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A synchronverter-based magnitude
phase-locked loop

Pietro Lorenzetti, Florian Reissner, and George Weiss, Member, IEEE

Abstract— A magnitude phase-locked loop (MPLL) is a
system that synchronizes its output signal in frequency,
phase, and magnitude with the dominant sinusoidal com-
ponent of its input signal. We propose a novel MPLL design
based on the model of a synchronverter (i.e., an inverter
that behaves towards the power grid like a synchronous
generator). The synchronverter model is detached from
its usual three-phase power electronics environment, and
transformed into a (single phase) MPLL with a wide pull-
in range and great noise rejection properties. We prove
synchronization under reasonable conditions. Extensive
simulation results are provided to validate its performance,
and to compare it with existing solutions.

Index Terms— Magnitude phase locked loop, synchron-
verter, virtual synchronous machine, synchronization, sin-
gular perturbations, pendulum equation.

I. INTRODUCTION

A phase-locked loop (PLL) is a system that synchronizes
its output signal in frequency, as well as in phase, with
the dominant sinusoidal component of the input signal [15].
When a PLL is able to synchronize also in magnitude, it
is referred to as a magnitude phase-locked loop (MPLL).
MPLLs and PLLs find applications in many fields, such as
communications (adaptive notch filters), estimation problems,
signal processing, control, and power electronics, see, e.g.,
[7], [14], [16], [20], [26], [42]. Most of the PLL architectures
presented in the literature share a common design (see Fig. 1),
which includes three main blocks: a phase detector (PD), a
loop filter (LF), and a voltage-controlled oscillator (VCO) [7],
[19], [20]. In its simplest implementation, the PD consists of
a multiplier, which generates a signal containing the phase
difference between the input signal and its estimated phase.
This signal is then low-pass filtered through the LF, and used
as input to the VCO. (More details on this simple model are in
[20, Chap. 1]). Depending on the requirements (e.g., accuracy,
robustness, noise rejection), more involved PD schemes can be
implemented. We refer the reader to [14], [16], [36], [48] for
an overview of the most recent techniques.

When the PLL input signal is three-phase, as it usually
is in power system applications, it is common to use the
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Fig. 1: Block diagram of a standard PLL [7], [19], [20], with
input r and output θ, composed of a phase detector (PD), a
loop filter (LF), and a voltage-controlled oscillator (VCO).

Park transform (see Sec. II) to formulate the synchronization
problem in the dq plane [45], [48]. Indeed, the Park transform
maps (purely) sinusoidal signals with a certain reference
frequency to constants, making the design and the analysis
more straightforward. A similar approach can be used also for
single phase signals. Nevertheless, the design becomes more
involved due to the need (in the PD block) of an orthogonal
signal generator (OSG) [4], [5], [13]. An ideal OSG is a
system that receives a single phase signal as input and outputs
a signal orthogonal to its input (in the sense that cosωt
becomes sinωt for all ω > 0). This system can be used to
compute the dq components of single phase signals. Most of
the single phase PLLs proposed in the literature are equipped
with an OSG (an approximation of the ideal one), see, for
instance, [11], [14]–[16], [43].

Rigorous stability results for PLLs can be found in [38],
where density functions (see [37]) are used to assess stability
for a simplified PLL, in [48] where passivity-based arguments
are employed, in [36], where Lyapunov techniques are used,
and in [26], [39], where more involved mathematical tools are
used. Linearized models are studied [14], [15].

Recently, in [45] the structural resemblance between droop
controllers [18], [23] and PLLs has been pointed out. This
property has been exploited to operate a (slightly modified)
classical droop controller for inverters as a PLL, without a
dedicated synchronization unit. (Related findings are in [46].)
Moreover, it has been shown how the droop-based PLL recov-
ers the popular enhanced PLL (EPLL) from [19], [20] when
the inverter output impedance is resistive, see [45, Sec. IV-
B]. Using their words: “Droop controllers and PLLs can be
improved and further developed via adopting advancements
in the other field.” In this spirit, we aim at designing a novel
MPLL with a wide pull-in range (in the sense of [25]), and
great noise immunity properties, based on synchronverters.

Synchronverters [24], [27], [33], [35], [47] are a class of
virtual synchronous machines: inverters controlled to imitate
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the behavior of synchronous generators (SG). Their control
algorithm implements several SG-related features (e.g., droop
and inertia), making them quite popular for power systems
applications [1], [3], [10], [12], [41], [44]. A detailed stability
analysis of a grid-connected synchronverter can be found in
[6], [34] for constant excitation current, and in [27] for variable
excitation current. An important step in the evolution of the
synchronverter algorithm is in [46], where it is shown that if
the synchronverter is not injecting any active or reactive power
into the electric grid, its internal synchronous voltage is able
to synchronize with the grid voltage (in phase, frequency, and
amplitude), without the need for a dedicated synchronization
unit. Thus, the synchronverter is by itself a three-phase MPLL
(with a narrow pull-in range). When it injects power, the syn-
chronverter still synchronizes, but the amplitude and phase of
the synchronous internal voltage will, in general, be different
from the amplitude and phase of the grid voltage.

