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Abstract9

The mathematical formulation of sign-changing problems involves a linear second-order partial dif-10

ferential equation in the divergence form, where the coefficient can assume positive and negative values11

in different subdomains. These problems find their physical background in negative-index metamateri-12

als, either as inclusions embedded into common materials as the matrix or vice versa. In this paper,13

we propose a numerical method based on the constraint energy minimizing generalized multiscale finite14

element method (CEM-GMsFEM) specifically designed for sign-changing problems. The construction15

of auxiliary spaces in the original CEM-GMsFEM is tailored to accommodate the sign-changing setting.16

The numerical results demonstrate the effectiveness of the proposed method in handling sophisticated17

coefficient profiles and the robustness of coefficient contrast ratios. Under several technical assumptions18

and by applying the T-coercivity theory, we establish the inf-sup stability and provide an a priori error19

estimate for the proposed method.20

1 Introduction21

Metamaterials greatly expand the design space of materials by offering unconventional properties that are22

not found in nature. Typically, metamaterials are created by assembling common materials periodically.23

The exotic characteristics of metamaterials manifest at the effective medium level, which can strikingly24

differ from the intrinsic properties of the constituent materials. Some notable examples include auxetics,25

exhibiting a negative Poisson’s ratio [2, 38]; pentamode materials, characterized by a vanishing shear modulus26

[42, 37]; and negative-index materials, displaying negative electric and magnetic permeability [48, 46]. From27

a mathematical perspective, the emergence of metamaterials prompts a reconsideration of the well-posedness28

theory of Partial Differential Equations (PDEs), as the coefficients in PDEs may fall outside the conventional29

range for coercivity. In this context, we focus on the so-called sign-changing problem, which is rooted in the30

background that negative-index materials are embedded into a common medium, or vice versa.31

The mathematical nature of the sign-changing problem is a linear second-order PDE in the divergence32

form, where the coefficient allows both positive and negative values in different subdomains, with a discon-33

tinuity across the interface between the subdomains. The well-posedness of the model problem is generally34

questionable due to the absence of uniform strict positivity of the coefficient. To address this, T-coercivity35
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was introduced by Bonnet-BenDhia, Ciarlet Jr., and Zwölf in their work [13], providing a systematic ap-36

proach to study the well-posedness of the model problem. The key idea behind T-coercivity is to devise a37

bijective map T that enables the inf-sup (Banach–Něcas–Babuška) condition to hold trivially. The construc-38

tion of T only relies on the geometric information of interfaces that separate the subdomains with different39

signs of the coefficient. The main statement of the T-coercivity theory is that if the contrast ratio between40

the negative and positive coefficients is sufficiently large, then the model problem becomes well-posed. In41

[10], the sharpest condition of the contrast ratio ensuring well-posedness on certain simple interface prob-42

lems was derived. Further extensions of the T-coercivity theory encompass Helmholtz-like problems [24],43

time-harmonic Maxwell equations [12, 11], eigenvalue problems [18], and mixed problems [6].44

Although analytical solutions offer us a profound mathematical insight into sign-changing problems,45

numerical methods are indispensable for practical applications. The T-coercivity theory justifies the well-46

posedness of the PDEmodels, which also guides the design of suitable approximations of the original problem.47

An intriguing aspect lies in the compatibility between T at the continuous level and the discretization level.48

As an immediate result, it is emphasized in [20] that, to obtain an optimal convergence rate, meshes near49

flat interfaces should be symmetric. Later, a new treatment at the corners of interfaces was proposed in [9],50

leading to meshing rules for an arbitrary polygonal interface. Considering the low regularity of the solution51

due to the heterogeneous coefficient, a posteriori error analysis was conducted in [44] and in [25], which52

provides a reliable error estimator for adaptive mesh refinement routines [47]. Beyond classic continuous53

Galerkin methods, Chung and Ciarlet Jr. introduced a staggered discontinuous Galerkin method in [21],54

accompanied by stability and convergence analysis.55

The nature of heterogeneous coefficients in sign-changing problems motivates the application of multi-56

scale computational methods. Pioneered by Hou and Wu in [32], the methodology of incorporating model57

information into the construction of finite element spaces, coined as MsFEMs, has garnered significant58

attention. As a discretization scheme, an advantage of MsFEMs is that the meshes are not required to59

resolve the heterogeneity of the coefficient, although the implementation of MsFEMs indeed relies on a pair60

of nested meshes. To relieve the rigidity from boundary conditions in constructing multiscale bases, the61

oversampling technique is introduced in [32] and subsequently proved to improve convergence rates (ref.62

[30, 29]). The accuracy of MsFEMs, to some extent, may deteriorate when the coefficient violates the63

scale-separation assumption, as evidenced by the convergence theories in [33, 51, 43]. To address this issue,64

the Generalized Multiscale Finite Element Method (GMsFEM) was proposed by Efendiev, Galvis, and Hou65

in [28]. GMsFEMs leverage spectral decomposition to perform dimension reduction for the online space,66

exhibiting superior performance when dealing with high-contrast and channel-like coefficient profiles [23].67

The first construction of multiscale bases capable of achieving the theoretically best approximation property68

for general L∞ coefficients was credited to Målqvist and Peterseim in their celebrating work [40]. This69

construction, known as Localized Orthogonal Decomposition (LOD), utilizes quasi-interpolation operators70

to decompose the solution into macroscopic and microscopic components [3, 41]. The combination of GMs-71

FEMs and LOD led to the development of a CEM-GMsFEM by Chung, Efendiev, and Leung in [22], where72

“CEM” is the acronym for “Constraint Energy Minimizing”. The novelty of CEM-GMsFEMs resides in73

replacing quasi-interpolation operators in LOD with element-wise eigenspace projections. Moreover, CEM-74

GMsFEMs introduce a relaxed version of the energy minimization problems to construct multiscale bases,75

which eliminates the necessity of solving saddle-point linear systems. Our intention here is not to present76

a comprehensive review of multiscale computational methods from the community, and hence, notable ad-77

vancements such as heterogeneous multiscale methods [27, 1], generalized finite element methods [4, 5, 39],78

and variational multiscale methods [34, 35] are not covered.79

This article serves as an application of the CEM-GMsFEM to sign-changing problems. While the T-80

coercivity theory guarantees the well-posedness of the model problem, the heterogeneity of the coefficient81

leads to a generally low regularity of the solution, resulting in suboptimal convergence rates when using82

standard finite element methods. The CEM-GMsFEM, being a multiscale computational method, is specif-83

ically designed to handle the low regularity of the solution, and the construction of multiscale bases in this84

paper is tailored to the sign-changing setting. For instance, the auxiliary space forms a core module in the85

original CEM-GMsFEM and is created by solving generalized eigenvalue problems, where the coefficient86

enters bilinear forms on both sides. However, this approach is not suitable for sign-changing problems, as87
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the eigenvalues can be negative, rendering the generalized eigenvalue problems ill-defined. To ensure the88

positivity of the eigenvalues and the approximation ability of the auxiliary space, we modify the generalized89

eigenvalue problems by replacing the coefficient with its absolute value counterpart. It is worth noting90

that in building multiscale bases, we adhere to the relaxed version of the energy minimization problems91

in this paper, which offers implementation advantages. We conduct numerical experiments to validate the92

performance of the proposed method, emphasizing that coarse meshes need not align with the sign-changing93

interfaces. Moreover, we demonstrate that contrast robustness, which is an important feature of the original94

CEM-GMsFEM, is inherited in the proposed method. Under several assumptions, we prove the existence of95

multiscale bases in the T-coercivity framework, the exponential decay property for the oversampling layers,96

and the inf-sup stability of the online space. Moreover, we can provide an apriori estimate for the proposed97

method, indicating that errors can be bounded in terms of coarse mesh sizes and the number of oversampling98

layers, while being independent of the regularity of the solution.99

Currently, to the best of our knowledge, efforts to apply multiscale computational methods to sign-100

changing problems are scarce. An exception can be found in the work by Chaumont-Frelet and Verfürth in101

[19], where they employed the LOD framework. Note that contrast ratios play a significant role in the T-102

coercivity theory for assessing the well-posedness of the model problem. In comparison, the proposed method103

presented in this paper is more general, as it can handle a wider range of coefficient profiles, including those104

with high contrast ratios.105

This paper is organized as follows. In Section 2, we introduce the model problem and present the T-106

coercivity theory. The construction of multiscale bases in the proposed method is detailed in Section 3. To107

validate the performance of the proposed method, Section 4 presents numerical experiments conducted on108

four different models. All theoretical analysis for the proposed method is gathered in Section 5. Finally, in109

Section 6, we conclude the paper.110

2 Preliminaries111

For simplicity, we consider a 2D Lipschitz domain denoted as Ω, which can be divided into two non-112

overlapping subdomains Ω+ and Ω− with Γ as the interfaces. The extension of the following discussion to113

3D is straightforward. Let σ belong to L∞(Ω) such that the essential infimum of σ over Ω+ is greater than114

zero (ess infx∈Ω+ σ(x) > 0), and the essential supremum of σ over Ω− is less than zero (ess supx∈Ω− σ(x) < 0).115

In particular, σ is discontinuous across the interface seperating Ω+ and Ω−. We further introduce notations:116

σ+
max = ess supx∈Ω+ σ(x), σ+

min = ess infx∈Ω+ σ(x), σ−
max = ess supx∈Ω− |σ(x)| and σ−

min = ess infx∈Ω− |σ(x)|.117

Hence, we require that σ+
max ≥ σ+

min > 0 and σ−
max ≥ σ−

min > 0. We redefine V as the conventional Hilbert118

space H1
0 (Ω), and consider a bilinear form a(·, ·) on V × V given by:119

a(v, w) =

∫
Ω

σ∇v · ∇w dx, ∀(v, w) ∈ V × V.

