N

N

Deep Neural Networks Abstraction using An Interval
Weights Based Approach
Fateh Boudardara, Abderraouf Boussif, Mohamed Ghazel, Pierre-Jean Meyer

» To cite this version:

Fateh Boudardara, Abderraouf Boussif, Mohamed Ghazel, Pierre-Jean Meyer. Deep Neural Networks
Abstraction using An Interval Weights Based Approach. Confiance.ai Days 2022, Oct 2022, Gif-sur-
Yvette, France. hal-04666949

HAL Id: hal-04666949
https://hal.science/hal-04666949

Submitted on 2 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04666949
https://hal.archives-ouvertes.fr

Deep Neural Networks Abstraction using An Interval Weights Based
Approach

Fateh Boudardara !, Abderraouf Boussif!, Mohamed Ghazel?, and Pierre-Jean Meyer?

!Technological Research Institute Railenium, Valenciennes, France
2Univ Gustave Eiffel, COSYS-ESTAS, Villeneuve d’Ascq, France

Abstract

In this work, we present a Neural Network (NN) abstraction approach to reduce the state-space (number of
nodes) of NN towards solving the non-scalability of NN formal verification approaches. The main idea consists
in merging neurons on the NN layers in order to build an abstract model that over-approximates the original
one. Concretely, the outgoing weights of the abstract network are computed as the sum of the absolute value of
the weights on the original one, while the incoming weights are intervals determined based on the signs of the
outgoing and the incoming weights of the original model.

1 Introduction

Due to the tremendous success of deep neural networks (DNNs), they are increasingly deployed in safety-critical
systems, such as autonomous cars and trains. However, these systems must meet some specific safety requirements
before their deployment. Therefore, many concerns about the safety of DNNs have been raised recently. In fact,
recent studies demonstrated the vulnerability of DNNs [1], thus the domain of neural networks verification are
becoming more popular and attractive. Several formal verification methods are adjusted and applied to check some
properties on DNNs, such as safety and robustness. Originally, the verification problem of DNNs was transformed to
an optimization problem and solved using Mixed-Integer Linear Programming and SAT/SMT solvers [2, 3]. Many
other methods were developed for instance abstract interpretation [4], reachability [5] and others.

Unfortunately, the developed techniques cannot scale to verify large models because of the high complexity of
DNNSs. Model reduction methods that are considered as abstraction methods and consist of reducing the size of the
model while preserving some relevant behaviors [6, 7, 8], are seen as a promising remedy to the problem of scalability
of the existing NN verification methods. A model reduction approach ensures that whenever the property holds on
the reduced model, it must hold on the original. In this paper we present a method that is based on converting the
original NN to an interval NN (INN). The reduced model is constructed by taking the interval hull of the incoming
weights and the sum of the outgoing weights in such a way that the outputs of the original network are always
included in those of the abstract one. The presented method supports both Tanh-NN and Relu-NN. A succinct
presentation of the proposed approach and the preliminary obtained results are presented here below; further details
about the approach and the experiments are presented in [9].

A neural network is a sequence of connected layers. The first layer is the input layer, followed by one or more
hidden layers and an output layer. Each neuron s;; in S; ! of a hidden layer receives data from its predecessor
layer, calculate its activated value using Equation 1, and forward the result to its successor layer.

v(sig) = al Y wls,si) x v(s) +bs,,) (1)

SES;—1

In Equation 1, w(s, s;;) is the weight of the edge connecting s € S;_1 to s;; € S, bs,; is the bias of the node s;5, and
« is a predefined activation function. Our method supports Relu-NN (a(z) = Relu(z) = maz(0,z)) and Tanh-NN

(a(x) = Tanh(z) = ij;:;).

Ed

Sin

‘@ [sign(c)a, sign(d)b)
Y YV o |CI+|dl*<:E::>
} s —
*(\sz/ @ -('\./ :

(a) The original network (b) The abstract network

Figure 1: An example explaining the main idea of the proposed approach.

2 Proposed model reduction method

Model reduction for NNs, as a sub-category of NN abstraction, is a concept of reducing the size of NNs by merging
some neurons while guaranteeing that the original model N satisfies the property P whenever this property is
satisfied by the abstract model N, i.e., NP = N |= P.

The broad idea of our method is to merge neurons of hidden (intermediate) layers and compute the incoming
weights of the abstract node as the convex interval hull of its incoming weights before abstraction multiplied by the
sign of its outgoing weights. On the other hand, the outgoing weights of the abstract node are computed as the
sum of the absolute value of its corresponding outgoing weights on the original network. Figure 1 illustrates the
main idea approach. Notice that sign is a function defined as follow: sign : R — {—1,1}

i >
sign(z) = { L ife=20 (2

~

1, otherwise

2.1 Model reduction for NN with Tanh activation function

1
|
|
| .
| a\
! \C\\)(\
o |cal + 1d2l i‘.

O

I

I

I

I
L |

!

liy Lo lisq

=/ N
(a) A sub neural network containing three hidden lay- (b) The sub neural network after abstraction. Here
ers, we want to merge the two nodes of layer ;. u?fc,u?}: : 1 < k < m are the weights calculated using

formula (3).

Figure 2: An illustration of our abstraction method applied on a hidden layer ;. The model on the right is the abstraction
of the one on the left, where the node § is obtained upon merging s;;, and siq.