In this paper, we propose a (single phase) MPLL
formed by an OSG combined with a modified fourth
order synchronverter model S, adapted from [24], [27], [34],
[35], [47]. Further, we design “jumping” subsystems that bring
the MPLL frequency and amplitude close to the dominant
input signal frequency and amplitude, dramatically enlarging
the pull-in range of the proposed MPLL. These blocks are
connected as shown in Fig. 2. As remarked in [45], the main
intuition behind the idea of using a synchronverter as a MPLL,
is to regard the reference signal as the grid voltage, and
the MPLL output as the synchronous internal voltage. Then,
thanks to the self-synchronizing property of the synchronverter
model, the MPLL output will track the dominant sinusoidal
component of the reference. Contrary to usual grid-connected
synchronverters, here the reference is single-phase, so that an
OSG is needed to generate its dq components.

Our design is advantageous compared to others in the
following aspects: rapid convergence to synchronism (thanks
to “jumping features” described in Subsect. III-C), wide pull-
in range, and strong noise immunity. The pull-in range of a
PLL (also called capture range) is the maximum deviation of
the initial frequency guess ω(0) from the dominant reference
frequency ωR such that for any initial phase θ(0) and initial
amplitude of the PLL output signal, in the absence of noise,
the PLL will synchronize its output to the reference signal.

Results related to this work were presented in our con-
ference papers [28], [29], where a nonlinear internal model,
based on our MPLL, was used to solve the reference tracking
problem for a stable linear and uncertain plant P. In [29],
a rudimentary OSG has been employed and the “jumping”
feature (see Subsect. III-C) was not yet developed. For these
reasons, in [29] tracking is ensured only for ωR in a narrow
range. In [28] the pull-in range is dramatically increased,
thanks to the OSG algorithm from Subsect. III-A and a
rudimentary version of the “frequency jumping” feature from
Subsect. III-C. (Amplitude jumping was not considered in
[28].) However, no stability analysis is provided in [28], [29].
Here, we show that by taking P = 1, a robust MPLL with a
very large pull-in range can be obtained. Under (reasonable)
simplifying assumptions, we perform a stability analysis of
the proposed (nonlinear) MPLL, using results on the pendulum

equation, together with tools from singular perturbation theory.
Furthermore, we present a frequency-adaptive tuning, which
guarantees (at least in theory) the convergence of the estimate
for any possible reference frequency. (More details on the
connections between this work and [28], [29] are in Sect. VI.)

The paper is organized as follows. In Sect. II we recall
the third order self-synchronizing synchronverter model. In
Sect. III we describe the architecture of the proposed MPLL.
In Sect. IV, under a series of simplifying assumptions, we
rewrite the closed-loop system as an interconnection of a
pendulum-type “fast” system with a “slow” system comprising
an integrator and a low-pass filter, as in singular perturbation
theory [22], to study the closed-loop system stability. In
Sect. V we explain how to adaptively tune the controller
parameters. In Sect. VI we show how to connect multiple
copies of the proposed MPLL to track several components
of the input signal. Moreover, we extend the stability analysis
of the MPLL to the internal model-based controller from [28].
Finally, in Sect. VII we present extensive simulation results to
show the performance of the proposed MPLL.

II. A THIRD ORDER SYNCHRONVERTER MODEL

We briefly present here a third order self-synchronizing
synchronverter model that is obtained by simplifying (elim-
inating two fast state variables) the fifth order model in [27],
[34], [35], [46], [47]. This third order synchronverter model
is the core of the proposed MPLL. As already mentioned,
a synchronverter is an inverter controlled such that it behaves
like an SG. Thus, its mathematical model resembles that of an
SG, but the variables (rotor inertia, rotor angle, rotor angular
velocity, excitation flux) are virtual. We will briefly explain
here how to derive a (simplified) synchronverter model.

Let us denote by θ the virtual rotor angle and by ω = θ̇ its
angular velocity (these are state variables of our model). We
introduce the (unitary) Park transformation, see, e.g., [34],

U(θ) =

√
2

3

 cos θ cos
(
θ− 2π

3

)
cos

(
θ+ 2π

3

)
− sin θ − sin

(
θ− 2π

3

)
− sin

(
θ+ 2π

3

)
1/
√
2 1/

√
2 1/

√
2

. (1)

Given a vector v ∈ R3, e.g., a three-phase grid voltage, the
first two components of U(θ)v are called the dq coordinates
of v, denoted, respectively, by vd, vq . For all the signals v that
we consider, the last component of U(θ)v is zero. By taking
θ = 0 and selecting the first two components of U(0)v, we
obtain the α, β components of v:

vα =

√
2

3

[
1 −1

2
− 1

2

]
v, vβ =

√
2

3

[
0

√
3

2
−

√
3

2

]
v. (2)

We denote by m the excitation flux (the rotor field) and by
E the synchronous internal voltage, whose dq components are

Ed = 0 , Eq = −mω,

see, for instance, [34, eq. (2.5)]. Let vd, vq be the dq coor-
dinates of the grid voltage v, and id, iq be the dq coordi-
nates of the stator current i. Then, assuming purely inductive
impedance jωL, j =

√
−1, for the stator windings,

(Ed + jEq)− (vd + j vq) = jωL(id + j iq).
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The above is obtained from [34, eq. (2.3)], with Rs = 0, by
setting i̇d = 0, i̇q = 0.