Then for an function f belonging to L2(Ω), the following variational form defines the model problem:120

find u ∈ V s.t. ∀v ∈ V, a(u, v) =

∫
Ω

fv dx. (1)

Certainly, (1) corresponds to a PDE of u, i.e., −div σ∇u = f with a boundary condition u = 0 on ∂Ω. It is121

also convenient to introduce a notation for a norm as
∥∥v∥∥ã,ω := (

∫
ω
|σ| |∇v|2 dx)1/2, where ω is a subdomain122

of Ω. Moreover, we abbreviate
∥∥ · ∥∥ã,Ω as

∥∥ · ∥∥ã, which is exactly the energy norm on V .123

However, the well-posedness of (1) is generally questionable due to the loss of uniform strict positivity124

of σ. T-coercivity is based on a fact: if there exists a bijective map T : V → V and a positive constant α125

such that for all v ∈ V , |a(v, T v)| ≥ α
∥∥v∥∥2ã, then the Banach–Něcas–Babuška theory confirms the existence126

and uniqueness of the solution. The novelty of T-coercivity lies in providing a systematic construction of127

such T using a “flip” operator, which is essentially dependent on the geometric information of the interfaces128

between Ω+ and Ω−. Let V ± ⊂ H1(Ω±) be the space obtained by restricting functions in V in Ω± and Γ129
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be the interface. Assuming the existence of a bounded map R : V + → V − with Rv|Γ = v|Γ in the sense of130

Sobolev traces, the construction of T is given by131

T v =

{
v1, in Ω+,

−v2 + 2Rv1, in Ω−,
(2)

where132

v =

{
v1, in Ω+,

v2, in Ω−.
(3)

Certainly, the definition of T in (2) is bijective and bounded. Furthermore, we can show that133

a(v, T v) =
∫
Ω+

|σ| ∇v1 · ∇v1 dx−
∫
Ω−

|σ| ∇v2 · ∇(−v2 + 2Rv1) dx

≥
(∀η>0)

∫
Ω+

|σ| |∇v1|2 dx− 1

η

∫
Ω−

|σ| |∇Rv1|2 dx+ (1− η)

∫
Ω−

|σ| |∇v2|2 dx (by Young’s inequality)

≥
∫
Ω+

|σ| |∇v1|2 dx− σ−
max

∥∥R∥∥2
1

η

∫
Ω+

|∇v1|2 dx+ (1− η)

∫
Ω−

|σ| |∇v2|2 dx

≥

(
1− σ−

max

∥∥R∥∥2
1

σ+
minη

)∫
Ω+

|σ| |∇v1|2 dx+ (1− η)

∫
Ω−

|σ| |∇v2|2 dx

≥

(
1−

√
σ−
max

σ+
min

∥∥R∥∥
1

)∥∥v∥∥2ã, (by choosing η =
√

σ−
max/σ

+
min

∥∥R∥∥
1)

(4)

where
∥∥R∥∥

1 should be understood as a positive constant such that for all w ∈ V +,134 (∫
Ω−

|∇Rw|2 dx
)1/2

≤
∥∥R∥∥

1

(∫
Ω−

|∇w|2 dx
)1/2

. (5)

We can observe that (1) will always be well-posed if the ratio σ+
min/σ

−
max is large enough. Note that the135

derivation in (4) involves flipping “positive” to “negative” as indicated by the definition of T : V + → V −.136

It is possible to flip “negative” to “positive”, and the well-posedness of (1) can also be achieved if the137

σ−
min/σ

+
max is large, as discussed in [10].138

To gain insight into the operator R, let us consider a square domain Ω = (0, 1) × (0, 1) with Ω+ =139

(0, 1)× (γ, 1) and Ω− = (0, 1)× (0, γ), where 0 < γ < 1. For a w ∈ V +, we can define Rw as follows:140

(Rw)(x1, x2) = w(x1, 1− 1−γ
γ x2), ∀(x1, x2) ∈ Ω−.

It is also straightforward to calculate that
∥∥R∥∥

1 = max{
√

(1− γ)/γ, 1}. Note that the construction of R is141

not unique. As an alternative approach, we can introduce a smooth cut-off function ξ satisfying ξ = 1 on Γ142

and supp ξw ⊂ (0, 1) × (γ, a) with γ < a < 1. Then, we can utilize the same technique to design R′ such143

that suppR′(ξw) ⊂ (0, 1)× (b, γ) with 0 ≤ b < γ. Naturally, as an operator, R′ξ : V + → V − is also valid.144

3 Methods145

The proposed method relies on a pair of nested meshes Kh and KH . The fine mesh Kh should be capable146

of resolving the heterogeneity of σ. Meanwhile, the construction of multiscale bases, known as the offline147

phase, is performed on Kh. Solving the final linear system is commonly referred to as the online phase, whose148

computational complexity is associated with the coarse mesh KH . We reserve the index i for enumerating149
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all coarse elements on KH , where 1 ≤ i ≤ Nelem. The oversampling region Km
i of a coarse element Ki holds150

a vital significance in describing the method. Mathematically, Km
i is defined by a recursive relation:151

∀m ≥ 1, Km
i := int

(
∪{K | K ∈ KH with K ∩Km−1

i ̸= ∅}
)

and K0
i := Ki. Figure 1 serves as an illustration of the nested meshes, and note that two oversampling152

regions K2
i′ and K

2
i′′ are colored in gray.153

Ki′

K2
i′

Ki′′

K2
i′′

τ

∂Ω

∂Ω

Figure 1: Illustration of the nested meshes Kh and KH . A fine element τ , two coarse elements Ki′ and Ki′′ ,
accompanied by their corresponding oversampling regions K2

i′ and K
2
i′′ , are colored differently.

In the original CEM-GMsFEM, a generalized eigenvalue problem,154

find λ ∈ R and v ∈ H1(Ki) \ {0} s.t.

∫
Ki

σ∇v · ∇w dx = λ

∫
Ki

µmsh diam(Ki)
−2σvw dx, (6)

is solved on each coarse element Ki, where µmsh is a generic positive constant that depends on the mesh155

quality. Then the local auxiliary space V aux
i is formed by collecting leading eigenvectors. However, recalling156

that σ is not uniformly positive, the left-hand bilinear form in (6) is not positive semidefinite, and similarly,157

the right-hand bilinear form in (6) is not positive definite. Then, determining leading eigenvectors via (6) is158

problematic since the eigenvalues could be negative. To address this issue, we instead construct the following159

generalized eigenvalue problem on each Ki, which forms the first step of the proposed method:160

First step

find λ ∈ R and v ∈ H1(Ki) \ {0} s.t. ∀w ∈ H1(Ki),∫
Ki

|σ| ∇v · ∇w dx = λ

∫
Ki

µmsh diam(Ki)
−2 |σ| vw dx.

(7)

161

One may argue that if σ only takes values in {−1, 1}, then (7) would yield trivial eigenspaces correspond-162

ing to the Laplace operator, thus failing to capture any heterogeneity information of σ. However, according163

to T-coercivity, in such cases, the well-posedness of the model problem is violated (ref. [10] section 6). This164

inherent issue suggests that the original model problem should require a more sophisticated investigation in165

this case, which falls outside the scope of the proposed method. Upon solving the l∗ leading eigenvectors,166

denoted as ψi,j with 1 ≤ j ≤ l∗, we can construct the local auxiliary space V aux
i ⊂ L2(Ki) as span{ψi,j}167
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for 1 ≤ i ≤ Nelem. The global auxiliary space V aux ⊂ L2(Ω) is defined as V aux = ⊕Nelem
i=1 Ṽ aux

i , where168

Ṽ aux
i ⊂ L2(Ω) is the space by performing zero-extension of functions in V aux

i .169

We introduce several notations for future reference. Let µ be a function in L∞(Ω) satisfying170

µ|Ki = µmsh diam(Ki)
−2σ|Ki

for all Ki ∈ KH . Next, for a subdomain ω in Ω, we define two bilinear forms:171

a(v, w)ω :=

∫
ω

σ∇v · ∇w dx and s(v, w)ω :=

∫
ω

µvw dx.

Similarly to the definition of
∥∥ · ∥∥ã,ω, we define

∥∥v∥∥s̃,ω as (
∫
ω
|µ| |v|2 dx)1/2. Again, we drop the subscript ω172

if ω = Ω. Additionally, we define the orthogonal projection operator PH : L2(Ω) → L2(Ω) under the norm173 ∥∥ ·
∥∥s̃, with V aux = imPH . We also use the shorthand notation V m

i as H1
0 (K

m
i ), and we always implicitly174

identify V m
i as a subspace of V .175

Functions in V aux may not be continuous in Ω, and thus V aux cannot be used as a conforming finite176

element space. In the second step, we will construct a multiscale basis ϕi,j in V m
i , corresponding to ψi,j177

in V aux
i that is obtained in the first step. This construction is based on the following variational problem,178

where the righthand bilinear form is defined on the original coarse element Ki:179

Second step

find ϕi,j ∈ V m
i s.t. ∀w ∈ V m

i ,

a(ϕi,j , w)Km
i
+ s(PHϕi,j ,PHw)Km

i
= s(ψi,j ,PHw)Ki .

(8)

180

In the original CEM-GMsFEM [22], the variational form in (8) is derived from a “relaxed” constrained181

energy minimization problem:182

ϕi,j = argmin
{
a(w,w)Km

i
| w ∈ V m

i , PHw = ψi,j

}
.

We note that, in the present situation, the bilinear forms a(·, ·)Km
i

and s(PH ·,PH ·)Km
i

may lack coercivity,183

leading to an ill-defined minimization. The multiscale space is formed as184

V m
H = span{ϕi,j | 1 ≤ i ≤ Nelem, 0 ≤ j < l∗},

and the solution of the model problem is approximated by solving the following variational problem:185

find uH ∈ V m
H s.t. ∀wH ∈ V m

H , a(uH , wH) =

∫
Ω

fwH dx. (9)

Note that (7) and (8) are practically solved on the fine mesh Kh.186

The success of the proposed method hinges on that the multiscale basis decays rapidly w.r.t. m, the187

number of oversampling layers. To demonstrate this, we consider a square domain with a 10× 10 periodic188

structure, as illustrated in the subplot (a) of Fig. 2. Each periodic cell contains a square inclusion that is189

centered with a negative coefficient imposed, resulting in the union of all inclusions forming the subdomain190

Ω−. The length ratio of the inclusion to the periodic cell is set to 1/2. The material properties are set as191

σ = 1.0 in Ω+ and σ = −0.1 in Ω− such that T-coercivity is satisfied. The coarse mesh KH aligns with192

the periodic structure. We select a coarse element marked with red borders in the subplot (a) of Fig. 2193

and plot the first three eigenfunctions ψi,1, ψi,2 and ψi,3 calculated via (7) in the subplots (b) to (d). It is194

worth noting that the first eigenvalue is always 0, and the corresponding eigenfunction is always a constant195

function, as easily derived in (7) and also validated in the subplot (b). The decay of the multiscale basis ϕi,1,196

ϕi,2 and ϕi,3 are solved by (8) with different oversampling layers is demonstrated in Fig. 3, while a(·, ·)Km
i

197

and s(PH ·,PH ·)Km
i

are not coercive. In this figure, the first, second, and third rows correspond to the198

results of the first, second, and third eigenfunctions, respectively, while the first, second, and third columns199
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display the plots of the multiscale basis with m = 1, 2, and 3, respectively. The position of the selected200

coarse element determines the maximum value of m, which in this case is 8. Consequently, we calculate the201

relative differences in both the energy and L2 norm of the multiscale bases between m = 8 and m = 1, . . . , 7,202

and present the results in the fourth column of Fig. 3. From the plots of multiscale bases, we observe203

that multiscale bases vanish away from the selected coarse element. Hence, one may expect to accurately204

compute multiscale bases with a small number of oversampling layers. Moreover, the relative differences205

in the logarithmic scale are almost linear w.r.t. m, which suggests the exponential decay may still hold in206

sign-changing problems.207

0.0 1.0x1

0.0

1.0

x 2

(a)

0.10 0.20x1

0.20

0.30

x 2

(b)

0.10 0.20x1

0.20

0.30

x 2

(c)

0.10 0.20x1

0.20

0.30

x 2

(d)
0.0 0.5 1.0 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2

Figure 2: (a) The coefficient profile and the marked coarse element. (b)–(d) The plot of the first/second/third
eigenfunction corresponding to the marked coarse element.