For simplicity and without lose of generality, let consider the network in Figure 2a, and assume that we want to
merge the two nodes s;;, and s;;,. The obtained abstract network is presented in Figure 2b, where 5 is abstract node
after merging s;;, and s;,. The incoming weights of 3 have the form of intervals and they are calculated as follows:

@ = min {sign(c;) ax, sign(d;) by}
1<j<n (3)
Wi = max {sign(c;) ai, sign(d;) by}
1<j<n
and its outgoing weights are the sum of the absolute value of the corresponding outgoing weights of s, and s;p.
Algorithm 1 summarizes the essential steps of the model reduction for neural networks with Tanh (Tanh-NN).

1S, is the set of neurons of layer I;, and si; € S; is the jt" neuron of S;

Algorithm 1 Proposed model reduction procedure for Tanh-NN

. create a node §

. select s;, and s;q

. calculate the incoming weights to § using Equation 3

: calculate the outgoing weights: (8, s;41,5) = |¢j| + |d;]
: replace s;, and s;q with §

U W N

2.2 Model reduction for NN with Relu activation function

The Relu function is a piece-wise linear function, it eliminates the negative values (set them to zero) and returns only
positive values. This particularity prevents the application of the model reduction method present in Algorithm 1
on Relu-NNs. Algorithm 2 depicts the update of Algorithm 1 to support Relu-NNs, where cj (resp. d;*) presented
in line 4 in Algorithm 2 is the outgoing weight ¢; (resp. d;) such that sign(c;*) ar = 131}3ﬂ{5ign(q) ay} (resp.

sign(dj*) b, = 1I<nji£1n{$ign(dj) br}).

Algorithm 2 Proposed model reduction procedure for Relu-NN

. create a node §

. select s;, and ;4

: for outgoing weight of s;, and s;, do

calculate ¢} and dj

: end for

: calculate the incoming weights to § using Algorithm 3
: calculate the outgoing weights: (8, s;41,5) = |¢j| + |d;]
: replace s;, and s;q by §

Algorithm 3 Computation of the incoming weights for Relu-NN

1: if sign(ag) # sign(cj) or sign(by) # sign(d;) then

2: Use Equation 3

3: else if sign(ay) = sign(cj) and sign(by) = sign(d;) then
4: Use Equation 4

5: end if

Wy = max {sign(c;) ax, sign(d;) by} (4)
1<j<n
Figure 3 shows an example of merging two neurons s, and sg of the original network presented in Figure 3a. In
the case the network uses the Tanh activation function, its abstract network is the network in Figure 3b obtained
by applying Algorithm 1. If we suppose that the original network (Figure 3a) is a Relu-NN, Algorithm 2 is applied
and the corresponding abstract network is presented in Figure 3c.

23] 3 [-3.2] 3
¢ 3l 54 3 54
<./ <7 <7
(a) The original network (b) The abstract model for Tanh- (c) The abstract model for Relu-
NN NN

Figure 3: An example of the abstraction method applied on two neurons sy and sz of a hidden layer [;.

We implemented Algorithm 1 and 2 as a Python framework and we conducted a series of experiments on the
ACAS Xu benchmark [2]. For the output range computation we considered the property ¢5 as defined in [2]. We

examined the performance of our approach by varying the size of layers of the abstract network (5, 15,25, 35,45).
The selection of neurons to be merged is performed randomly, and for each abstract network we calculated the
abstraction time, the output range using Interval Bound Propagation (IBP) algorithm [5] and IBP computation
time. We compared the average output range and the IBP computation time over 50 random runs for each abstract
model with the results obtained on the original model as shown in Figure 4a and 4b.

1e10 Average of output range IBP Computation time
—— Networks N; WG| T ———— m—— e
204 —— Network N
140 4 A
g
120
15
L
g g 100 -
=
= w
2 104 E 80
g F
il
60
_
0.5 1
40
—— Networks N;
20 —
0.0 Network N
T T T T T T T T - : : : - - - - - -
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of nodes/layer Number of nodes/layer
(a) Output range (b) IBP computation time

Figure 4: Comparison of the output range and the IBP computation time on the original network and different
abstract networks.

The obtained results showed that there is a trade-off between the total number of abstract nodes and the
precision of the obtained abstract model. Having more nodes in the abstract network increases its precision, and
also its IBP computation time. Notice that IBP is one of the fastest verification methods, and yet its computation
time is significantly higher compared to the abstraction time of our approach (its is not provided to shortage of
space and it will be presented on the poster).

References

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint, 2013.

[2] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. In International conference on computer aided verification, pages 97-117. Springer, 2017.

[3] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for deep feedforward
neural networks. In Proc. 10th NASA Formal Methods, pages 121-138, 2018.

[4] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. Ai2:
Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 3-18. IEEE, 2018.

[5] Weiming Xiang, Hoang-Dung Tran, Xiaodong Yang, and Taylor T Johnson. Reachable set estimation for neural net-
work control systems: A simulation-guided approach. IEEE Transactions on Neural Networks and Learning Systems,
32(5):1821-1830, 2020.

[6] Pavithra Prabhakar and Zahra Rahimi Afzal. Abstraction based output range analysis for neural networks. arXiv
preprint, 2020.

[7] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. An abstraction-based framework for neural network verifica-
tion. In International Conference on Computer Aided Verification, pages 43-65. Springer, 2020.

[8] Pranav Ashok, Vahid Hashemi, Jan Kfetinsky, and Stefanie Mohr. Deepabstract: Neural network abstraction for accel-
erating verification. In International Symposium on Automated Technology for Verification and Analysis, pages 92-107.
Springer, 2020.

[9] Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed Ghazel. Interval weight-based abstraction for
neural network verification. In Fifth International Workshop on Artificial Intelligence Safety Engineering (Accepted),
pages 1-16, 2022.