Let Te denote the electric torque acting on the rotor due
to the stator currents. From conservation of energy consider-
ations, it follows that

Te = −miq.

From Newton’s second law, we obtain the swing equation

Jω̇ = Tm − Te −Dp(ω − ωnom),

where J > 0 is the virtual inertia of the rotor, Tm > 0 is the
nominal active mechanical torque from the prime mover, ωnom

is the nominal grid frequency, and Dp > 0 is the frequency
droop constant. Let Q = vqid−vdiq denote the reactive power
flowing to the grid, then m is regulated by

ṁ = k(Qset −Q),

where Qset is the reactive power reference and k > 0. (This
corresponds to (11) in [24], with Dq = 0.)

Combining the above equations with the “self-synchronizing
conditions” introduced in [46] (see also [29, Sect. III]), i.e.,
Tm = 0 and Qset = 0, we obtained the reduced self-
synchronizing synchronverter model:

θ̇ = ω, (3a)
Q = vqid − vdiq, (3b)

ṁ = − kQ, (3c)
Jω̇ = miq −Dp(ω − ωnom), (3d)

ωLid = −mω − vq, ωLiq = vd. (3e)

This is not yet the internal model S from Fig. 2. S will be
introduced in Sect. III by modifying (3) to suit our needs.

Remark 2.1: The reduced self-synchronizing synchron-
verter model (3) is based on the models from [27], [34], [47]
with Tm = 0 and Qset = 0. The main differences are:

a) The algebraic computations of the stator currents id, iq
using (3e), which, unlike in [27], [34], [35], [47], are
not treated as states here. For this reason, we regard (3)
as a reduced (third order) synchronverter model.

b) We have set the stator resistance to zero and the voltage
droop coefficient also to zero. We have eliminated all the
safety limitations, as they are not needed in our context.

According to our experience (acquired through extensive
simulations), using a reduced model in place of a “full order
model” does not affect the performance of the proposed
MPLL. Moreover, it greatly simplifies the stability analysis
of the closed-loop system in Fig. 2, presented in Sect. IV.

III. THE ARCHITECTURE OF THE PROPOSED MPLL
The intuition of regarding (3) as an internal model stems

from the following observation. Assume that the synchron-
verter described in (3) is connected to the electric grid with a
fundamental frequency (the grid frequency) ωR. Then, given
an initial guess ω(0) (usually ω(0) = ωnom) “sufficiently
close” to ωR, the synchronous internal voltage E will (after
a synchronization process) follow in amplitude, frequency and
phase the fundamental component of the grid voltage v. Our
idea is to exploit this synchronization property, by replacing

OSG
rdq,LPF

ω
LPF
, θ

S

rdq

∆ωest

r (v) y (E)

MPLL

freq./ampl.
jumping Rest

Fig. 2: The proposed MPLL formed by an OSG, a synchron-
verter model S, and a frequency (and amplitude) jumping
block. The signal r is the reference. The orange letters refer
to the analogy with the synchronverter signals: E is the
synchronous internal voltage, and v is the grid voltage.

the grid voltage v with the reference signal r and by regarding
the synchronverter internal voltage E as the output signal of
an MPLL. In the following, we describe in detail the building
blocks of the proposed MPLL from Fig. 2.

A. The OSG algorithm
In a usual three-phase power grid application, the self-

synchronizing synchronverter algorithm receives (among its
inputs) vd and vq , which can be instantaneously computed
from v using the Park transformation (1). This cannot be done
here, since r is a single-phase (scalar) signal. This is a common
problem in single-phase power systems applications, and it can
be solved by means of an OSG. Several OSG-implementations
can be found in the literature [4], [5], [11], [13], [16], [42],
[43]. Among them, we have opted for the one shown in
Fig. 3, which resembles the OSG based on the second order
generalized integrator proposed in [11]. (Strictly speaking, the
term OSG is used in the literature to denote the transformation
from single-phase to αβ components. For convenience, we
have included here also the αβ to dq transformation (9) and
the output filter in our OSG.)

Consider a reference signal r given by

r(t) = R sin(ωRt+ γR) +N sin(ωN t+ γN ), (4)

where R, N, ωR, ωN > 0 and γR, γN ∈ [−π, π). We think
of the larger sinusoid with frequency ωR as the signal to be
tracked, while the other component of r represents the noise.
For the “jumping” subsystem to be able to work correctly, we
will assume that the noise is “small” in the following sense:

N

R
<

ωN

max{ωR, ωN}
. (5)

Denote θR = ωRt+ γR and θN = ωN t+ γN . An ideal OSG
should provide the following αβ components of r:

rα(t) = R sin(θR) +N sin(θN ), (6a)
rβ(t) = −R cos(θR)−N cos(θN ). (6b)

These correspond to applying (2) to the three-phase signal

r̃ =

√
2

3
R

 sin(θR)
sin(θR − 2π

3 )
sin(θR + 2π

3 )

+

√
2

3
N

 sin(θN )
sin(θN − 2π

3 )
sin(θN + 2π

3 )

 .