4 Numerical experiments208

We conduct numerical experiments on a square domain Ω = (0, 1)× (0, 1). The fine mesh Kh is generated209

by dividing Ω into 400 × 400 squares. Consequently, the coefficient profile σ is represented by a 400 × 400210

matrix/image, with each element corresponding to a constant value on a fine element. To investigate the211

convergence behavior of the proposed method with different coarse mesh sizes H, we consider four different212

coarse meshes KH : 10 × 10, 20 × 20, 40 × 40, and 80 × 80. The reference solution, auxiliary spaces, and213

multiscale bases are all calculated on the fine mesh Kh using the Q1 finite element method. We evaluate214

the convergence of the proposed method using two relative error indices: the relative energy error and the215

relative L2 error which are defined as follows:216 ∥∥eh∥∥ã∥∥uh∥∥ã and

∥∥eh∥∥L2(Ω)∥∥uh∥∥L2(Ω)

,

where uh is the reference solution calculated by the Q1 FEM on Kh or the nodal interpolation of the exact217

solution (if available), and eh is the error between the reference solution and the numerical solution. For218

simplicity, we take µ as219

µ|Ki
= µmsh diam(Ki)

−2σ|Ki
= 24H−2σ|Ki

for all numerical experiments, as suggested in [50]. In the following discussions, we mark statements of220

direct observations from numerical experiments with a circled number, e.g., 1 . We implement the method221

using the Python libraries NumPy and SciPy1, and all the codes are hosted on Github2.222

1Instead of using the default sparse linear system solver in SciPy, we opted to utilize the pardiso solver to enhance efficiency.
2https://github.com/Laphet/sign-changing
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Figure 3: The subplots are marked as (x-y), where x can take a, b, or c, corresponding to the results for the
first, second, or third eigenfunction, respectively. If y is 1, 2, or 3, the subplot displays the multiscale basis
with m oversampling layers, m equal to y. Alternatively, if y is 4, the subplot shows the relative differences
(y-axis) in the energy and L2 norm of the multiscale bases between m = 8 and m = 1, . . . , 7 (x-axis).

4.1 Flat interface model223

We first consider a flat interface model described in the ending part of Section 2, i.e., we define Ω+ =224

(0, 1)× (γ, 1) and Ω− = (0, 1)× (0, γ) with 0 < γ < 1. In Ω+, we assign a fixed value of σ+
∗ to σ+, while in225

Ω−, we take −σ−
∗ for σ−, where σ+

∗ and σ−
∗ are both positive. We can devise an exact solution u as226

u(x1, x2) =

{
−σ−

∗ x1(x1 − 1)x2(x2 − 1)(x2 − γ), in Ω+,

σ+
∗ x1(x1 − 1)x2(x2 − 1)(x2 − γ), in Ω−,

which corresponds to a smooth source term f given by227

f(x1, x2) = σ−
∗ σ

+
∗

(
2x2(x2 − 1)(x2 − γ) + x1(x1 − 1)(6x2 − 2(γ + 1))

)
.
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According to the T-coercivity theory [20], the problem is well-posed if228

σ−
∗
σ+
∗
/∈
[

γ

1− γ
, 1

]
,

provided that γ ≤ 1/2.229

Case I We set γ = 0.5, we can check that now the interface Γ = (0, 1)×{γ} is fully resolved by every coarse230

mesh. Therefore, we can expect that applying the Q1 FEM on KH directly can yield satisfactory accuracy.231

we conducted two groups of experiments with (σ+
∗ , σ

−
∗ ) = (1.01, 1) and (σ+

∗ , σ
−
∗ ) = (1, 1.01), both satisfying232

the T-coercivity condition. For the setting of the proposed multiscale method, we fix l∗ = 3, indicating that233

we calculate the first three eigenfunctions in (7) and construct three multiscale bases for each coarse element,234

while we vary the oversampling layers m from 1 to 4. We refer to Fig. 4 for the numerical results. 1 We235

can observe from subplots (a) to (d) that the convergence of the Q1 FEM manifests a linear pattern w.r.t.236

H in the logarithmic scale, consistent with the theoretical expectation. 2 We can also see that the number237

of oversampling layers m has a significant impact on the accuracy of the proposed method. 3 However,238

for the same m, the error decaying w.r.t. H does not always hold, as depicted in subplots (b) and (d). 4239

Although, for m = 4, the proposed method exhibits higher accuracy than the Q1 FEM, the computational240

cost is significantly higher due to the sophisticated process of constructing multiscale bases. Therefore, the241

proposed method seems more suitable for scenarios involving intricate coefficient profiles. Interestingly, we242

notice that subplots (a) and (c), as well as (b) and (d), are almost identical, implying that the contrast ratio243

σ−
∗ /σ

+
∗ crossing the critical value 1 does not generate a significant influence on numerical methods.244

Figure 4: Numerical results for the flat interface model with γ = 1/2, where the relative errors of the
proposed method with different numbers of oversampling layers m and the Q1 FEM are calculated w.r.t.
the coarse mesh size H. Subplots (a) and (b) correspond to (σ+

∗ , σ
−
∗ ) = (1.01, 1), which the relative errors

are measured in the energy and L2 norm, respectively. Similarly, subplots (c) and (d) correspond to the
setting (σ+

∗ , σ
−
∗ ) = (1, 1.01), following the same manner.

Case II Next, we consider the case that γ = 0.49, resulting in none of the coarse meshes being capable of245

resolving the interface. The results by setting (σ+
∗ , σ

−
∗ ) = (1, 1.01) are reported in Fig. 5, where subplots246

(a) and (b) correspond to the relative errors, measured in the energy and L2 norm respectively. Subplots247

(c) and (d) display the actual differences between the reference solution and numerical solutions obtained248

by the Q1 FEM with H = 1/80 and the proposed method with (H,m) = (1/80, 3), respectively. 1 We249

observe that a slight change in γ from 0.5 to 0.49 disrupts the convergence of the Q1 FEM. 2 In contrast,250

the proposed method can achieve satisfactory accuracy at a level of 1% for m = 3 and of 0.1% for m = 4 in251

the energy norm. 3 Again, for a fixed m, the errors from the proposed method do not always decay w.r.t.252
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H. As shown in subplots (c) and (d), both methods exhibit a concentration of errors near the interface,253

while the proposed method outperforms the Q1 FEM by an order of magnitude of two in terms of pointwise254

errors.255

Figure 5: Numerical results for the flat interface model with (σ+
∗ , σ

−
∗ , γ) = (1, 1.01, 0.49). Subplots (a) and

(b) show the relative errors of the proposed method with different numbers of oversampling layers m and
the Q1 FEM w.r.t. the coarse mesh size H, but measured in different norms. Subplots (c) and (d) display
the actual pointwise differences between the reference solution and numerical solutions obtained by the Q1

FEM with H = 1/80 and the proposed method with (H,m) = (1/80, 3).

4.2 Periodic square inclusion model256

In this subsection, we revisit the periodic square inclusion model described in the ending part of Section 3.257

The coefficient profile σ is determined as Fig. 2-(a). Besides the 10 × 10 periodic configuration shown in258

Fig. 2-(a), we also consider the 20 × 20 periodic configurations. The source term f is constructed as the259

superposition of four 2D Gaussian functions centered at (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), and (0.75, 0.75)260

with a variance of 0.01, as shown in Fig. 6-(a). The reference solutions corresponding to the 10 × 10 and261

20×20 periodic configurations are plotted in Fig. 6-(b) and (c), respectively. We can observe that multiscale262

features emerge in the reference solutions, which may inspire future investigations into extending classical263

multiscale asymptotic analysis (ref. [7, 26]) to sign-changing problems. Notably, the homogenization theory264

for the model was recently completed by Bunoiu and Ramdani in [15, 14, 16, 17]. Meanwhile, numerical265

methods such as LOD [19], along with the proposed method, seek a low-dimensional representation of the266

solutions and can be regarded as general numerical homogenization techniques beyond the periodic setting.267

We conduct numerical experiments using the proposed method on the 10 × 10 and 20 × 20 periodic268

configurations. The relative errors in the energy norm and the L2 norm are tabulated in Tables 1 and 2,269

respectively. We again take l∗ = 3 for all tests, while varying the number of oversampling layers m from270

1 to 4. 1 From Tables 1 and 2, when H = 1/10, enlarging m from 2 to 4 does not lead to a significant271

improvement in accuracy, and relative errors in the energy norm reach a saturation level of 1%. 2 In272

comparison, for H = 1/80, the numerical solutions achieve a relative error of 0.1% in the energy norm for273

m = 3 and 4. We can conclude that the accuracy of the proposed method is mutually controlled by the274

number of oversampling layers m and the coarse mesh size H, and this convergence pattern is consistent275

with the flat interface model. 3 Another noteworthy observation is that the scale of models, i.e., 1/10 and276

1/20, does not affect the accuracy of the proposed method, as the relative errors in Tables 1 and 2 are almost277

at the same level with different H and m. Hence, we can infer that the proposed method is robust to the278

scale of models and is not subject to the resonance error phenomenon encountered in the classic MsFEMs279

[32, 33, 29].280
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Figure 6: (a) The smooth source term f that is constructed as the superposition of four 2D Gaussian
functions centered at (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), and (0.75, 0.75) with a variance of 0.01. (b)-(c)

The reference solutions correspond to the 10× 10 and 20× 20 periodic configurations, respectively.

Table 1: For the 10 × 10 periodic square inclusion model, the relative errors in the energy norm (in the
columns labeled with

∥∥ · ∥∥ã) and in the L2 norm (in the columns labeled with
∥∥ · ∥∥L2(Ω)).

H
m = 1 m = 2 m = 3 m = 4∥∥ ·

∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

1
10

2.433e−1 8.931e−2 5.162e−2 5.741e−3 5.225e−2 5.785e−3 5.232e−2 5.786e−3

1
20

3.785e−1 1.923e−1 4.960e−2 4.981e−3 5.583e−2 5.922e−3 5.662e−2 6.024e−3

1
40

6.978e−1 5.833e−1 4.011e−2 2.292e−3 1.753e−3 3.293e−5 1.376e−4 3.075e−6

1
80

8.832e−1 8.610e−1 8.895e−2 1.064e−2 3.855e−3 3.991e−5 1.941e−4 1.921e−6

Table 2: For the 20 × 20 periodic square inclusion model, the relative errors in the energy norm (in the
columns labeled with

∥∥ · ∥∥ã) and in the L2 norm (in the columns labeled with
∥∥ · ∥∥L2(Ω)).

H
m = 1 m = 2 m = 3 m = 4∥∥ ·

∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

∥∥ ·
∥∥
ã

∥∥ ·
∥∥
L2(Ω)

1
10

5.571e−1 3.663e−1 6.379e−2 6.159e−3 2.653e−2 1.492e−3 2.637e−2 1.455e−3

1
20

4.531e−1 2.884e−1 3.195e−2 1.498e−3 2.598e−2 1.441e−3 2.616e−2 1.442e−3

1
40

6.306e−1 4.938e−1 4.544e−2 2.613e−3 2.589e−2 1.361e−3 2.782e−2 1.485e−3

1
80

8.803e−1 8.499e−1 8.795e−2 1.057e−2 4.303e−3 4.984e−5 2.862e−4 3.115e−6

4.3 Periodic cross-shaped inclusion model281

In this subsection, we apply the proposed method to a periodic cross-shaped inclusion model. Specifically,282

in each periodic cell, a cross-shaped inclusion is centered, imposing a negative coefficient, and the width283

of the cross arms is set to 1/5 of the periodic cell. We consider two periodic configurations, 10 × 10 and284

20 × 20, as shown in Fig. 7-(a) and (b), respectively. Note that cross-shaped inclusions are all connected,285

leading to long channels crossing the domain. Constructing a “flip” operator R in this model to validate the286

T-coercivity condition is nontrivial compared with the flat interface and the periodic square inclusion models.287

Using the theory developed in [9], one can prove a weak T-coercivity property holds as long as σ+
min/σ

−
max288

or σ−
min/σ

+
max > 3. This model is designed to test the capability of the proposed method to handle long and289
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high-contrast channels, and we hence set (σ+
∗ , σ

−
∗ ) = (1, 103), where σ+

∗ and σ−
∗ are defined as in the flat290

interface model. The source term f is again from Fig. 6-(a), and the reference solutions corresponding to291

the 10×10 and 20×20 periodic configurations are plotted in Fig. 7-(c) and (d), respectively. From reference292

solution plots, we can observe that long and high-contrast channels create more pronounced oscillations293

compared to the square inclusion model (cf. Fig. 6-(b) and (c)), challenging numerical methods greatly.294

Figure 7: Subplots (a) and (b) display visualizations for the coefficient σ used in the periodic cross-shaped
inclusion model with 10× 10 and 20× 20 periodic configurations, respectively. Subplots (c) and (d) demon-
strate the reference solutions for 10× 10 and 20× 20 periodic configurations, respectively.

