed, program execution
times can vary significantly from one execution to another
in complex processors, this execution time variability is even
greater for complex algorithms used in AI applications.

The worst-case execution time is necessary to prove that
real-time systems meet their temporal constraints in their
worst-case behavior. The greater the execution time variability,
the more difficult it is to estimate the worst-case program
execution time. And if the estimated worst-case execution
time is pessimistic, the processor is not used efficiently. To
overcome this issue, the mixed-criticality real-time model is
one of the possible approaches.

The challenge is that low criticality tasks do not disturb
the good functioning of the high criticality ones. In real-
time scheduling, since the original Vestal’s model [1], a
classical model has emerged, see [2] for a complete survey.
In this model, tasks have several execution times budgets,
one budget per possible criticality. If a task does not signal
its termination after the execution of its allocated budget
at a certain criticality level, the system moves to the next
criticality level. In every system criticality level, only tasks of
criticality equal to or higher than the criticality of the system

have to respect their deadlines. Therefore, low criticality tasks
can be suspended to allow higher criticality tasks to meet
their deadlines. Many research assumes that execution time
budgets in every criticality level are provided and focus on the
challenge of maximizing the execution of low criticality tasks
while guaranteeing that all high criticality tasks always meet
their deadlines. The execution time budgets are often defined
as estimates of the worst-case execution time at different
certification requirements but few studies have focused on how
to determine these budgets.

In this paper, our aim is to determine execution time budgets
for mixed criticality real-time tasks in order to minimize
execution time budget overruns and to ensure that tasks meet
their deadlines. If a job does not finish within its allocated
budget, we consider that the job is suspended. The idea is to
reduce monitoring as much as possible during execution, and
therefore to find static execution time budgets with the least
number of time overruns during execution while guarantee-
ing the correct functioning of the most critical tasks and a
minimum quality of service for less critical tasks. Our budget
calculation algorithm is not specific to a class of scheduling
algorithms and has linear complexity in terms of the number
of schedulability tests whatever the number of criticalities.

The computed budgets depend on the task’s criticality, i.e.
the higher the task’s criticality, the lower the risk of budget
overruns within the execution time. For example, if a task has a
high criticality, we allocate it the highest possible budget with
zero probability of overrun and it will never be suspended.

In order to minimize execution time budget overrun of a
task, we use the variability of its execution time. For this
purpose, we propose a new parameter for the quantification of
execution time variability called the coefficient of variation to
the maximum (VWCET). This parameter is used in a heuristic
of linear time complexity to determine the task budgets.

The contributions of the paper are: (1) We propose a new
statistical dispersion parameter to quantify the execution time
variability of real-time tasks. (2) We propose a heuristic that
uses our statistical dispersion parameter to compute the tasks
execution time budgets to assign in a mixed criticality system.
(3) We evaluate our approach using simulations and discuss
its benefits according to different criteria. (4) We evaluate our
approach on benchmarks executed on an ARM-Cortex A53
using a real-time OS.

Fig. 1: Execution times (cycles) of programs executed in an ARM Cortex 53

II. EXECUTION TIME VARIABILITY

The quantification of time variability will help us in setting
the appropriate execution time budgets for mixed criticality
tasks. Fig. 1 represents histograms of execution times of three
programs, merge, quick and insert sort of the Mälardalen
[3] benchmark executed using the Zynq UltraScale+ MPSoC
ZCU104 Evaluation Kit. For every algorithm we use the same
input, and all the algorithms are executed 1000 times in the
same processor configuration i.e. the caches are disabled and
all other A53 cores execute the same sorting programs as
contenders. We can see that the execution times of every
program vary from one execution to another, we say that the
programs exhibit some execution time variability.

Many definitions have been proposed for the quantification
of execution time variability, in [4] and [5] the execution time
variability is quantified as the ratio between run-time mea-
surements and either the best, worst or mean execution time.
In [6], [7], the execution time variability is considered to be
the factor between the worst-case execution time computed in
isolation and along with other workload. Let Qmerge = 0.898,
Qquick = 0.989 and Qinsert = 0.787 be the quotients between
the best-case and worst-case execution times for merge sort,
quick sort and insert sort programs respectively. The quotient
indicates by how much execution times can vary at most, but
we have no information on the distribution of execution times.
Indeed the execution times of Fig. 1 are left-biased, centered
or right-biased and this is the information we want to capture.

A. Dispersion parameters

Dispersion parameters are used in statistics to measure the
tendency of the values of a distribution to be scattered on
either side of a value. For example the coefficient of variation
(CV) measures the dispersion of a set of data around the mean
(similarly to the index of dispersion [8]).

The skewness parameter (skw) [9] describes which side of
the distribution has a longer tail. For unimodal distributions,
symmetric distributions should have a skewness value near
zero, negative skewness values means that data are more
shifted towards the maximum value, positive skewness values
means that data are more shifted towards the minimum value
of the distribution [10]. Because in real-time systems we
are interested in the behavior around the worst-case value,
the advantage of the skewness parameter compared to the

coefficient of variation is that the parameter provides infor-
mation concerning the distribution of the data towards the
largest value, however it is not sensitive to location and its
interpretation is valid for only unimodal distributions.