While obtaining rα is trivial, obtaining the correct rβ for
any ωR, ωN would require using the Hilbert transform, which
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αβ
dq

rαr
rβ

θω
LPF

rdqOSG

1

s+p

LPF
rdq,LPF

Fig. 3: The block diagram of the OSG from Fig. 2.

is not causal [40, p. 191]. Thus, we compromise for a good
approximation of rβ using the procedure described below.

With reference to Fig. 3, the following happens.
1) rβ is obtained by using a quasi-integrator with transfer

function 1
s+p , with p > 0 small compared to ωR.

The quasi-integrator introduces a phase shift of ap-
proximately −π

2 , and the stable pole −p prevents the
presence of unwanted DC-bias in rβ . (A pure integrator
could introduce DC-bias that would not decay.) A further
scaling of rβ is needed to ensure that the amplitudes of
rα and rβ are equal. This is done by multiplying the
output of the filter 1

s+p with ωLPF, which is our current
estimate for ωR (see Subsect. III-B). This results in

rβ(t) ≈ − ωLPF

ωR
R cos(θR)−

ωLPF

ωN
N cos(θN ). (7)

If ωLPF ≈ ωR, which is a reasonable assumption when
the “jumping” subsystem in Subsect. III-C has already
performed its duty (a short time after starting the sys-
tem), then the first component in (7) is correct with a
good approximation, while the second component (the
noise) is wrongly scaled, but we shall see that this
is usually not a problem. Thus, after the “jumping”
subsystem has obtained a good approximation of ωR

and R, we will often assume (based on (7)) that

rβ(t) = −R cos(θR)−
ωLPF

ωN
N cos(θN ). (8)

2) The dq components of r, i.e., the vector rdq = [rd, rq]
⊤

is obtained from rαβ = [rα rβ ]
⊤ employing the standard

αβ to dq transformation:[
rd
rq

]
=

[
cos θ sin θ
− sin θ cos θ

] [
rα
rβ

]
. (9)

We introduce the angles

δ := θ − θR, δN := θ − θN (modulo 2π) ,

so that
δ̇ = ω − ωR δ̇N = ω − ωN .

Applying (9) to the signals rα = r and rβ from (8)
yields, after a routine computation,

rd = −R sin δ − N

2

(
1 +

ωLPF

ωN

)
sin δN

+
N

2

(
1− ωLPF

ωN

)
sin(θ + θN ) , (10)

rq = −R cos δ − N

2

(
1 +

ωLPF

ωN

)
cos δN

+
N

2

(
1− ωLPF

ωN

)
cos(θ + θN ) . (11)

3) The above signal rdq = [ rdrq ] is low-pass filtered to
remove undesired oscillations, as shown in Fig. 3, ob-
taining rdq,LPF =

[ rd,LPF
rq,LPF

]
. The idea is that the first terms

in the above expressions for rd and rq (which depend
on δ) are very low frequency terms, practically constant,
because the “jumping” subsystem ensures that, after a
short initial transient, δ̇ = ω − ωR is very small (when
compared to ωR). The other terms in (10), (11) oscillate
at the frequencies ω−ωN and ω+ωN , so that the LPF
(which has a low corner frequency when compared to
ωR) will attenuate them (unless ω − ωN is very small).
Thus, (10) and (11) imply that

rd,LPF = −R sin δ+nd , rq,LPF = −R cos δ+nq , (12)

where nd and nq are small noise signals containing the
frequencies |ω−ωN | and ω+ωN . Here, by “small” we
mean that |nd| and |nq| are much smaller than R.

Our simulation results in Sect. VII confirm the effectiveness
of the OSG shown in Fig. 3.

B. The synchronverter-based internal model S
Using the notation introduced above, we adjust the reduced

synchronverter model (3) to suit our needs. For this, we define

x
1
2
ρ =

x
4
√
x2 + ρ2

, (13)

where ρ ≥ 0. When ρ > 0 is “sufficiently small”, the above
function is a good approximation of the function

x
1
2
0 =

x√
|x|

.

With this notation, the internal model S is given by

θ̇ = ω, (14a)
Q = rq,LPFid − rd,LPFiq, (14b)

ṁ = − kQ
1
2
ρ , (14c)

Jω̇ = miq −Dp(ω − ωLPF), (14d)
ωLPFLid = −mω − rq,LPF, ωLPFLiq = rd,LPF (14e)

τ ω̇LPF = − ωLPF + ω , (14f)

with ρ > 0. The inputs to this model are rd,LPF and rq,LPF, while
k, J,Dp are positive parameters. Note that we have added the
last equation (14f), with τ > 0, to describe a very simple
low-pass filter (LPF) used to generate ωLPF from ω.

Remark 3.1: In principle, we would like to use Q
1
2
0 in (14c).

However, this function has infinite derivative at Q = 0. This
lack of smoothness causes trouble in the stability analysis in
Sect. IV. By contrast, x

1
2
ρ is infinitely differentiable for ρ > 0.

According to our experience, ρ should be chosen a few orders
of magnitude less than R2

ωRL and then our system works just
as for ρ = 0. In our simulations in Sect. VII we have chosen

ρ = 10−3 R2

ωRL
.