The numerical results of the Q1 FEM and the proposed method with m ∈ {1, 2, 3, 4} are presented295

in Fig. 8. Subplots (a) and (b) in Fig. 8 share the same setting (corresponding to the 10 × 10 periodic296

configuration) but the relative errors are measured in the different norms, and similarly for subplots (c) and297

(d). The Q1 FEM fails to provide satisfactory accuracy. 1 Even with a finer coarse mesh, such as H = 1/80,298

there is only a slight improvement, yet the relative errors in the energy norm remain close to 50%. The299

classical CEM-GMsFEM [22] is proven to be effective in handling long and high-contrast channels, and the300

proposed method inherits this advantage. 2 By setting m = 3, the proposed method can achieve a relative301

error of 1% in the energy norm for both the 10× 10 and 20× 20 periodic configurations. 3 Typically, the302

relative errors in the L2 norm are significantly smaller by an order of magnitude than those in the energy303

norm, and the proposed method can achieve a relative error of 0.1% in the L2 norm for m = 3 and 4. 4304

Furthermore, comparing subplots (a) and (c), as well as (b) and (d), reveals similar convergence behavior,305

indicating that the scale of the models does not affect the accuracy of the proposed method. Note that all306

coarse meshes employed cannot resolve the channels, highlighting the capability of the proposed method to307

handle complex coefficient profiles.308

4.4 Random inclusion model309

In this subsection, we consider a random inclusion model that is utilized in several multiscale methods as310

a showcase of the capability of handling nonperiodic coefficient profiles [22, 52, 50, 45]. The subdomains311

Ω+ and Ω− are demonstrated in Fig. 9-(a), and σ is determined again by (σ+
∗ , σ

−
∗ ). We consider two cases:312

(σ+
∗ , σ

−
∗ ) = (1, 10−3) and (σ+

∗ , σ
−
∗ ) = (1, 103). By setting the source term f as depicted in Fig. 6-(a),313

we plot the reference solutions for the two cases, as shown in Fig. 9-(b) and (c). We can observe that314

void-type inclusions ((σ+
∗ , σ

−
∗ ) = (1, 10−3)) and rigid-type inclusions ((σ+

∗ , σ
−
∗ ) = (1, 103)) exhibit distinct315

characteristics in the reference solutions. A recent work [31] discussed the asymptotic behavior when the316

coefficient in inclusions tends to positive infinity, while the case of negative infinity has not been explored in317

the literature. Our aim in studying this model is to investigate the effect of choosing different eigenvectors318

l∗.319

The approximation of eigenspaces relies on the rapid growth of the eigenvalue λ in (7). Ideally for the320

Laplace operator, the eigenvalue distribution follows Weyl’s law [49, 36]. However, as the contrast ratio321
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Figure 8: Numerical results for the periodic cross-shaped inclusion model with different periodic configura-
tions. Subplots (a) and (b) show the relative errors of the proposed method for the 10×10 configuration with
different numbers of oversampling layers m and the Q1 FEM w.r.t. the coarse mesh size H, but measured in
different norms. Similarly, subplots (c) and (d) correspond to the 20× 20 configuration, following the same
manner.

Figure 9: (a) The illustration of inclusions (dark regions) of the random inclusion model. (b) The plot of
the reference solution by setting (σ+

∗ , σ
−
∗ ) = (1, 10−3). (c) The plot of the reference solution by setting

(σ+
∗ , σ

−
∗ ) = (1, 103).

increases, the growth rate is expected to slow down, leading to a deterioration of the approximation quality.322

Surprisingly, this deterioration commonly appears in several leading eigenvalues in (7) where a weighted323

L2 bilinear form is utilized. To investigate this phenomenon, we examine the first four eigenvalues for324

(σ+
∗ , σ

−
∗ ) = (1, 10−3) and (σ+

∗ , σ
−
∗ ) = (1, 103). The results are presented in Tables 3 and 4, where the325

minimal and maximal values of eigenvalues are calculated over all coarse elements. Since the first eigenvalue326

λ1 is always 0, we omit the results for λ1 in Tables 3 and 4. 1 We can observe from Table 3 that for λ2,327

there exist small eigenvalues that are on the order of 10−4. 2 However, for λ3 and λ4, the minimum values328

are significantly larger, on the order of 10−1, compared to the minimum values of λ1. 3 Interestingly, for329

H = 1/80, the maximum and minimum values for both cases are nearly the same. We conjecture that this330

is because the coarse meshes are fine enough, and the microstructures on each coarse element are simple.331

Note that the eigenvalues by setting (σ+
∗ , σ

−
∗ ) = (1, 10−3) and (σ+

∗ , σ
−
∗ ) = (103, 1) are strictly identical. If332

some coarse elements exhibit a “symmetrization” pattern between Ω+ and Ω− and also contribute to the333

extreme values, we can expect to observe the aforementioned phenomenon.334

We proceed by presenting the numerical errors of the proposed methods for the two settings in Fig. 10,335
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Table 3: For the random inclusion model with (σ+
∗ , σ

−
∗ ) = (1, 10−3), the minimal and maximal values of the

second/third/fourth eigenvalue over total coarse elements.

H
λ2 λ3 λ4

min max min max min max

1
10

6.939e−4 4.114e−1 3.011e−1 4.114e−1 4.121e−1 8.229e−1

1
20

7.806e−4 4.121e−1 3.066e−1 8.404e−1 4.129e−1 1.278

1
40

1.008e−3 4.146e−1 2.617e−1 7.579e−1 5.091e−1 1.291

1
80

1.051e−1 6.755e−1 3.255e−1 8.499e−1 5.228e−1 1.350

Table 4: For the random inclusion model with (σ+
∗ , σ

−
∗ ) = (1, 103), the minimal and maximal values of the

second/third/fourth eigenvalue over total all coarse elements.

H
λ2 λ3 λ4

min max min max min max

1
10

2.685e−1 4.335e−1 3.707e−1 1.141 6.694e−1 1.553

1
20

6.856e−2 4.121e−1 3.254e−1 8.696e−1 5.733e−1 1.264

1
40

1.365e−1 6.502e−1 3.292e−1 7.866e−1 5.763e−1 1.300

1
80

1.051e−1 6.755e−1 3.255e−1 8.499e−1 5.228e−1 1.350

where we fixm = 3 and change H and l∗. Subplots (a) and (b) in Fig. 10 correspond to (σ+
∗ , σ

−
∗ ) = (1, 10−3),336

and subplots (c) and (d) correspond to (σ+
∗ , σ

−
∗ ) = (1, 103). 1 Upon initial observation, we note a decay337

of numerical errors with increasing l∗ for most cases. 2 However, this decay is less pronounced with l∗338

from 3 to 4. Therefore, it is advisable to consider employing a larger number of eigenvectors as a stabilizing339

strategy rather than solely relying on it for accuracy improvement. 3 To gain further clarity, the results340

with H = 1/10 in Fig. 10-(a) and (b) do not show a decreasing pattern in errors with l∗. 4 However, we341

can observe a more substantial reduction in errors as l∗ increases for H = 1/10 in Fig. 10-(c) and (d). This342

implies that the proposed method is more sensitive to the number of eigenvectors when the coarse mesh is343

not fine enough, while l∗ = 3 is a recommended choice.344

5 Analysis345

In this section, we present a rigorous analysis of the proposed method. We begin by examining the global346

version of the method, where we set Km
i in (8) as Ω. While the global version can yield optimal error347

estimates, it is impractical due to its high computational cost. Next, we delve into the local version of the348

method and replicate several estimates found in the original CEM-GMsFEM. Given the sign-changing setting349

and the T-coercivity framework, certain assumptions seem to be unavoidable due to technical difficulties,350

and we will explain the rationale behind these assumptions.351

5.1 Global version352

Let Υ be σ+
min/σ

−
max. As shown in (4), the well-posedness of the model problem can be ensured if Υ is353

sufficiently large. By replacing σ with −σ, the case that σ−
min/σ

+
max is sufficiently large can also be reduced354

to the case that we mainly focus on. Essentially, we require that the solution to the model problem be355

at least unique to discuss the convergence of the numerical method. Therefore, we introduce the following356

stronger assumption, although it is rarely touched in the subsequent analysis.357

14



Figure 10: Numerical results for the random inclusion model. Subplots (a) and (b) show the relative errors
of the proposed method for the setting (σ+

∗ , σ
−
∗ ) = (1, 10−3) with different coarse mesh size H w.r.t. the

number of eigenvectors l∗, but measured in different norms. Similarly, subplots (c) and (d) correspond to
(σ+

∗ , σ
−
∗ ) = (1, 103), following the same manner.

Assumption I. The model problem (1) is well-posed in the sense that there exists a positive constant Cwp,358

independent of f , such that359 ∥∥u∥∥ã ≤ Cwp

∥∥f∥∥L2(Ω).

We define the global operator G∞
i : L2(Ω) → V = H1

0 (Ω) corresponding to the coarse element Ki via the360

following variational problem:361

find G∞
i ψ ∈ V s.t. ∀w ∈ V, a(G∞

i ψ,w) + s(PHG∞
i ψ,PHw) = s(PHψ,PHw)Ki . (10)

We reiterate several important facts here: the bilinear form is s(·, ·) defined on L2(Ω)× L2(Ω) as362

s(v, w) =

∫
Ω

µvw dx = µmsh

Nelem∑
i=1

diam(Ki)
−2

∫
Ki

σvw dx,

which is not coercive due to the sign-changing property of µ; the operator PH : L2(Ω) → L2(Ω) is an363

orthogonal projection with imPH = V aux, regarding the weighted L2 inner-product
∫
Ω
|µ| vw dx but not the364

bilinear form s(·, ·) or the standard L2 inner-product. Taking a summation of G∞
i gives G∞ :=

∑Nelem

i=1 G∞
i ,365

which is interpreted as the global operator corresponding to the whole domain. Certainly, we are required366

to check the well-posedness of (10), which essentially involves proving the inf-sup stability of the bilinear367

form:368

a(v, w) + s(PHv,PHw), ∀(v, w) ∈ V × V.

Following the T-coercivity approach, we may examine the coercivity of369

a(v, T v) + s(PHv,PHT v).