Inspired by the parameters mentioned, we suggested our
own parameter that is sensitive to location (see Section II-B
for an explanation of why we need this property) and can be
adjusted according to the criticality of the task.

B. Coefficient of variation to the maximum

In this work, we propose our own dispersion parameter and
in Section III we will show how it can be used in budget
assignment for mixed criticality real-time tasks. A previous
version of this parameter is presented in [11], this version does
not consider the criticality of the task. Definition 1, introduces
our proposed dispersion parameter, the coefficient of variation
to the maximum, this parameter is inspired by the coefficient
of variation and measures the dispersion of a set of data around
the largest value instead of the mean value.

Definition 1 (Coefficient of variation to the maximum):
The coefficient of variation to the maximum VWCETα

k of
Xk a random positive integer variable with nk occurrences
{Xk

1 , . . . X
k
nk
} with ∃Xk

j , X
k
j > 0 is:

VWCETα
k =

∑nk
i=1(WCETk−Xk

i)
1
α

nk

WCETk
× 100 (1)

with WCETk = max
1≤i≤nk

Xk
i and α is the parameter of

variability with α > 0.
Given that the VWCET 1 is based on the sum of deviations,

(WCETk − Xk
i)

1
α , between the WCET and the other data

values, the smaller it is the more likely the data are shifted
to the WCET. For example, as stated in Proposition 1, when
the parameter of variability α is set to 1, if the VWCET of a
random variable Xk is greater than that of Xj , it implies that
the normalised mean value of Xk by its WCETk is smaller
than the normalised mean value of Xj by its WCETj .

Proposition 1: Let Xk be a random variable with nk

occurrences and Xj a random variable with nj occurrences,
if VWCET 1

k > VWCET 1
j then µk

WCETk
<

µj

WCETj

1The parameters, k and α are omitted in VWCETα
k when there is no

confusion

where µk and µj are the mean of the random variables Xk

and Xj respectively.
Proof 1: Suppose VWCET 1

k > VWCET 1
j , then

∑nk
i=1(WCETk−Xk

i)

nk

WCETk
× 100 >

∑nj
i=1(WCETj−Xj

i)

nj

WCETj
× 100

nk −
∑nk

i=1(
Xk

i

WCETk
)

nk
>

nj −
∑nj

i=1(
Xj

i

WCETj
)

nj

1
nk

∑ni

i=1(X
k
i)

WCETk
<

1
nj

∑nj

i=1(X
j
i)

WCETj

The parameter α is used in the VWCET formula to control
the sensitivity of the metric to variations towards the WCET,
this is why we power the variation towards the WCET by 1

α .
First if α ≥ 1, the term (WCETk − Xk

i)
1
α becomes less

sensitive to variations by growing more slowly then if α < 1
as shown if Formula 2.

∂

∂dev

∂

∂dev
(dev

1
α) = − (α− 1)dev(

1
α−2)

α2
(2)

with dev = (WCETk −Xk
i)

In fact, as we can see in the Formula 2 the growth of the
variation (WCETk − Xk

i) decreases (the second derivative
is negative) if α > 1 and increases (the second derivative is
positive) if 0 < α < 1. Note that multiplying (WCETk−Xk

i)
by α would have given us constant growth of (WCETk−Xk

i)
equal to α thus less sensitivity to the deviation.

Secondly, Proposition 2 shows that the larger the α, the
smaller the VWCET.

Proposition 2: Let Xk be a random variable with nk

occurrences. Let α1 and α2 be two parameters of variability,
if α1 < α2 then VWCETα1

k > VWCETα2

k .
Proof 2: Suppose that 0 < α1 < α2, then∑nk
i=1(WCETk−Xk

i)
1

α1

nk
>

∑nk
i=1(WCETk−Xk

i)
1

α2

nk

this implies∑nk
i=1

(WCETk−Xk
i)

1
α1

nk

WCETk
× 100 >

∑nk
i=1

(WCETk−Xk
i)

1
α2

nk

WCETk
× 100

because as Xk
i and WCETk ∈ N≥0 , (WCETk −Xk

i)
This sensitivity to α means that we can adjust the α

parameter in the VWCET to accentuate or diminish the weight
of the fact that the data are close to the WCET, we will use this
property of the VWCET to adapt the assignment of execution
time budgets to the criticality of the task.

Finally, using Proposition 3, we can state that if two
random variable distributions have the same shape, but the first
distribution has larger values than the second one, the VWCET
of the distribution with the largest value is the smallest.

Proposition 3: The VWCET coefficient is sensitive to
location. If Xk and Xj are two random variables with n
occurrences, with Xk = Xj+c where c is a non null constant,
then VWCETα

k < VWCETα
j

Proof 3: Let Xk and Xj be two random variables with n
occurrences, with Xk = Xj+c where c is a non null constant,
we have

VWCETα
k =

∑n
i=1((WCETj+c)−(Xj

i +c))
1
α

n

WCETj
.100.