We define the output y of our MPLL to be the following
signal coming from S:

y = mω sin θ . (15)
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This output should track the dominant sinusoidal component
of r. The block diagram of S is shown in Fig. 4.

We now explain the modifications that led from (3) to
(14), keeping in mind that the model (3) is meant for a
synchronverter working under the following assumptions: the
amplitude of v from Sect. II (which corresponds to R here)
is in a certain known range, and ωR ≈ ωnom. This is not the
case in our MPLL, where (at least in principle) R can be of
any order, there is no nominal frequency, and ω(0) = ωLPF(0)
(i.e., our initial guess on ωR) can be rather far from ωR.

The intuition behind (14c) is as follows: in steady state m
is proportional to R. To ensure that our MPLL can work with
a wide range of possible values R, we would like that in a
transient, after a sudden change of R, ṁ should also depend
linearly on R. In other words, regardless of the amplitude of
R, we want the transition of m to a new steady state value to
take approximately the same amount of time. Since Q depends
quadratically on R, this can be achieved by replacing (3c)
with (14c). We have noticed that this modification allows our
MPLL to work correctly even when R changes several orders
of magnitude.

The effect of ωnom in the swing equation (3d) is eliminated
by high-pass filtering the term ω−ωnom. This results in (14d),
which can be written also as Jω̇ = miq − DpωHPF, where
ωHPF = ω − ωLPF, see the block diagram in Fig. 4. Thus, the
stabilizing effect of the droop is still present during transients,
but it disappears at steady-state since ω = ωLPF there.

Finally, (14e) has been modified from (3e) by replacing ω
with the filtered ωLPF, which yields better results in simulations.

C. The “jumping” subsystems
To considerably enlarge the pull-in range of our MPLL, we

have added two subsystems: the “frequency jumping” and the
“amplitude jumping”. The inputs of these subsystems are rd
and rq , while the outputs are the frequency correction estimate
∆ωest and the amplitude estimate Rest.

1) The frequency jumping: By periodically estimating the
frequency deviation ωR − ω using the signals rd and rq , we
instantaneously update the controller internal frequency ω if
ωR − ω is large. The details:

Using (6) and (7), we define the vector

rmod
αβ =

[
rα

ωR

ωLPF
rβ

]
= rmod

αβ,R + rmod
αβ,N , (16)

where rmod
αβ,R is the dominant component and rmod

αβ,N is the noise
component. The component rmod

αβ,R = R [sin(θR) − cos(θR)]
⊤

rotates (counter-clockwise) on a circle with radius R, with
angular velocity ωR. We have

rmod
αβ,N = N

[
sin(θN ) − ωR

ωN
cos(θN )

]⊤
.

If the assumption (5) holds, then

∥rmod
αβ,N∥ = N

√
sin2(θN ) +

ω2
R

ω2
N

cos2(θN )

≤ N max

{
1,

ωR

ωN

}
< R. (17)

We introduce the vector signals rmod
dq , rmod

dq,R and rmod
dq,N by

applying the αβ to dq transformation from (9) to the vectors
rmod
αβ , rmod

αβ,R and rmod
αβ,N , respectively. Thus,

rmod
dq = rmod

dq,R + rmod
dq,N .

The norms of these vectors are not affected by the αβ to dq
transformation, so that from (17)

∥rmod
dq,N∥ < ∥rmod

dq,R∥ = R.

It follows from here that the angles of the vectors rmod
dq and

rmod
dq,R differ by less than 90◦:∣∣arg rmod

dq − arg rmod
dq,R

∣∣ <
π

2
. (18)

By simple geometric arguments it can be shown that the
scaling used in (16) to define rmod

αβ will change the angle of
rmod
αβ by at most 90◦:∣∣arg rαβ − arg rmod

αβ

∣∣ <
π

2
. (19)

This difference will be preserved when applying the αβ to dq
transformation (9). Combining (18) and the dq version of (19)
we obtain that ∣∣arg rdq − arg rmod

dq,R

∣∣ < π. (20)

In Fig. 5 the vector rmod
dq,R is represented. The dq frame is

rotating at the angular velocity −ω with respect to the αβ
frame, see (9). rmod

αβ,R rotates (counter-clockwise) at an angular
velocity ωR. As a consequence, rmod

dq,R has angular velocity
∆ω = ωR − ω. We want to estimate this ∆ω, but the signal
rmod
dq,R is not available, only the noisy and unscaled signal rdq

is available. We claim that this is almost as good as having
rmod
dq,R, if we use the right algorithm.

Let us denote by nmod
cross,R the number of times that rmod

dq,R

crosses the d or q axes in a given interval of time Tjump (to
be chosen later). We count each counter-clockwise crossing
as +1, and each clockwise crossing as −1. (This is like four
times the winding number of the plot of rmod

dq around zero in
the time period Tjump.) We have that

1

4
nmod
cross,R ≈ ∆ω

2π
Tjump , (21)

with an approximation error of at most 1
4 . But we cannot

count nmod
cross,R, because the signal rmod

dq,R is not available, so
we have to work with ncross, which is the number of times
that rdq crosses the d or q axes. Due to (20) we have∣∣ncross − nmod

cross,R

∣∣ < 2. Combining this with (21) we get that
1
4ncross ≈ ∆ω

2π Tjump, with an approximation error of at most
3
4 . From here, the difference ∆ω can be estimated by

∆ωest = ncross
π

2Tjump
.