We encounter a challenge here as the properties of PHT are not clear, as PH is associated with the coarse370

mesh KH , while T depends on the geometric information of Ω± and could be rather complicated. To address371

this issue, we introduce the following assumption.372

Assumption II. All coarse elements in KH can be categorized into two groups K+
H or K−

H , where373

K±
H :=

{
K | K ∈ KH and K ⊂ Ω±}.
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This assumption is rather stringent, as it implies that the coarse mesh KH is capable of resolving Ω±.374

On the other hand, such an assumption greatly facilitates the analysis once the orthogonal projection TH375

comes into play. Another reason for this assumption is shown in proving Lemma 5.5. We emphasize that376

several numerical experiments in Section 4 indeed do not align with the assumption, yet the obtained results377

remain promising. To facilitate the analysis, we also require the following assumption. We mention that378

similar assumptions are also raised in constructing “flip” operators that satisfy weak T-coercivity (ref. [9]379

section 4).380

Assumption III. There exists a positive constant
∥∥R∥∥

0, such that for any v ∈ V (Ω+),381 ∥∥Rv∥∥0,Ω− ≤
∥∥R∥∥

0

∥∥v∥∥0,Ω+ ,

where R is the operator in (2).382

We introduce this assumption to establish an estimate for s(PHv,PHT v). This assumption is valid when383

the operator R acts as a change of variables. Denoting λ∗i as the (l∗ + 1)-th eigenvalue of the generalized384

eigenvalue problem in (7), the following lemma will be frequently utilized in the analysis, while its proof is385

simply a straightforward application of the properties of eigenspace expansions.386

Lemma 5.1. On each coarse element Ki and for any v ∈ H1(Ki), the following estimates hold:387

∥∥v − PHv
∥∥
s̃,Ki ≤

1√
λ∗i

∥∥v∥∥ã,Ki
, (11)

∥∥v∥∥2s̃,Ki
≤

∥∥PHv
∥∥2
s̃,Ki

+
1

λ∗i

∥∥v∥∥2ã,Ki
. (12)

We also introduce a notation that ϵ := 1/(maxi λ
∗
i ). The following estimates pave the way for proving388

the well-posedness of (10).389

Lemma 5.2. It holds that for any v ∈ V ,390

a(v, T v) ≥
(
1−

∥∥R∥∥
1/
√
Υ
)∥∥v∥∥2ã, (13)

s(PHv,PHT v) ≥
(
1−

∥∥R∥∥
0/
√
Υ
)∥∥PHv

∥∥2
s̃ − ϵ

∥∥R∥∥
0/
√
Υ
∥∥v∥∥2ã, (14)∥∥T v∥∥ã ≤ max

{(
1 + 8

∥∥R∥∥2
1/Υ

)1/2
,
√
2

}∥∥v∥∥ã, (15)

∥∥T v∥∥s̃ ≤ max

{(
1 + 8

∥∥R∥∥2
0/Υ

)1/2
,
√
2

}∥∥v∥∥s̃. (16)

Proof. The proof of (13) has already been given in (4). We hence first prove (14). For any v ∈ V with v1391

and v2 defined as (3), we have392

s(PHv,PHT v) =
∫
Ω+

|µ| |PHv1|2 dx+

∫
Ω−

|µ| |PHv2|2 dx− 2

∫
Ω−

|µ| PHv2PHRv1 dx

≥
(∀η>0)

∫
Ω+

|µ| |PHv1|2 dx− 1

η

∫
Ω−

|µ| |PHRv1|2 dx+ (1− η)

∫
Ω−

|µ| |PHv2|2 dx,

where we implicitly utilize assumption II. We turn to the estimate of
∫
Ω− |µ| |PHRv1|2 dx as follows:393 ∫

Ω−
|µ| |PHRv1|2 dx ≤

∫
Ω−

|µ| |Rv1|2 dx (PH is an orthogonal projection)

≤ µ−
max

∫
Ω−

|Rv1|2 dx ≤ µ−
max

∥∥R∥∥2
0

∫
Ω+

|v1|2 dx (by assumption III)
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≤
∥∥R∥∥2

0

µ−
max

µ+
min

∫
Ω+

|µ| |v1|2 dx

≤
∥∥R∥∥2

0

σ−
max

σ+
min

(∫
Ω+

|µ| |PHv1|2 dx+ ϵ

∫
Ω+

|σ| |∇v1|2 dx
)
. (by (12))

By choosing η =
∥∥R∥∥

0/
√
Υ, we derive that394

s(PHv,PHT v) ≥ (1−
∥∥R∥∥

0/
√
Υ)

∥∥PHv
∥∥2
s̃ − ϵ

∥∥R∥∥
0/
√
Υ
∥∥v∥∥2ã,

which finishes the proof of (14).395

The proofs of (15) and (16) follow a similar procedure, and we only provide the proof for the former:396

∥∥T v∥∥2ã =

∫
Ω+

|σ| |∇v1|2 dx+

∫
Ω−

|σ| |−∇v2 + 2∇Rv1|2 dx

≤
∫
Ω+

|σ| |∇v1|2 dx+ 2

∫
Ω−

|σ| |∇v2|2 dx+ 8

∫
Ω−

|σ| |∇Rv1|2 dx (by the basic inequality)

≤
∫
Ω+

|σ| |∇v1|2 dx+ 2

∫
Ω−

|σ| |∇v2|2 dx+ 8σ−
max

∥∥R∥∥2
1

∫
Ω+

|∇v1|2 dx

≤
(
1 + 8

∥∥R∥∥2
1

σ−
max

σ+
min

)∫
Ω+

|σ| |∇v1|2 + 2

∫
Ω−

|σ| |∇v2|2 dx

≤ max
{
1 + 8

∥∥R∥∥2
1/Υ, 2

}∥∥v∥∥2ã.
397

Remark. According to the proof, we can refine
∥∥v∥∥2ã in (14) to

∥∥v∥∥2ã,Ω+ . However, we choose to retain the398

original form for the sake of simplicity.399

Now the well-posedness of (10) can be established by combining (13) and (14).400

Proposition 5.3. There exist Υ′ and ϵ′ such that for any Υ ≥ Υ′ and ϵ ≤ ϵ′, the operator G∞
i in (10) is401

well-posed.402

Recalling that imPH = V aux, The following lemma in some sense offers an interpolation operator that403

maps from L2(Ω) to V , such that the projections onto V aux by PH are preserved.404

Lemma 5.4 (ref. [22]). There exists a bounded map QH : L2(Ω) → V and a positive constant Cinv such405

that for all v ∈ L2(Ω), it holds that PHQHv = PHv and
∥∥QHv

∥∥
ã ≤ Cinv

∥∥PHv
∥∥
s̃. Moreover, for each coarse406

element Ki, QHv|Ki
depends only on the data of v in Ki and vanishes on ∂Ki.407

We introduce two function spaces as W := kerPH ∩V and V∞
H := imG∞ ⊂ V . According to Lemma 5.1,408

it is clear that409 ∥∥w∥∥
s̃ ≤

√
ϵ
∥∥w∥∥

ã, ∀w ∈W. (17)

The following lemma reveals a relationship of “orthogonality” between W and V∞
H concerning the bilinear410

form a(·, ·). However, we must be cautious in using the term “orthogonal” since a(·, ·) cannot define an inner411

product on V .412

Lemma 5.5. For any v ∈ V∞
H and w ∈ W , it holds that a(v, w) = 0. If w ∈ V and a(v, w) = 0 holds for413

any v ∈ V∞
H , then w ∈W .414

Proof. The first argument that a(v, w) = 0 for any v ∈ V∞
H and w ∈ W is a direct result of (10). We415

then prove the second argument step by step. For simplicity, the notation
∑

i,j is used to represent the416

summation over i = 1, . . . , Nelem and j = 1, . . . , l∗.417
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Step1 We first state that the set {G∞
i ψi,j | 1 ≤ i ≤ Nelem, 1 ≤ j ≤ l∗} is linearly independent, where each418

ψi,j is an eigenfunction by solving (7). Suppose there exists coefficients αi,j such that
∑

i,j αi,jG∞
i ψi,j = 0.419

Then for any w ∈ V , applying (10), we have420

0 = a(
∑
i,j

αi,jG∞
i ψi,j , z) + s(PH

∑
i,j

αi,jG∞
i ψi,j ,PHz) = s(

∑
i,j

αi,jψi,j ,PHz), ∀z ∈ V.

Recalling the property of QH from Lemma 5.4, we find s(
∑

i,j αi,jψi,j , z
′) = 0 for any z′ ∈ V aux. By421

assumption II, on each Ki, we have µ = |µ| or − |µ|, which yields that422 ∫
Ki

|µ|
∑
j

αi,jψi,jz
′′ dx =

∫
Ki

µ
∑
j

αi,jψi,jz
′′ dx = 0, ∀z′′ ∈ V aux

i .

Therefore, we derive that αi,j = 0 for any i and j, and thus prove the statement.423

Step2 We then state that {ψi,j − PHG∞
i ψi,j | 1 ≤ i ≤ Nelem, 1 ≤ j ≤ l∗} is a linearly independent set.424

Once again, from (10), if
∑

i,j αi,j(ψi,j − PHG∞
i ψi,j) = 0, we have425

a(
∑
i,j

αi,jG∞
i ψi,j , z) = s(

∑
i,j

αi,j(ψi,j − PHG∞
i ψi,j),PHz) = 0, ∀z ∈ V.

According to assumption I, we conclude that
∑

i,j αi,jG∞
i ψi,j = 0, which yields αi,j = 0 for any i and j from426

the previous step.427

Step3 Now we return to the original argument. If PHw ̸= 0, we assert that there exists a set of {αi,j}428

such that429

s(
∑
i,j

αi,j(ψi,j − PHG∞
i ψi,j),PHw) = 1.

Otherwise, for all choices of {αi,j}, we must have s(
∑

i,j αi,j(ψi,j − PHG∞
i ψi,j),PHw) = 0. Taking {ψi,j}430

as bases for V aux, we can check that the matrix representation of s(·, ·) on V aux is diagonal, which is also431

nonsingular thanks to assumption II. From the previous step, we have established that {ψi,j − PHG∞
i ψi,j}432

spans the finite-dimentional space V aux. However, the relation s(
∑

i,j αi,j(ψi,j − PHG∞
i ψi,j),PHv) = 0 for433

any {αi,j} implies that PHv = 0, which is a contradiction. Therefore, We have434

1 = a(
∑
i,j

αi,jG∞
i ψi,j , w) = s(

∑
i,j

αi,j(ψi,j − PHG∞
i ψi,j),PHw),

which contradicts to a(v, w) = 0 for any v ∈ V∞
H .435

The global solution is defined by solving the following variational form:436

find u∞H ∈ V∞
H , s.t. ∀wH ∈ V∞

H , a(uH , wH) =

∫
Ω

fwH dx. (18)

To guarantee the well-posedness of (18), we need to examine the inf-sup stability of V∞
H , i.e., proving the437

existence of a uniform lower bound of438

inf
vH∈V ∞

H

sup
wH∈V ∞

H

a(vH , wH)∥∥vH∥∥
ã

∥∥wH

∥∥
ã

.

The Fortin trick [8] suggests that it suffices to check that439

inf
v∈W

sup
w∈W

a(v, w)∥∥v∥∥ã∥∥w∥∥
ã

≥ ΛW
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holds. The technique that we utilize here is introducing a modified T operator, denoted as TH , defined on440

W as follows:441

THv = T v −QHPHT v =

{
v1 −QHPHv1, in Ω+,

−v2 + 2Rv1 +QHPHv2 − 2QHPHRv1, in Ω−.