WCETj

WCETj + c

= VWCETα
j .

WCETj

WCETj + c

We deduce that VWCETα
j = (1 + c

WCETj
)VWCETα

k

Proposition 3 means that the distance with the WCET counts
more for high-value distributions. The VWCET coefficient
incorporates therefore the notion of quotient in addition to
the dispersion of a set of data around the largest value. For
example, the distance between 1 and 5 is the same as between
10001 and 10005, but the quotients between the two are
different (0.2 and 0.99), which is reflected in the fact that
the VWCET of 1 and 5 is larger than the one of 10001 and
10005.

C. Execution time variability parameter

Let τi be a real-time task with Ci a positive integer random
variable that takes its values in the set of execution times of τi.
We make no assumptions on the distribution of Ci. The way
this distribution is computed is out of the scope of this work,
but it can be generated for example using experiments and/or
using estimates of execution times for example in the worst
and/or in the best case. We define the execution time variability
of a real-time task as a statistical dispersion parameter.

Definition 2 (Execution time variability): The execution time
variability of τi is defined by TVi a statistical dispersion
parameter of Ci the execution time random variable of τi.

To illustrate, we compute this parameter for every program
of Fig. 1 in three different cases where the statistical dispersion
parameter is VWCET 1(α = 1) or VWCET 10(α = 10) or
sKw. We see in Table I that the sKw value is close to zero
for quick sort, negative for insert sort and positive for merge
sort. This reflects the shape of the distributions in Fig. 1. The
VWCET value of merge sort is the largest, followed by insert
sort and then quick sort. This order is the same for α = 1 and
α = 10. This means that according to the VWCET parameter,
the merge sort distribution has the least data around the WCET,
which is the same conclusion as for sKw. However, VWCET
considers that the insert sort distribution has less data around
the WCET than quick sort, this is the opposite of the sKw
result and of the histogram shapes of the distributions. This
is due to the fact that, our VWCET parameter also takes into
account the notion of quotient between BCET and WCET. The
quotient for quick sort is 0.989, while that for insert sort is
0.787, which is why the VWCET is smaller for quick sort. We
can also see that as the α increases, the VWCET decreases, as
stated in Proposition 2. This makes the VWCET with α = 10
of merge sort smaller than the VWCET of insert sort with
α = 1. We will see why this is relevant for mixed criticality
systems in Section III.

III. MIXED CRITICALITY BUDGET ASSIGNMENT

In this section, we exploit execution time variability in the
budget assignment of mixed criticality real-time tasks. Our
aim is to find the execution time budgets to assign to tasks

TABLE I: TV parameter of Merge, Quick and Insert sort

Merge sort Quick sort Insert sort
VWCET 1 7.72 0.41 2.15
VWCET 10 0.77 0.04 0.21

sKw 9.493 0.029 -4.173

depending on their criticality with the goal of minimizing the
budget overrun while preserving the schedulability. Jobs are
stopped if they exceed the allocated time budget.

A. Problem statement

Let Γ be a task set of n mixed criticality independent
real-time tasks executed using a scheduling algorithm Sched.
Every task is assigned a criticality by the system designer
among nL possible criticality {L1, . . . , LnL} with Lj more
critical than Lj+1. We do not specify whether the execu-
tion platform is uniprocessor or multiprocessor, however the
scheduling algorithm must be sustainable with respect to task
execution times.

Each task τi ∈ Γ is a tuple (TVi, Budgeti, Li, Di, Ti) with:

• TVi: is the execution time variability parameter of τi.
• Budgeti: is a totally ordered set of possible budgets to

be assigned to τi with p(bi) is the probability that the
budget bi is not exceeded.

• Li ∈ {L1, . . . , LnL}: is the criticality of τi.
• Di ∈ N∗: is the relative deadline of τi.
• Ti ∈ N∗: is the task’s minimum inter-arrival time.

The system designer defines the possible budgets of a task
and specifies their level of confidence, this latter is expressed
in the task model by the probability, pi(b), that a budget b
will not be exceeded. Each set of budgets of a task τi contains
m possible budgets noted {b1,i, . . . bm,i}. These budgets are
arranged in a decreasing order with b1,i = WCETi is the
worst-case execution time of task τi with p(b1,i) = 1. If for
a given criticality the designer does not tolerate any budget
overruns, the designer assigns to tasks of that criticality a
single budget with the highest confidence. However, in this
paper, for clarity of presentation, we assume without loss of
generality, that all tasks have the same number of budgets.

Given a task set Γ of n tasks, a budget assignment for Γ
is a vector B = (B1, B2, . . . , Bn) with ∀i ∈ 1 . . . n,Bi ∈
Budgeti is the execution time budget assigned to τi.

We define ΓB as the task set where every task τBi is defined
by (TVi, Bi, Li, Di, Ti) with TVi, Bi, Li, Di and Ti are the
execution time variability parameter, the execution time, the
criticality, the deadline and the period of τi respectively.