According to the earlier stated error estimates,
|∆ωest −∆ω| < π

Tjump
. To make this error small, we

choose Tjump to be much larger than our current estimate for
the period of r, i.e., Tjump >> 2π/ω.
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idq

θ

yrdq,LPF

θωLPF

S

id =
−mω − rq,LPF

ωLPFL

iq =
rd,LPF

ωLPFL

∫
sin(·)

m

ω̇ = 1

J
(miq −DpωHPF)

Q
ṁ = −kQ

1

2Q = −rd,LPFiq + rq,LPFid

−

1

τs+1

+

ωHPF

ωLPF

ω

ω

Fig. 4: The detailed block diagram of the internal model S from Fig. 2, given by (14), (15). The blocks with blue frame can
have their state reset to a new value by the jumping subsystems through the inputs ∆ωest and Rest (not shown here).

d

q

rmod

dq,R

ωR− ω

Fig. 5: The vector rmod
dq,R rotates on the circle of radius R,

with angular velocity ωR − ω. The vector rmod
dq describes a

complicated trajectory, but the number of times it crosses the
positive d axis is almost the same as for rmod

dq,R.

If |∆ωest| is larger than a certain threshold ε > 0, then the
MPLL internal frequency ω and the LPF state ωLPF (blocks
with a blue frame in Fig. 4) are updated according to

[ω]new = ω +∆ωest, [ωLPF]new = ωLPF +∆ωest . (22)

This update takes place after each time interval of length Tjump

(unless |∆ωest| < ε). In addition, the internal frequency ω also
jumps if no jump has occurred for at least 5s and |nmod

cross| > 10.
This second condition, resulting from experience acquired
through simulations, helps the system to recover faster when,
as a result of an earlier jump, ω is driven to low frequencies.
As shown in our simulations, the “jumping” subsystem in-
creases tremendously the pull-in range of our MPLL. (In our
experience, after at most three jumps, with ε = 0.01ωR, no
more jumps are needed.) We always assume that ε << ωR.

Remark 3.2: Our “jumping” subsystem is remotely related
to the discrete-time identifier in [8]. This identifier consists
of a linear regressor, which, at any jump time, updates the
internal model parameters, depending on the new samples.

2) The amplitude jumping: Using rd and rq , the amplitude
of the reference signal r can be estimated as

Rest = LPF
(√

r2d + r2q

)
, (23)

where LPF (·) denotes a first order low-pass filter with time
constant τr. In order to decrease the influence of noise on the
OSG tuning, an amplitude jump is performed if Rest/(mω) >

1.3 or Rest/(mω) < 0.75, i.e., if the estimated amplitude from
(23) is more than 130% or less than 75% of the amplitude of
y. When a jump is executed, m is updated as

m =
Rest

ω
. (24)

The parameters k and L are tuned according to (49) in Sect. V.

IV. MPLL STABILITY ANALYSIS

We assume that the “frequency jumping” subsystem has
achieved its aim of bringing ω and ωLPF into an ε-neighborhood
of ωR, and we shall do the stability analysis for what happens
afterwards. Inspired by singular perturbation theory, we will
decompose the closed-loop system from Fig. 2 (ignoring the
“jumping” subsystems) into two subsystems: a fast pendulum-
like system, governed by (14a) and the swing equation (14d),
and a slow reduced model, containing the integrator (14c) and
the LPF (14f), as shown in Fig. 6. The algebraic equations
(14b) and (14e) belong to the slow system. As we will discuss
later, such a decomposition is justified by choosing τ large
enough in (14f) and k sufficiently small in (14c). Given the
high complexity involved in the model, e.g., the non-linearity
of S and of the OSG, we will work under some (reasonable)
simplifying assumptions.

A. Derivation of a simplified model for our MPLL

We derive here a simplified model for the MPLL shown in
Fig. 2. This model will then be used for the stability analysis.

Assumption 1: The reference signal r is composed of two
sinusoidal signals, as in (4), satisfying the assumption (5).

Assumption 2: The “frequency jumping” subsystem has
achieved its aim, so that for some specified ε > 0,

ω, ωLPF ∈ (ωR − ε, ωR + ε) , ε << ωR . (25)

Assumption 3: The OSG performs as expected, so that
rd, rq are given by (10), (11) and, hence, (12) holds.

This assumption implies that we can ignore the dynamics
of the OSG from Fig. 3 in our stability analysis.
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fast subsystem

(pendulum)

(δ,ω)

r

mω
LPF

Qω

−

+

0
slow subsystem

(m,ω
LPF
)

Fig. 6: The decomposition of our MPLL (without frequency
and amplitude jumping) into a fast and a slow subsystem.

Using (12), we rewrite id and iq from (14e):

id =
1

ωLPFL
[−ωm+R cos δ − nq] ,

iq =
1

ωLPFL
[−R sin δ + nd] .