=

{
v1, in Ω+,

−v2 + 2Rv1 − 2QHPHRv1, in Ω−.

Here, the terms QHPHv1 and QHPHv2 vanish because PHv = 0 on each coarse element, and meanwhile442

QHPHv|Ki
is only dependent on PHv|Ki

(see Lemma 5.4). Recalling the boundness of QH from Lemma 5.4,443

we can see that TH is a bounded operator that maps fromW toW . Then, we reduce the proof of the inf-sup444

stability to establish the coercivity of a(v, THv) for all v ∈ W . The details of this proof are essentially a445

replication of (4). Taking R′
H := R−QHPHR, we can obtain446

a(v, THv) ≥
(
1−

∥∥R′
H

∥∥
1/
√
Υ
)∥∥v∥∥2ã,

where
∥∥R′

H

∥∥
1 is defined similarly as

∥∥R∥∥
1 in (5). Presenting a complete estimate of

∥∥R′
H

∥∥
1 is complicated.447

However, we note that if σ−
max/σ

−
min can be bounded, which is a common scenario in practice, then an apriori448

estimate of
∥∥R′

H

∥∥
1 could be achieved.449

After proving the inf-sup stability of V∞
H , an error estimate of the global solution can be derived. Taking450

e = u− u∞H , we have a(e, wH) = 0 for all wH ∈ V∞
H . Therefore, Lemma 5.5 gives that e ∈W . Then, we can451

show that452

∥∥e∥∥ã ≤ 1

ΛW
sup
w∈W

a(e, w)∥∥w∥∥
ã

=
1

ΛW
sup
w∈W

a(u,w)∥∥w∥∥
ã

=
1

ΛW
sup
w∈W

∫
Ω
fw dx∥∥w∥∥

ã

≤ 1

ΛW
sup
w∈W

∥∥f∥∥s̃∗∥∥w∥∥
s̃∥∥w∥∥

ã

(by the Cauchy–Schwarz inequality)

≤
√
ϵ

ΛW

∥∥f∥∥s̃∗ , (by the estimate (17))

where453 ∥∥f∥∥s̃∗ :=

(∫
Ω

|µ|−1 |f |2 dx
)1/2

≈ Hmax
{
1/
(
σ+
min

)1/2
, 1/
(
σ−
min

)1/2}∥∥f∥∥L2(Ω).

We summarize all results presented above in the following theorem.454

Theorem 5.6. There exist positive constants Υ′ and ϵ′ such that for any Υ ≥ Υ′ and ϵ ≤ ϵ′, the solution455

u∞H in (18) exists and is unique. Moreover, the following estimate456

∥∥u− u∞H
∥∥
ã ≤

√
ϵ

ΛW

∥∥f∥∥s̃∗ ,
holds.457

5.2 Local version458

When turning to the practical method outlined in Section 3, the initial concern pertains to the existence459

of multiscale bases as defined in (8). However, a challenge arises due to the incompatibility between the460

definition of an oversampling region Km
i and T-coercivity. Consequently, we cannot obtain a result similar461

to Proposition 5.3 for the local version. Nevertheless, it is worth noting that the numerical experiments462

presented in Section 4 did not encounter any lack of well-posedness at the discrete level. To proceed with463

the analysis, we introduce the following assumption.464
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Assumption IV. There exists a list of subdomains {K̂1
i , K̂

2
i , . . .} that fulfills the requirements listed below:465

1. Each K̂m
i consists of coarse elements from KH .466

2. There exists an inclusion relation Ki ⊂ K̂1
i ⊂ K̂2

i ⊂ · · · ⊂, such that dist(∂K̂m
i , ∂K̂

m+1
i ) ≥ CmshH.467

3. For any v ∈ V with supp v ⊂ K̂m
i or Ω \ K̂m

i , it holds that supp T v ⊂ K̂m
i or Ω \ K̂m

i accordingly.468

A construction of such subdomains can be found in [19], where a method called symmetrization is469

described. However, implementing such a construction (i.e., replacing Km
i in (8)) is highly impractical470

due to the lack of clarity associated with the definition of the operator T . The fulfillment of the first and471

second requirements allows us to employ conventional cut-off functions. Furthermore, the third requirement472

suggests that, to some extent, T-coercivity can be preserved within these subdomains. In a sense, this473

complies with the definition of geometrically-based T-coercivity operators [44, 10, 20]. To distinguish the474

local problems utilized for analysis from the practical method in Section 3, we add a hat notation “̂·” (e.g.,475

V̂ m
i = H1

0 (K̂
m
i )) to indicate that this term is associated with K̂m

i rather than Km
i . Applying the same476

technique as in establishing Proposition 5.3, we can obtain the well-posedness of the modified local operator477

Ĝm
i associated with the coarse element Ki:478

find Ĝm
i ψ ∈ V̂ m

i s.t. ∀w ∈ V̂ m
i ,

a(Ĝm
i ψ,w)K̂m

i
+ s(PH Ĝm

i ψ,PHw)K̂m
i

= s(PHψ,PHw)Ki
.

(19)

To facilitate the analysis, we introduce the following notations for constants that are from (13) to (16):479

C0 := max

{(
1 + 8

∥∥R∥∥2
0/Υ

)1/2
,
√
2

}
,

C1 := max

{(
1 + 8

∥∥R∥∥2
1/Υ

)1/2
,
√
2

}
,

C2 := min
{
1−

∥∥R∥∥
1/
√
Υ− ϵ

∥∥R∥∥
0/
√
Υ, 1−

∥∥R∥∥
0/
√
Υ
}
.

We can see that C0, C1, and C2 can all be bounded from above and below providing that Υ is sufficiently480

large and ϵ is sufficiently small, which has also been stated in Proposition 5.3 and Theorem 5.6. A key481

ingredient employed in the analysis is multiplying by a cut-off function χ̂m−1,m
i ∈ C0,1(Ω) defined as482

χ̂m−1,m
i =

{
1, in K̂m−1

i ,

0, in Ω \ K̂m
i ,

with 0 ≤ χ̂m−1,m
i ≤ 1 in K̂m

i \ K̂m−1
i . By carefully controlling the parameter µmsh, we can derive the483

inequality484 ∣∣∣∇χ̂m−1,m
i

∣∣∣2 |σ| ≤ |µ|

on Ω for any i andm. Taking Ĝm :=
∑Nelem

i=1 Ĝm
i , We shall prove an estimate of G∞−Ĝm in Theorem 5.9 below485

as the first main result in this subsection, while Lemmas 5.7 and 5.8 as presented in [50] are reformulated486

next to reflect the current sign-changing context.487

Lemma 5.7. There exists a positive constant θ with θ < 1 that depends on C0, C1, and C2 such that for488

any m ≥ 1, 1 ≤ i ≤ Nelem and ψ ∈ L2(Ω),489 ∥∥G∞
i ψ

∥∥2
ã,Ω\K̂m

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m

i

≤ θm
(∥∥G∞

i ψ
∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃

)
.
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Lemma 5.8. It holds that for any m ≥ 1, 1 ≤ i ≤ Nelem and ψ ∈ L2(Ω),490 ∥∥(G∞
i − Ĝm

i )ψ
∥∥2
ã +

∥∥PH(G∞
i − Ĝm

i )ψ
∥∥2
s̃ ≤ Cθm−1

(∥∥G∞
i ψ

∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃

)
,

where θ here is identical to the one in Lemma 5.7, and C is a positive constant that depends on C0, C1, and491

C2.492

Theorem 5.9. There exist positive constants Υ′ and ϵ′ such that for any Υ ≥ Υ′ and ϵ ≤ ϵ′, it holds that493

for any ψ ∈ L2(Ω),494 ∥∥(G∞ − Ĝm)ψ
∥∥2
ã +

∥∥PH(G∞ − Ĝm)ψ
∥∥2
s̃ ≤ C(m+ 1)dθm−1

∥∥PHψ
∥∥2
s̃,

where θ and C depend on C0, C1, and C2 with θ < 1.495

In the proof of Theorem 5.9, we require an assumption that specifies the growth of the size of K̂m
i with496

m.497

Assumption V. The number of coarse elements within K̂m
i satisfies a relation:498

#
{
K ∈ KH | K ⊂ K̂m

i

}
≤ Colm

d,

where Col depends solely on the mesh quality.499

We first prove Lemma 5.7.500

Proof. Taking zi := (1− χ̂m−1,m
i )G∞

i ψ, we can see that zi is supported in Ω \ K̂m−1
i and hence (supp T zi)∩501

Ki = ∅ according to assumption IV.3. Substituting T zi for w in the variational form (10), we have502

a(G∞
i ψ, T zi) + s(PHG∞

i ψ,PHT zi) = 0.

As a result, we can formulate a decomposition as follows:503

a(zi, T zi) + s(PHzi,PHT zi) = −a(χ̂m−1,m
i G∞

i ψ, T zi)− s(PH χ̂
m−1,m
i G∞

i ψ,PHT zi)

= −
∫
Ω

σG∞
i ψ∇χ̂m−1,m

i · ∇T zi dx︸ ︷︷ ︸
J1

−
∫
Ω

σχ̂m−1,m
i ∇G∞

i ψ · ∇T zi dx︸ ︷︷ ︸
J2

−
∫
Ω

µPH

(
χ̂m−1,m
i G∞

i ψ
)
PHT zi dx︸ ︷︷ ︸

J3

.

For J1, by the Cauchy-Schwarz inequality, it is evident that504

|J1| ≤
(∫

Ω

|σ|
∣∣∣∇χ̂m−1,m

i

∣∣∣2 |G∞
i ψ|2 dx

)1/2(∫
Ω

|σ| |∇T zi|2 dx
)1/2

≤
∥∥G∞

i ψ
∥∥
s̃,K̂m

i \K̂m−1
i

∥∥T zi∥∥ã,Ω\K̂m−1
i

≤ C0

(∥∥PHG∞
i ψ

∥∥2
s̃,K̂m

i \K̂m−1
i

+ ϵ
∥∥G∞

i ψ
∥∥2
ã,K̂m

i \K̂m−1
i

)1/2∥∥zi∥∥ã,Ω\K̂m−1
i

,

where the last line follows from (15) and Lemma 5.1. For J2, we have505

|J2| ≤

(∫
K̂m

i \K̂m−1
i

|σ|
∣∣∣χ̂m−1,m

i

∣∣∣2 |∇G∞
i ψ|2 dx

)1/2(∫
Ω

|σ| |∇T zi|2 dx
)1/2

≤
∥∥G∞

i ψ
∥∥
ã,K̂m

i \K̂m−1
i

∥∥T zi∥∥ã,Ω\K̂m−1
i

≤ C0

∥∥G∞
i ψ

∥∥
ã,K̂m

i \K̂m−1
i

∥∥zi∥∥ã,Ω\K̂m−1
i

.