If the probability pi(Bi) that the budget Bi assigned to τi is
respected is equal to 1 we say that the task will not experience
a budget overrun when the budget Bi is assigned to τi.

The score of the task set ΓB of a budget assignment B =
(B1, B2, . . . , Bn) computes the mean probability of no budget
overruns for the tasks in ΓB and is defined as

Score(ΓB) =

∑
i∈{1...n} p(Bi)

n
(3)

The score of criticality L of ΓB is defined as

ScoreL(ΓB) =

∑
i∈{1,...n}, Li=L p(Bi)

n
(4)

Given a task set Γ of n mixed criticality real-time tasks,
the task set Γ is schedulable w.r.t. the budget assignment B =
(B1, . . . , Bn) and the scheduling algorithm Sched if and only
if the task set ΓB is schedulable according to Sched.

Definition 3 (Budget optimal assignment): Given a task set
Γ of n mixed criticality real-time tasks, the budget assignment
B = (B1, . . . , Bn) is an optimal assignment for the scheduling
algorithm Sched if and only if:

1) The task set ΓB is schedulable w.r.t. the budget assign-
ment B = (B1, . . . , Bn)

2) ∀ budget assignment B′ = (B′
1, . . . , B

′
n) with ΓB′

schedulable w.r.t. B′, Score(ΓB′
) ≤ Score(ΓB)

Definition 3 states that a budget assignment is optimal if it
maximizes the mean probability of no budget overrun.

Definition 4 (Budget optimal per criticality assignment):
Given a task set Γ of n mixed criticality real-time tasks, the
budget assignment B = (B1, . . . , Bn) is budget optimal per
criticality for the scheduling algorithm Sched if and only if:

1) The task set ΓB is schedulable w.r.t. the budget assign-
ment B = (B1, . . . , Bn)

2) ∀ budget assignment B′ = (B′
1, . . . , B

′
n) with

ΓB′
schedulable w.r.t. B′, ∀L ∈ {L1, . . . , LnL}

ScoreL(ΓB′
) ≤ ScoreL(ΓB)

Definition 4 states that a budget assignment is budget
optimal per criticality if the assignment maximizes the mean
probability of no budget overrun per criticality.

Definition 5 (Stopped tasks optimal assignment): Given a
task set Γ of n mixed criticality real-time tasks, the budget
assignment B = (B1, . . . , Bn) is a stopped tasks optimal
assignment for the algorithm Sched if and only if:

1) The task set ΓB is schedulable w.r.t. the budget assign-
ment B = (B1, . . . , Bn)

2) ∀ budget assignment B′ = (B′
1, . . . , B

′
n) with ΓB′

schedulable w.r.t. B′, |{τi, i ∈ 1, . . . , n with p(Bi) <
1}| ≤ |{τi, i ∈ 1, . . . , n with p(B′

i) < 1}|
Definition 5 states that a budget assignment is stopped tasks

optimal if the assignment minimizes the total number of tasks
that can be interrupted. In the same way, we can define the
stopped tasks per criticality optimal assignment.

Finding a budget assignment that respects all the properties
is very complex, as the problem to solve is a multi-objective
problem. Even solving only the budget (or stopped) optimal
assignment problem without considering the criticality of the
tasks is complex as all possible assignments have to be
tested and the schedulability test of algorithm Sched has to
be executed O(mn) times. For this reason, we propose a
greedy heuristic, Algorithm 1, where the schedulability test
is executed in the worst-case O(mn) times.

B. General budget assignment heuristic

The main property of the algorithm is that it has a reduced
complexity while aiming to reduce the mean execution time

Algorithm 1: General budget assignment heuristic
Input : Γ = {τi, i ∈ 1..n}, ∇
Output: system is not schedulable or

B = (B1, . . . Bn)

1 ∀τi, Bi = bm,i ;
2 if ΓB not schedulable using algorithm Sched then
3 return system is not schedulable
4 end
5 Set = Γ
6 ∀τi, Bi = b1,i;
7 while ΓB not schedulable using algorithm Sched do
8 i is the index of τi with ∀τj ∈ Set,∇(τi) ≺ ∇(τj)
9 for r ∈ 2..m do

10 Bi = br,i,
11 if ΓB is schedulable using algorithm Sched

then
12 return B = (B1, . . . Bn);
13 end
14 end
15 τi is removed from Set;
16 end
17 return B = (B1, . . . Bn);

overrun probability and the number of possible stopped jobs
while preserving schedulability and taking into account the
criticality. For this, the algorithm reduces task budgets ac-
cording to a given order. It takes a task set Γ and an order
function ∇ with ∇(τi) ≺ ∇(τj) means that τi is ordered
before τj . First, (lines 1-4) if the task set with the minimal
assignment budget is not schedulable then there is no solution.
Then, (line 8) a task is chosen according to its order, and its
budget is reduced until a solution is found or it is no longer
possible to reduce its budget (lines 9-14). If the system is still
not schedulable, we proceed to the next task. The fact that a
task is reduced as much as possible before moving to another
task is motivated by the property of Definition 5. This avoids
reducing the budget for several tasks, when it may be possible
to reduce the budget for fewer tasks. In this algorithm every
task is visited at most once, and all the budgets of all the tasks
are at most tested in a schedulability test at most one time. For
this reason, the scheduling test is executed at the worst-case
O(mn) times, which is a low and linear complexity compared
to the optimal algorithm, which costs O(mn).