(26)

Similarly, we can rewrite Q from (14b) as

Q =
1

ωLPFL

[
ωmR cos δ −R2 + nQ

]
, (27)

where nQ is a small noise signal containing the frequencies
0, |ω ± ωN | and 2|ω ± ωN |. To obtain the statement about
nQ, we have assumed that δ is practically constant (frequency
zero) and by “small” we mean that |nQ| << R2.

Using the above expressions, we can rewrite the internal
model S from (14) as a set of differential equations:

ṁ = − k

(
1

ωLPFL

[
ωmR cos δ −R2 + nQ

]) 1
2

ρ

, (28a)

τ ω̇LPF = − ωLPF + ω , (28b)

δ̇ = ω − ωR , (28c)

Jω̇ = − mR

ωLPFL
sin δ +

mnd

ωLPFL
−Dp(ω − ωLPF). (28d)

Here, we have used the notation from (13) and the differential
equation (28c) is in the tangent space of the unit circle T,
since δ is measured modulo 2π. The state of the system (28)
is [m ωLPF δ ω]⊤, and the state space is

X = (0,∞)× (ωR−ε, ωR+ε)×T× (ωR−ε, ωR+ε). (29)

Indeed, the frequency jumping feature from Subsection III-C
will bring ω and ωLPF into the interval (ωR− ε, ωR+ ε). If for
all t ≥ t0, ω is in this interval and ωLPF(t0) is in this interval,
then clearly ωLPF(t) cannot escape from it for t ≥ t0. If m
starts in (0,∞), then it cannot escape from (0,∞), because,
for very small m, ṁ becomes positive (since |nQ| < R2).

B. The system (28) as a singular perturbation model

In order to study the stability of the system (28) in the
absence of the noise (N = 0), we rewrite it as a standard
singular perturbation model, according to the guidelines of [21,
Chapt. 11], [22, Chapt. 7], [31, App. A], and [32, Sect. III].
The first step is to find the equilibrium points of (28).

Proposition 4.1: If N = 0, then the system (28), with state
space X from (29), has a unique equilibrium point, given by

(me, ωe
LPF

, δe, ωe ) =

(
R

ωR
, ωR, 0, ωR

)
. (30)

Moreover, at the equilibrium point we have y = r, i.e., the
MPLL output y is exactly tracking the reference r.

Proof: If N = 0, then also nd = 0 and nQ = 0. It
is obvious from (28b), (28c) that at an equilibrium point
(me, ωe

LPF
, δe, ωe) we must have

ωe = ωe
LPF

= ωR.

Substituting this into (28d), we get that sin(δe) = 0, so that
either δe = 0 or δe = π and, accordingly, cos(δe) = 1 or −1.
The second option leads to ṁ > 0 (according to (28a)), so
that it can be eliminated. Thus, we conclude that δe = 0.

Finally, from (28a) we see that at equilibrium we have
ωeme cos(δe)−R = 0, whence

me =
R

ωR
. (31)

Summarizing, we have found that for N = 0, (28) has a unique
equilibrium point in X , given by (30).

The last statement of the proposition follows by comparing
(4) and (15), with m = me, δ = δe = 0, ω = ωe = ωR. □

Following [21, Chap. 11], [32, Sect. III], we introduce the
deviations from equilibrium values:

m̃ = m−me, ω̃LPF = ωLPF − ωe , ω̃ = ω − ωe, (32)

the scalars M > µ > 0, and the sets

U =
{
[ m
ωLPF

] ∈ R2 | µ ≤ m ≤ M, ωR − ε ≤ ωLPF ≤ ωR + ε
}
,

Ũ = U −
[

me

ωe
LPF

]
=

[
µ− R

ωR
,M − R

ωR

]
× [−ε, ε], (33)

chosen such that me ∈ (µ,M), assuming that a rough initial
estimate of R and ωR exists, giving an estimate of me based
on (31). Then

[
me

ωR

]
∈ U . We also introduce the functions

h̃
([

m̃
ω̃LPF

]
, [ δω̃ ]

)
=

=

[
−
(

R

(ω̃LPF+ωR)L

[
(ω̃+ωR)

(
m̃+ R

ωR

)
cos δ−R

]) 1
2

ρ

−ω̃LPF+ω̃

]
,

f̃
([

m̃
ω̃LPF

]
, [ δω̃ ]

)
=

[
ω̃

−Dp
J (ω̃−ω̃LPF)−

R

(
m̃+ R

ωR

)
J(ω̃LPF+ωR)L

sin δ

]
,

with the function x
1
2
ρ as in (13).

Assumption 4: We assume that k, 1
τ are small and of the

same order of magnitude. In other words, there exists γ > 0
(independent of k) such that

1

τ
= γk .

This assumption matters when we study (28) as k → 0.
Under Assumption 4, for N = 0, we can rewrite the system

(28) using the new “slow” timescale υ := kt as

d

dυ

[
m̃
ω̃LPF

]
=

[
1 0
0 γ

]
h̃

([
m̃
ω̃LPF

]
,

[
δ
ω̃

])
,

k
d

dυ

[
δ
ω̃

]
= f̃

([
m̃
ω̃LPF

]
,

[
δ
ω̃

])
.

(34)
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The above is a standard singular perturbation model for small
k > 0, see [21, Sect. 11.5]. Thus, we consider m̃ and ω̃LPF to
be “slow” variables, while δ and ω̃ to be “fast”.