21



For J3, we can similarly show that506

|J3| ≤

(∫
K̂m

i \K̂m−1
i

|µ|
∣∣∣PH

(
χ̂m−1,m
i G∞

i ψ
)∣∣∣2 dx)1/2(∫

Ω

|µ| |PHT zi|2 dx
)1/2

=
∥∥PH

(
χ̂m−1,m
i G∞

i ψ
)∥∥

s̃,K̂m
i \K̂m−1

i

∥∥PHT zi
∥∥
s̃,Ω\K̂m−1

i
(By assumption IV.3)

≤
∥∥χ̂m−1,m

i G∞
i ψ

∥∥
s̃,K̂m

i \K̂m−1
i

∥∥T zi∥∥s̃,Ω\K̂m−1
i

≤ C1

∥∥G∞
i ψ

∥∥
s̃,K̂m

i \K̂m−1
i

∥∥zi∥∥s̃,Ω\K̂m−1
i

≤ C1

(∥∥PHG∞
i ψ

∥∥2
s̃,K̂m

i \K̂m−1
i

+ ϵ
∥∥G∞

i ψ
∥∥2
ã,K̂m

i \K̂m−1
i

)1/2(∥∥PHzi
∥∥2
s̃,Ω\K̂m−1

i

+ ϵ
∥∥zi∥∥2ã,Ω\K̂m−1

i

)1/2
.

Recalling (13) and (14), we can obtain that507

a(zi, T zi) + s(PHzi,PHT zi) ≥ C2

(∥∥zi∥∥2ã,Ω\K̂m−1
i

+
∥∥PHzi

∥∥2
s̃,Ω\K̂m−1

i

)
Providing that ϵ is small enough (ϵ ≤ 1), we have508 (∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m

i

)1/2
≤
(∥∥zi∥∥2ã,Ω\K̂m−1

i

+
∥∥PHzi

∥∥2
s̃,Ω\K̂m−1

i

)1/2
≤ 2C0 + C1

C2

(∥∥G∞
i ψ

∥∥2
ã,K̂m

i \K̂m−1
i

+
∥∥PHG∞

i ψ
∥∥2
s̃,K̂m

i \K̂m−1
i

)1/2
.

Note that509 ∥∥G∞
i ψ

∥∥2
ã,Ω\K̂m−1

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m−1

i

=
∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m

i

+
∥∥G∞

i ψ
∥∥2
ã,K̂m

i \K̂m−1
i

+
∥∥PHG∞

i ψ
∥∥2
s̃,K̂m

i \K̂m−1
i

.

We hence derive an iteration relation510 ∥∥G∞
i ψ

∥∥2
ã,Ω\K̂m

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m

i

≤

(
1 +

(
C2

2C0 + C1

)2
)−1(∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m−1

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m−1

i

)
,

which completes the proof.511

We then prove Lemma 5.8.512

Proof. We now take zi = (G∞
i − Ĝm

i )ψ and introduce a decomposition513

zi = (1− χ̂m−1,m
i )G∞

i ψ︸ ︷︷ ︸
z′
i

+(χ̂m−1,m
i − 1)Ĝm

i ψ + χ̂m−1,m
i zi︸ ︷︷ ︸

z′′
i

.

We can observe that z′′i ∈ V̂ m
i , which implies T z′′i ∈ V̂ m

i . Therefore, it is easy to see that a(zi, T z′′i ) +514

s(PHzi,PHT z′′i ) = 0 based on the definitions of G∞
i and Ĝm

i in (10) and (19). Now, our task is to estimate515

a(zi, T z′i) + s(PHzi,PHT z′i), and a starting step is516

a(zi, T z′i) + s(PHzi,PHT z′i) ≤
∥∥zi∥∥ã∥∥T z′i∥∥ã + ∥∥PHzi

∥∥
s̃

∥∥PHT z′i
∥∥
s̃.

Recalling that
∥∥T z′i∥∥ã ≤ C0

∥∥z′i∥∥ã and using a similar technique as in the proof of Lemma 5.7, we can obtain517

that518 ∥∥z′i∥∥2ã ≤ 2

∫
Ω\K̂m−1

i

|σ|
∣∣∣1− χ̂m−1,m

i

∣∣∣2 |∇G∞
i ψ|2 dx+ 2

∫
K̂m

i \K̂m−1
i

|σ|
∣∣∣∇χ̂m−1,m

i

∣∣∣2 |G∞
i ψ|2 dx
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≤ 2
∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m−1

i

+ 2

∫
Ω\K̂m−1

i

|µ| |G∞
i ψ|2 dx (by assumption IV.2)

≤ 2(1 + ϵ)
∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m−1

i

+ 4
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m−1

i

.

Moreover, we can see that
∥∥PHT z′i

∥∥
s̃ ≤

∥∥T z′i∥∥s̃ ≤ C1

∥∥z′i∥∥s̃ and519 ∥∥z′i∥∥2s̃ =

∫
Ω

|µ|
∣∣∣1− χ̂m−1,m

i

∣∣∣2 |G∞
i ψ|2 dx ≤

∥∥G∞
i ψ

∥∥2
s̃,Ω\K̂m−1

i

≤ ϵ
∥∥G∞

i ψ
∥∥2
ã,Ω\K̂m−1

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m−1

i

.

Then, we are close to the target estimate as520

C2

(∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃

)
≤ a(zi, T zi) + s(PHzi,PHT zi) = a(zi, T z′i) + s(PHzi,PHT z′i)

≤
(∥∥zi∥∥2ã + ∥∥PHzi

∥∥2
s̃

)1/2(∥∥T z′i∥∥2ã + ∥∥PHT z′i
∥∥2
s̃

)1/2
.

Suppose that ϵ is small enough, we can obtain that521

∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃ ≤

(
4C0 + C1

C2

)2(∥∥G∞
i ψ

∥∥2
ã,Ω\K̂m−1

i

+
∥∥PHG∞

i ψ
∥∥2
s̃,Ω\K̂m−1

i

)
,

and we hence derive the desired result by utilizing Lemma 5.7.522

We are now ready to prove Theorem 5.9.523

Proof. We denote zj := (G∞
j − Ĝm

j )ψ and z :=
∑Nelem

j=1 zj . We take a decomposition of z as524

z = (1− χ̂m,m+1
i )zi︸ ︷︷ ︸
z′

+ χ̂m,m+1
i z︸ ︷︷ ︸

z′′

,

where i is arbitrary chosen from 1, . . . , Nelem. Again, we can observe that supp(T z′) ∩Ki = ∅ and hence525

have526

a(G∞
i ψ, T z′) + s(PHG∞

i ψ,PHT z′) = a(Ĝm
i ψ, T z′) + s(PH Ĝm

i ψ,PHT z′) = 0,

which leads to527

a(zi, T z) + s(PHzi,PHT z) = a(zi, T z′′) + s(PHzi,PHT z′′) ≤
∥∥T z′′∥∥ã∥∥zi∥∥ã + ∥∥PHT z′′

∥∥
s̃

∥∥PHzi
∥∥
s̃.

Similarly, we can estimate
∥∥T z′′∥∥ã and

∥∥PHT z′′
∥∥
s̃ as528 ∥∥T z′′∥∥ã ≤ C0

∥∥χ̂m,m+1
i z

∥∥
ã ≤ C0

(∥∥z∥∥ã,K̂m+1
i

+
∥∥z∥∥s̃,K̂m+1

i

)
≤ C0

(
(1 +

√
ϵ)
∥∥z∥∥ã,K̂m+1

i
+

∥∥PHz
∥∥
s̃,K̂m+1

i

)
and529 ∥∥PHT z′′

∥∥
s̃ ≤

∥∥T z′′∥∥s̃ ≤ C1

∥∥χ̂m,m+1
i z

∥∥
s̃ ≤ C1

∥∥z∥∥s̃,K̂m+1
i

≤ C1

(√
ϵ
∥∥z∥∥ã,K̂m+1

i
+

∥∥PHz
∥∥
s̃,K̂m+1

i

)
.

To simplify the expression, we assume that ϵ ≤ 1 and derive that530

a(zi, T z) + s(PHzi,PHT z) ≤ c0

(∥∥z∥∥2
ã,K̂m+1

i

+
∥∥PHz

∥∥2
s̃,K̂m+1

i

)1/2(∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃

)1/2
,

where c0 depends on C0, C1, and C2. Based on assumption V, it holds that531

Nelem∑
i=1

(∥∥z∥∥2
ã,K̂m+1

i

+
∥∥PHz

∥∥2
s̃,K̂m+1

i

)
≤ Col(m+ 1)d

(∥∥z∥∥2ã + ∥∥PHz
∥∥2
s̃

)
.
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Therefore, applying the Cauchy–Schwarz inequality,532

C2

(∥∥z∥∥2ã + ∥∥PHz
∥∥2
s̃

)
≤

Nelem∑
i=1

(a(zi, T z) + s(PHzi,PHT z))

≤ c0

(
Nelem∑
i=1

(∥∥z∥∥2
ã,K̂m+1

i

+
∥∥PHz

∥∥2
s̃,K̂m+1

i

))1/2(Nelem∑
i=1

(∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃

))1/2

≤ c0
√
Col(m+ 1)d/2

(∥∥z∥∥2ã + ∥∥PHz
∥∥2
s̃

)1/2(Nelem∑
i=1

(∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃

))1/2

.

It has been shown in Lemma 5.8 that, for any i,533 ∥∥zi∥∥2ã + ∥∥PHzi
∥∥2
s̃ ≤ C∗θ

m−1
(∥∥G∞

i ψ
∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃

)
,

and we turn to provide a bound on
∑Nelem

i=1

∥∥G∞
i ψ

∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃. Note that by the definition of (19),534

C2

{∥∥G∞
i ψ

∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃

}
≤ a(G∞

i ψ, T G∞
i ψ) + s(PHG∞

i ψ,PHT G∞
i ψ)

= s(PHψ,PHT G∞
i ψ)Ki

≤
∥∥PHψ

∥∥
s̃,Ki

∥∥PHT G∞
i ψ

∥∥
s̃,Ki

≤
∥∥PHψ

∥∥
s̃,Ki

∥∥T G∞
i ψ

∥∥
s̃,Ki

≤
∥∥PHψ

∥∥
s̃,Ki

∥∥T G∞
i ψ

∥∥
s̃ ≤ C1

∥∥PHψ
∥∥
s̃,Ki

∥∥G∞
i ψ

∥∥
s̃

≤ C1

∥∥PHψ
∥∥
s̃,Ki

(√
ϵ
∥∥G∞

i ψ
∥∥
ã +

∥∥PHG∞
i ψ

∥∥
s̃

)
,

which gives that535 ∥∥G∞
i ψ

∥∥2
ã +

∥∥PHG∞
i ψ

∥∥2
s̃ ≤ c1

∥∥PHψ
∥∥2
s̃,Ki

.

where c1 depends on C1 and C2. We finally completed the proof by collecting all the estimates obtained536

above.537

We similarly denote Ĝm :=
∑Nelem

i=1 Ĝm
i , where we implicitly lift the image of Ĝm

i to V . We now define538

the multiscale solution in the local version as the solution to the following problem: for m ≥ 1,539

find ûmH ∈ V̂ m
H s.t. ∀wH ∈ V̂ m

H , a(ûmH , wH) =

∫
Ω

fwH dx, (20)

where V̂ m
H := im Ĝm ⊂ V . The remainder of this section is dedicated to proving an error estimate for the540

multiscale solution, namely Theorem 5.10 below. Once again, we need to verify the well-posedness of (20),541

or equivalently, demonstrate that542

inf
vH∈V̂ m

H

sup
wH∈V̂ m

H

a(vH , wH)∥∥vH∥∥
ã

∥∥wH

∥∥
ã

can be bounded from below by a positive constant that is independent of m and H. Thanks to Theorem 5.6,543

the inf-sup condition holds for the global problem, while a global basis and a local basis are connected544

through ψ. Those are the main ingredients to prove the inf-sup condition for the local problem. First, for545

any vH ∈ V̂ m
H , we can find ψ such that vH = Ĝmψ. Next, We choose v′H = G∞ψ ∈ V∞

H . Recalling the546

inf-sup stability on V∞
H , we can find w′

H = G∞ϕ ∈ V∞
H such that a(v′H , w

′
H) ≥ Λ∞

∥∥v′H∥∥
ã

∥∥w′
H

∥∥
ã. Similarly,547

if we denote wH = Ĝmϕ, we have548

a(vH , wH) = a(v′H , w
′
H) + a(v′H , wH − w′

H) + a(vH − v′H , wH)

≥ Λ∞
∥∥v′H∥∥

ã

∥∥w′
H

∥∥
ã −

∥∥v′H∥∥
ã

∥∥wH − w′
H

∥∥
ã −

∥∥vH − v′H
∥∥
ã

∥∥wH

∥∥
ã.