However, we still don’t specify how to choose the order
function ∇. An algorithm that finds the optimal order must
find an assignment where there is at most one task that has
not been assigned its minimum or maximum budget. This is
because if two tasks are not at their maximum or minimum
budget, it means that the algorithm has reduced the budget of
one task without having finished reducing the budget of the
previous task, which is not possible. It follows that the number
of schedulability tests to find the assignment with the optimal
order function is O(mn2n−1). This is due to the fact that for
each task that does not have a maximum or minimum budget,

we have to test m possible budgets for 2n−1 (the possible
combinations of minimum and maximum budgets) cases, and
we have to do this for each task.

Complexity decreases relative to O(mn) but remains high.
Another drawback is that task criticality is not taken into
account in this assignment method, as it does not check
whether high criticality tasks have higher scores than lower
criticality tasks. Therefore, we need to find a method to
define the order ∇ according to a constant criterion, with the
objective of maximizing the mean probability of no budget
overruns and taking into account the criticality of the tasks.

C. Coefficient of variation to the maximum heuristic

In this section, we present the VWCET heuristic equivalent
to Algorithm 1 with the function ∇ is defined by:

∇(τi) ≺ ∇(τj) iff TVi > TVj with
TVi = VWCETαi

i and TVj = VWCET
αj

j

(5)

The idea is to start reducing the budget of tasks for which
the distribution of execution times is the least shifted towards
the WCET. By doing this, we aim to avoid as far as possible
the tasks from not finishing within the budget allocated to them
during execution. To do that, tasks are ordered in Algorithm
1 according to their time variability parameter where the time
variability parameter is the VWCET. As explained in Section
II-B, the larger the VWCET, the closer the execution times are
to the WCET. For example, if α=1, we showed in Proposition
1 that the smaller the VWCET, the closer the data is to
the WCET on average. However, we want to accept fewer
overruns, for more critical tasks, even if a critical task is shifted
less to the WCET. To account for task criticality, we assign
the variability parameter α using the following rule

∀τi, τj ∈ Γ if Li < Lj then αi > αj (6)

The idea of this rule comes from Proposition 2, which states
that the larger the α, the smaller the VWCET. Thus, to be able
to decrease the budget of a task before a more critical one,
we assign it a smaller α. The VWCET of the less critical task
can therefore be greater, and the task can be moved up in the
order of Algorithm 1.

IV. SIMULATION-BASED EVALUATION

We present simulation-based experiments using uniproces-
sor Earliest Deadline First (EDF) algorithm. We generate tasks
sets using unimodal and bimodal distributions of execution
time. For every type of distribution, we generate 1000 task sets
composed of 20 tasks. For each task set we randomly generate
a maximal utilization ranging from 1 to 1.4 using [12]. The
minimal random task utilizations were derived by subtracting
a percentage ranging between 5% and 60% from the maximum
utilizations. We generate periods using a uniform distribution
in the range [100, 502] and a deadline using a uniform dis-
tribution in the range [Ti/2, Ti]. We discard task sets with∑

i=1...n
BCETi

Ti
> 1, and task sets which do not produce a

solution with at least one algorithm in the list of the algorithms

(a) Boxplot of the VWCET scores (b) Possibly stopped tasks

Fig. 2: VWCET heuristic results per criticality for different α

that we compare. For each task τi, the Budgeti is de-
fined as {WCETi, 97th, 95th, 90th, 80th, 70th, 60th, 50th}
percentiles respectively, derived from the task’s execution time
distribution. For unimodal distributions we use a truncated
normal distribution, with a mean as a uniform value ranging
from BCET to the WCET of the task and a random stan-
dard deviation proportional to the span of execution times
(WCET − BCET)/(x) where x follows a uniform dis-
tribution in the range [2, 40]. For bimodal distributions we
generate two unimodal distributions and concatenate them.
Task criticalities ranging from 1 to 4 were randomly assigned
tasks with 5 tasks per criticality in a task set.

A. Evaluation tests

We test the VWCET heuristic using the task sets with
unimodal distributions of execution time in three cases: (1)
VWCET0: with variability parameter α = 1 for all tasks (2)
VWCET1: with α1 = 2, α2 = 1, α3 = 0.5, α4 = 0.25 where
αi is the variability parameter for tasks of criticality Li. (3)
VWCET2: with α1 = 10, α2 = 1, α3 = 0.1, α4 = 0.01 where
αi is the variability parameter for tasks of criticality Li.

In VWCET1 and VWCET2, we assign the parameter α s.t:
• α ≥ 1 for the most critical tasks to reduce the impact of

distance from the WCET for the most critical tasks.
• The higher the criticality of the task, the higher the

assigned parameter α as stated in Eq. 5.
We compare the VWCET heuristic with Algorithm 1 with

different ∇ order functions: (1) Skewness: ordered by skew-
ness in descending sequence. (2) Criticality: ordered by crit-
icality in ascending sequence. For the tasks with the same
criticality, tasks are ordered according to their VWCET with
α = 1. (3) Periods: ordered by periods in ascending sequence.
(4) Deadlines: ordered by deadlines in ascending sequence.
(5) Random: ordered randomly.

B. Results and discussion

1) Importance of α parameter: We assess how the VWCET
heuristic performs under varying α parameter. The boxplot
of Fig. 2a shows the distribution of the score of the 1000
task sets per criticality according to VWCET0, VWCET1
and VWCET2. We observe that the scores per criticality for
α = 1 across the 4 criticalities are fairly equal suggesting
that no criticality is given preference over another. This is

a predictable result, since VWCET0 starts by reducing the
budget of tasks that are least shifted towards the WCET,
regardless of the task’s criticality.

For VWCET1 and VWCET2 we notice a pattern where
the scores of the first criticality exceed those of the second
criticality followed by the scores of the 3rd criticality followed
at the end by the scores of the 4th criticality. We conclude
that the higher the criticality of the task, the less it can exhibit
a budget overrun. We have then established a criticality order
score by adjusting the α parameter. We also observe that the
mean probability of task overrun of VWCET1 per criticality
level is better than the VWCET2 in terms of tightness of in-
terquartile range suggesting less variability in scores especially
for the 4th criticality tasks where we find that they have a 10%
more probability of experiencing less budget overrun.

Fig. 2b illustrates the number of tasks that can possibly be
stopped per criticality if they exhibit a budget overrun, which
means their allocated budget is less than their WCET. We
observe that the VWCET0 heuristic yields the same average
number of possibly stopped tasks per criticality, we also notice
a pattern of increasing potential number of tasks that can
possibly be stopped as we decrease in criticality for VWCET1
and VWCET2, and that VWCET1 outperforms VWCET2
especially for criticality 3 and 4 with an average of one less
task. When comparing VWCET2 and VWCET1 we notice that
VWCET2 performed worse for low criticality tasks but better
for high criticality ones. Based on the results, assigning differ-
ent variability parameters to different criticalities establishes a
hierarchy in task selection, thereby trying to optimize budget
allocation per criticality. This approach enables us to prioritize
tasks more effectively, emphasizing those with low criticality
for budget reduction, thus enhancing overall budget efficiency
per criticality. The system designer should assign larger α ≥ 1
to tasks of high criticality and lower α < 1 for low criticality
tasks. And depending on the scores that he wants to obtain
for the highest criticality tasks w.r.t to the lowest ones, he can
define the appropriate distance between the different α.

2) Relevance of the VWCET: We see in Fig. 3a that setting
the order in Algorithm 1 using the period, the deadline or
randomly leads to the lowest scores. Using a time variability
parameter increases the scores with a slightly better score
for VWCET0, similar to what we observed in the previous
section, because criticalities are not taken into account. When
using the criticality of the task as an order, the scores are
more dispersed with a lower average score in comparison to
the VWCET and skewness heuristics. We see that VWCET1
succeeds in establishing a criticality order with scores of the
1st criticality exceeding those of the 2nd followed by the 3rd
and 4th criticality contrary to distribution-agnostic heuristics.
Criticality order also produces the same trend between score
results of criticalities, however we notice that its interquartile
ranges are bigger especially for criticality 2 and 3. Criticality
order starts with the 4th criticality tasks hence their 57% mean
probability of no task budget overrun compared to 78% for
VWCET1. In Fig. 3b we notice that on average the VWCET1
heuristic performs better than the criticality heuristic, the

(a) Boxplot of heuristic scores (b) Possibly stopped tasks

Fig. 3: Heuristic results per criticality with different ∇

Fig. 4: Comparison w.r.t the type of distribution

results show that the VWCET1 heuristic tends to halt fewer
tasks of the 2nd, 3rd and 4th criticality tasks with an average of
2 tasks for the 4th criticality and 1 task for the 3rd criticality.

On the basis of the results, we can deduce that it is relevant
to use the VWCET statistical parameter. This parameter shows
good results compared with other heuristics by taking into
account the shape of the distribution of execution times, the
quotient between the smallest and largest execution time and
also the criticality of the task while using a single value.