Therefore, if we can show that549 ∥∥(G∞ − Ĝm)ψ
∥∥
ã ≤ η

∥∥G∞ψ
∥∥
ã, (21)
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where η is a small constant, we can finish the proof. The reason is that we now have 1/2
∥∥vH∥∥

ã ≤
∥∥v′H∥∥

ã ≤550

3/2
∥∥vH∥∥

ã and 1/2
∥∥wH

∥∥
ã ≤

∥∥w′
H

∥∥
ã ≤ 3/2

∥∥wH

∥∥
ã by the smallness of η. Consequently, we can deduce that551

a(vH , wH) ≥ (Λ∞/4− 9η/4− 3η/2)
∥∥vH∥∥

ã

∥∥wH

∥∥
ã.

By comparing (21) with Theorem 5.9, our remaining task is to demonstrate
∥∥PHψ

∥∥
s̃ can be bounded by552 ∥∥G∞ψ

∥∥
ã. According to Lemma 5.4, it not harmful to assume that ψ ∈ V with

∥∥ψ∥∥ã ≤ Cinv

∥∥PHψ
∥∥
s̃. Taking553

T ψ as a test function, we can obtain that554

a(G∞ψ, T ψ) + s(PHG∞ψ,PHT ψ) = s(PHψ,PHT ψ).

The estimate (14) says that555

C ′
∥∥PHψ

∥∥2
s̃ − C ′′

∥∥ψ∥∥2ã ≤ s(PHψ,PHT ψ)

where C ′ → 1 and C ′′ → 0 as Υ → ∞. Therefore, if Υ is large enough, we can show that556

c0
∥∥PHψ

∥∥2
s̃ ≤

(
C ′ − C ′′C2

inv

)∥∥PHψ
∥∥2
s̃ ≤ C ′

∥∥PHψ
∥∥2
s̃ − C ′′

∥∥ψ∥∥2ã
≤ s(PHψ,PHT ψ) ≤

∥∥G∞ψ
∥∥
ã

∥∥T ψ∥∥ã + ∥∥PHG∞ψ
∥∥
s̃

∥∥PHT ψ
∥∥
s̃

≤ c1

√
1 + C2

inv

(∥∥G∞ψ
∥∥2
ã +

∥∥PHG∞ψ
∥∥2
s̃

)1/2(∥∥ψ∥∥2ã + ∥∥PHψ
∥∥2
s̃

)1/2
,

where c0 and c1 are positive constants and the last line follows the techniques in the previous proofs. We557

hence obtain that558 ∥∥ψ∥∥ã/Cinv ≤
∥∥PHψ

∥∥
s̃ ≤ c2

(∥∥G∞ψ
∥∥2
ã +

∥∥PHG∞ψ
∥∥2
s̃

)1/2
.

Meanwhile, utilizing Poincaré inequality, we can see that559 ∥∥PHG∞ψ
∥∥
s̃ ≤

∥∥G∞ψ
∥∥
s̃ ≤ CpoH

−1
∥∥G∞ψ

∥∥
ã.

Hence, in conjunction with Theorem 5.9, we establish the existence of such η in (21). Once the inf-sup560

condition is validated, the existence and uniqueness of the multiscale solution are guaranteed. Moreover, we561

can employ Céa’s lemma to derive the error estimate. Specifically, we obtain562 ∥∥u− ûmH
∥∥
ã ≤ c3

∥∥u− vH
∥∥
ã ≤ c3

(∥∥u− u∞H
∥∥
ã +

∥∥u∞H − vH
∥∥
ã

)
,

where vH = Ĝmψ ∈ V̂ m
H if u∞H = G∞ψ. We have already shown that563 ∥∥u∞H − vH

∥∥
ã ≤ c4H

−1(m+ 1)d/2θ(m−1)/2
∥∥u∞H ∥∥

ã.

Finally, we present the main theorem of this section.564

Theorem 5.10. There exist positive constants Υ′ and ϵ′ such that for any Υ ≥ Υ′ and ϵ ≤ ϵ′, the solution565

to (20) exists and is unique. Moreover, the following error estimate holds:566 ∥∥u− ûmH
∥∥
ã ≤ C∗

(
1 +H−2(m+ 1)d/2θ(m−1)/2

)∥∥f∥∥s̃∗ ,
where the positive constant C∗ and θ is independent of H and m with θ < 1.567

6 Conclusions568

We have proposed a multiscale computational method for solving sign-changing problems, utilizing the569

framework of CEM-GMsFEMs in the construction of multiscale basis functions. However, a direct applica-570

tion of the original CEM-GMsFEM encounters an immediate challenge during the construction of auxiliary571

spaces, as the generalized spectral problems can become ill-defined due to a non-positive definite right-hand572

25



bilinear form. We have addressed this issue by replacing the coefficient with its absolute value in this step573

and explained that this modification complies with the T-coercivity theory. Moreover, we have focused on574

the relaxed version of the CEM-GMsFEM, which is more implementation-friendly as it eliminates the need575

to solve saddle-point problems. The numerical experiments conducted have highlighted several advantages576

of the proposed method: (1) the flexibility that coarse meshes do not require to resolve with interfaces, (2)577

the accuracy that remains stable under low regular exact solutions, and (3) the robustness in high contrast578

coefficient profiles. Due to technical difficulties, such as the nonlocality of the reflection operator T , the final579

error estimates have been proved under several stringent assumptions, primarily related to coarse element580

partitions and coefficient contrast. However, we emphasize that the potential of the proposed method has581

been demonstrated through numerical experiments, and we firmly believe that the theoretical results can582

be further improved by relaxing the assumptions and developing more sophisticated analysis techniques.583

The current implementation of the proposed method did not exploit the parallelism in constructing mul-584

tiscale basis functions, and hence the computation time in the offline stage is awkwardly long, even longer585

than generating reference solutions on the fine mesh. Therefore, we plan to investigate the parallelization586

in the shared memory architecture of the offline stage in the future. We emphasize that the application of587

computational multiscale methods to sign-changing problems is much more appealing in large-scale simula-588

tions. As a matter of fact, the algebraic linear systems in this situation are no longer positive definite, which589

renders iterative solvers less efficient, even with preconditioning techniques. Consequently, in this context of590

direct solvers, the reduction of degrees of freedom by multiscale methods is expected to be more beneficial.591
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[41] A. Målqvist and D. Peterseim, Numerical homogenization by localized orthogonal decomposition,708

vol. 5 of SIAM Spotlights, Society for Industrial & Applied Mathematics (SIAM), Philadelphia, PA,709

2021.710

[42] G. W. Milton and A. V. Cherkaev, Which elasticity tensors are realizable?, Journal of Engineering711

Materials and Technology, 117 (1995), pp. 483–493, https://doi.org/10.1115/1.2804743.712

[43] P. Ming and S. Song, Error estimate of multiscale finite element method for periodic media revisited,713

Multiscale Modeling & Simulation. A SIAM Interdisciplinary Journal, 22 (2024), pp. 106–124, https:714

//doi.org/10.1137/22m1511060.715

[44] S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of trans-716

mission problems with sign changing coefficients, Journal of Computational and Applied Mathematics,717

235 (2011), pp. 4272–4282, https://doi.org/10.1016/j.cam.2011.03.028.718

[45] L. A. Poveda, J. Galvis, and E. T. Chung, A second-order exponential integration constraint energy719

minimizing generalized multiscale method for parabolic problems, Journal of Computational Physics, 502720

(2024), p. 112796, https://doi.org/10.1016/j.jcp.2024.112796.721

[46] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of722

refraction, Science, 292 (2001), pp. 77–79, https://doi.org/10.1126/science.1058847.723

[47] R. Verfürth, A posteriori error estimation eechniques for finite element methods, Oxford University724

Press, Oxford, UK, Apr. 2013, https://doi.org/10.1093/acprof:oso/9780199679423.001.0001.725

[48] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and µ, So-726

viet Physics Uspekhi, 10 (1968), pp. 509–514, https://doi.org/10.1070/pu1968v010n04abeh003699.727

[49] H. Weyl, Ueber die asymptotische Verteilung der Eigenwerte, Nachrichten von der Gesellschaft der728

Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1911 (1911), pp. 110–117, http:729

//eudml.org/doc/58792.730

[50] C. Ye and E. T. Chung, Constraint energy minimizing generalized multiscale finite element method731

for inhomogeneous boundary value problems with high contrast coefficients, Multiscale Modeling &732

Simulation. A SIAM Interdisciplinary Journal, 21 (2023), pp. 194–217, https://doi.org/10.1137/733

21m1459113.734

[51] C. Ye, H. Dong, and J. Cui, Convergence rate of multiscale finite element method for various735

boundary problems, Journal of Computational and Applied Mathematics, 374 (2020), p. 112754, https:736

//doi.org/10.1016/j.cam.2020.112754.737

[52] L. Zhao and E. T. Chung, An analysis of the NLMC upscaling method for high contrast problems,738

Journal of Computational and Applied Mathematics, 367 (2020), p. 112480, https://doi.org/10.739

1016/j.cam.2019.112480.740

29

https://doi.org/10.1063/1.4709436
https://doi.org/10.1063/1.4709436
https://doi.org/10.1063/1.4709436
https://doi.org/10.1146/annurev-matsci-070616-124118
https://doi.org/10.1137/21m1406179
https://doi.org/10.1090/S0025-5718-2014-02868-8
https://doi.org/10.1115/1.2804743
https://doi.org/10.1137/22m1511060
https://doi.org/10.1137/22m1511060
https://doi.org/10.1137/22m1511060
https://doi.org/10.1016/j.cam.2011.03.028
https://doi.org/10.1016/j.jcp.2024.112796
https://doi.org/10.1126/science.1058847
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1070/pu1968v010n04abeh003699
http://eudml.org/doc/58792
http://eudml.org/doc/58792
http://eudml.org/doc/58792
https://doi.org/10.1137/21m1459113
https://doi.org/10.1137/21m1459113
https://doi.org/10.1137/21m1459113
https://doi.org/10.1016/j.cam.2020.112754
https://doi.org/10.1016/j.cam.2020.112754
https://doi.org/10.1016/j.cam.2020.112754
https://doi.org/10.1016/j.cam.2019.112480
https://doi.org/10.1016/j.cam.2019.112480
https://doi.org/10.1016/j.cam.2019.112480

	Introduction
	Preliminaries
	Methods
	Numerical experiments
	Flat interface model
	Periodic square inclusion model
	Periodic cross-shaped inclusion model
	Random inclusion model

	Analysis
	Global version
	Local version

	Conclusions