3) Sensitivity to the type of distribution: We compare the
sensitivity of variability parameters to distribution types. Thus
we do not take criticality into account and compare sKw
with VWCET0 to focus only on the type of distribution. We
use unimodal and bimodal distributions. We see in Fig. 4
that for both distributions, VWCET0 performs better than the
skewness heuristic, although there is a small decrease in the
average performance for both heuristics under the bimodal
distributions, we also notice that the interquartile range of
the skewness heuristic under bimodal distributions increases
compared to the unimodal distributions suggesting an increase
in lower score results. Skewness performs worse for bimodal
distributions due to the nature of the parameter whereas in
unimodal distributions there is a clear mode value of the
data, which is not the case for bimodal distributions with the
presence of two distinct modes. We conclude that VWCET is
less sensitive to the type of distribution than sKw, however
further studies are needed on other types of distributions.

Fig. 5: Number of stopped jobs per algorithm and criticality

V. BENCHMARK-BASED EVALUATION

We perform experiments on the Zynq ZCU104 platform,
featuring a quad-core Arm Cortex A53. We use FreeRTOS
[13] with ESFree [14] as the scheduling library in order to in-
corporate timing features that are not proposed by FreeRTOS.
We generate a set of execution times by executing 6 programs
from TACLeBench [15] and Mälardalen [3] benchmarks under
the following configuration: (1) We consider asymmetric mul-
tiprocessing with FreeRTOS. (2) We do not vary the inputs
of the programs. (3) Caches are disabled. (4) Cores 1, 2
and 3 execute [16]. (5) Core 4 executes the 6 programs. (6)
The scheduling algorithm is preemptive rate monotonic. A
response time analysis [17] is used as schedulability test.

TABLE II: Program’s parameters

Prog epic fft iSort ludcmp matrix sha
T 450 430 70 440 677 460
D 152 18 10 52 390 247
L 2 2 2 1 1 1

Table II gives for every program its deadline, pe-
riod and criticality. For each program i, the budgets
are {WCETi, 97th, 95th, 90th, 80th, 70th, 60th, 50th} per-
centiles respectively. Using the generated execution times we
apply the VWCET heuristic with α1 = 1, α2 = 0.5 where
αi is the variability parameter for tasks of criticality Li. We
execute the 6 programs during 10 minutes. If a job exhibits
an overrun, it is stopped. We count for every criticality Li

the number of stopped jobs of tasks. We compare this number
to the number obtained using sKw and Criticality heuristics.
We also compare to, Opt the optimal assignment algorithm
that computes the assignment that maximizes the score and
to OrderOpt the algorithm that computes the assignment with
the optimal order in Algorithm 1. Opt and OrderOpt are not
optimal w.r.t to the criticality, and their complexity is O(mn)
and O(mn2n−1) respectively, for these reasons we did not test
them in the simulations-based evaluation where m = 8 and
n = 20. We see in Fig. 5 that the VWCET heuristic stops less
jobs for tasks of criticality L1 than for criticality L2 whereas
all other algorithms do the opposite. In addition, it stops the
least amount of jobs for tasks of criticality L1 compared to
the other heuristics, except for the Opt algorithm, VWCET
stops 12% of the activated jobs of criticality L1 compared
to 33.6%, 25.5%, 23.9% for Criticality-order, skewness, Or-
derOpt heuristics. Opt stopped 6% of the L1 criticality tasks

but it does not respect the order of criticality, and is very
complex, and suffers from a scalability problem.

VI. RELATED WORK

To our knowledge, our work is the first to propose the use
of statistical parameters in real-time task models. Statistical
dispersion parameters have been used in real-time systems
in [18], [19] but only to compare different execution time
distributions of different components of a system.

Decreasing the computation times of low criticality tasks
when the system is in high criticality has been considered in
[20]–[22]. In these papers, the budget of low criticality tasks
is smaller when the system is in high criticality than their
budget when the system is in low criticality. In our model,
budgets are set offline and there are no mode changes during
execution, the advantage of our approach is that the budgets
have a practical significance and the only monitoring we need
to perform during execution is to stop jobs if they do not
terminate at their assigned budget. We also consider more
than two criticalities, compared to the cited papers. Moreover,
we are not concerned in this work by the scheduling strategy
but by the execution time budget computation problem, but
one can consider our computed budget as the execution time
budget used in the normal execution mode and the overrun
of the budget as a mode switch and use a classical mixed
criticality scheduling algorithm. The difference between our
approach and the approaches using probabilistic task models
for mixed criticality systems [23]–[25] is first that our goal is
not to compute the deadlines miss probabilities, but to compute
the budgets to assign to tasks so that deadlines are always met.
Moreover, we do not use the entire distribution, but only one
parameter, this decreases the complexity. Finally, we make no
hypothesis concerning the distribution of execution times.

The closest work is [26], their goal is to minimize the
number of mode switches from low to high criticality while
preserving EDF-VD [27] schedulability where low criticality
tasks are stopped in a high criticality mode. They use the
Chebyshev theorem to model the probability of mode switch
and solve the problem using a genetic algorithm. In our
approach, less critical tasks are stopped only if they do not
respect their allocated budget as we consider static scheduling
and we have more than two criticalities. Another difference,
is that our approach is agnostic to the scheduling algorithm
with the condition of sustainability w.r.t execution times.

VII. CONCLUSION

We introduce a statistical dispersion parameter to estimate
the execution time variability of real-time tasks. We proposed
a linear time complexity heuristic w.r.t the number of schedu-
lability tests to compute the execution time budget to be
allocated to tasks in a mixed criticality system. The goal is to
minimize the number of execution time overruns. We showed
that our approach provides good results in terms of number of
possible overruns w.r.t the criticality of the task. We plan to
apply the approach to mixed criticality algorithms where task
budgets are adjusted during the execution.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE Real-Time
Systems Symposium (RTSS 2007), Tucson, Arizona, USA, pp. 239–243.

[2] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, pp. 82:1–82:37, 2018.

[3] J. Gustafsson et al., “The Mälardalen WCET benchmarks – past, present
and future,” B. Lisper, Ed. Belgium: OCG, Jul. 2010, pp. 137–147.

[4] C. J. Hughes et al., “Variability in the execution of multimedia appli-
cations and implications for architecture,” SIGARCH Comput. Archit.
News, vol. 29, no. 2, p. 254–265, may 2001.

[5] W. Koch et al., “Neuroflight: Next generation flight control firmware,”
arXiv preprint arXiv:1901.06553, 2019.

[6] V. Nélis et al., “The Variability of Application Execution Times on
a Multi-Core Platform,” in Workshop on Worst-Case Execution Time
Analysis (WCET 2016), M. Schoeberl, Ed., vol. 55, Dagstuhl, Germany.

[7] J. Bin, “Controlling execution time variability using cots for safety-
critical systems,” Thesis, Université Paris Sud - Paris XI, Jul. 2014.

[8] D. R. Cox et al., “The statistical analysis of series of events,” 1966.
[9] P. v. Hippel, Skewness. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 1340–1342.
[10] National Institute of Standards and Technology, Measures of Skewness

and Kurtosis.
[11] M. A. Khelassi et al., “Execution time budget assignment for mixed

criticality systems,” in 10th International Workshop on Mixed Criticality
Systems at the Real Time Systems Symposium (RTSS 2023), 2023.

[12] P. Emberson et al., “Techniques for the synthesis of multiprocessor
tasksets,” in 1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems (WATERS 2010), pp. 6–11.

[13] R. Barry et al., “Freertos,” Internet, Oct, vol. 4, 2008.
[14] R. Kase, “Efficient scheduling library for freertos,” 2016. [Online].

Available: https://api.semanticscholar.org/CorpusID:64508990
[15] H. Falk et al., “Taclebench: A benchmark collection to support worst-

case execution time research,” in Workshop on Worst-Case Execution
Time Analysis, (WCET), 2016, M. Schoeberl, Ed., vol. 55, pp. 2:1–2:10.

[16] M. Bechtel et al., “Denial-of-service attacks on shared cache in multi-
core: Analysis and prevention,” in 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2019.

[17] N. Audsley et al., “Applying new scheduling theory to static priority
pre-emptive scheduling,” Software engineering journal, vol. 8, no. 5,
pp. 284–292, 1993.

[18] M. Alcon et al., “Timing of autonomous driving software: Problem
analysis and prospects for future solutions,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020, pp. 267–280.

[19] F. Reghenzani et al., “Timing predictability in high-performance com-
puting with probabilistic real-time,” IEEE Access, vol. 8, pp. 208 566–
208 582, 2020.

[20] A. Burns et al., “Towards a more practical model for mixed criticality
systems,” in Proc. WMC, RTSS, 2013, pp. 1–6.

[21] S. K. Baruah et al., “Scheduling mixed-criticality systems to guarantee
some service under all non-erroneous behaviors,” in Euromicro Confer-
ence on Real-Time Systems, (ECRTS) 2016, France, pp. 131–138.

[22] X. Gu et al., “Dynamic budget management with service guarantees
for mixed-criticality systems,” in IEEE Real-Time Systems Symposium,
(RTSS), Porto, Portugal, 2016, pp. 47–56.

[23] J. Singh et al., “Mixed criticality scheduling of probabilistic real-time
systems,” in Dependable Software Engineering. Theories, Tools, and
Applications - 5th International Symposium, (SETTA) 2019, Shanghai,
China, 2019, N. Guan et al., Eds., vol. 11951, pp. 89–105.

[24] Y. Abdeddaı̈m et al., “Probabilistic schedulability analysis for fixed pri-
ority mixed criticality real-time systems,” in Design, Automation & Test
in Europe Conference & Exhibition, (DATE), Lausanne, Switzerland,
2017, D. Atienza et al., Eds., pp. 596–601.

[25] S. Draskovic et al., “Schedulability of probabilistic mixed-criticality
systems,” Real Time Syst., vol. 57, no. 4, pp. 397–442, 2021.

[26] B. Ranjbar et al., “Improving the timing behaviour of mixed-criticality
systems using chebyshev’s theorem,” in 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 264–269.

[27] S. Baruah et al., “The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems,” in 2012 24th Eu-
romicro Conference on Real-Time Systems. IEEE, 2012, pp. 145–154.