Following [21, Sect. 11.5], [32, Sect. III], we are searching
for a function Ξ̃ ∈ C1(Ũ ;R2) such that

f̃
([

m̃
ω̃LPF

]
, Ξ̃

([
m̃

ω̃LPF

]))
= 0.

Thus, Ξ̃ gives the temporary equilibrium points of the fast
variables, as a function of the slow variables considered to be
“frozen”. It can be easily checked that Ξ̃ must be given by

Ξ̃

([
m̃
ω̃LPF

])
=

[
λ
0

]
, λ ∈

(
−π

2
,
π

2

)
, (35)

where

sinλ :=
Dp(ω̃LPF + ωR)ω̃LPFL

R
(
m̃+ R

ωR

) =
DpωLPFω̃LPFL

Rm
. (36)

(We have excluded the endpoints λ = ±π/2, because there
Ξ would not be differentiable.) A necessary and sufficient
condition for the existence of Ξ̃ is∣∣∣∣∣∣Dp(ω̃LPF + ωR)ω̃LPFL

R
(
m̃+ R

ωR

)
∣∣∣∣∣∣ < 1 ∀

[
m̃
ω̃LPF

]
∈ Ũ . (37)

Remark 4.2: A sufficient condition for (37) to hold is

Dp(ωR + ε)εL < Rµ, (38)

with ε > 0 from Assumption 2.
Assumption 5: We assume that the parameters of our prob-

lem satisfy (38). Hence, Ξ̃ ∈ C1(Ũ ,R2) is well-defined.
We define the shifted fast variables[

δf
ω̃f

]
=

[
δ
ω̃

]
− Ξ̃

([
m̃
ω̃LPF

])
=

[
δ − λ
ω̃

]
. (39)

With this notation, we reformulate (34) (which corresponds to
N = 0) like [21, eqs. (11.35), (11.36)]:

d

dυ

[
m̃
ω̃LPF

]
=

[
1 0
0 γ

]
h̃

([
m̃
ω̃LPF

]
,

[
δf
ω̃f

]
+ Ξ̃

([
m̃
ω̃LPF

]))
,

(40a)

k
d

dυ

[
δf
ω̃f

]
= f̃

([
m̃
ω̃LPF

]
,

[
δf
ω̃f

]
+ Ξ̃

([
m̃
ω̃LPF

]))

− k

∂Ξ̃

([
m̃
ω̃LPF

])
∂

[
m̃
ω̃LPF

] [
1 0
0 γ

]
h̃

([
m̃
ω̃LPF

]
,

[
δf
ω̃f

]
+ Ξ̃

([
m̃
ω̃LPF

]))
,

(40b)
which has an equilibrium point in ([ 00 ] , [

0
0 ]).

Using standard arguments, see [21, Ch. 11], [22, Ch. 7]
or [31, Sect. III], we identify the reduced model and the
boundary-layer system associated to (40). Since ω̃f = ω̃, we
will stop using the notation ω̃f . The reduced (slow) system is
obtained by taking

[
δf
ω̃

]
= [ 00 ] in (40a), yielding

d

dυ

[
m̃
ω̃LPF

]
=

[
−
(

R

(ω̃LPF+ωR)L

[
ωR

(
m̃+ R

ωR

)
cosλ−R

]) 1
2

ρ

−γω̃LPF

]
, (41)

where λ is as in (36). The state [m̃ ω̃LPF]
⊤ of the reduced

model is in the set Ũ defined in (33).

ω̃
LPF

m̃
0

Ũ

ε

µ−me M −me

m0(ω̃LPF)

m̃ = cω̃LPF

ε−

V = a

Fig. 7: Graphical representation of the proof of Prop. 4.3. The
green rectangle is one where V is constant. Its right edge is
to the right of the curve m̃ = m0(ω̃LPF) and its left edge is to
the left of the curve. The black lines are trajectories of (41).

The boundary-layer (fast) system associated to (40) is
obtained by rewriting (40b) in the original fast time scale t
and taking k = 0, which yields

d

dt

[
δf
ω̃

]
=

[
ω̃

−Dp
J (ω̃−ω̃LPF)−

R

(
m̃+ R

ωR

)
J(ω̃LPF+ωR)L

sin(δf+λ)

]
, (42)

where
[

m̃
ω̃LPF

]
∈ Ũ are treated as fixed parameters.

C. Stability analysis of the reduced (slow) model (41).

According to the material in the previous subsection, the
state of the reduced model (41) is in Ũ ⊂ R2, as defined in
(33), and the differential equation of m̃ is

dm̃

dv
= −

(
R

(ω̃LPF + ωR)L
[ωR(m̃+me) cosλ−R]

) 1
2

ρ

,

where λ is a function of m̃ and ω̃LPF, see (36).
Proposition 4.3: Under Assumption 5, the reduced model

(41) is globally asymptotically stable (GAS) on its state space
Ũ from (33).

Proof: A key observation is that dω̃LPF

dv = −γω̃LPF is a
GAS autonomous system, independently of m̃. Thus, for each
ω̃LPF ∈ [−ε, ε], we can compute the unique m0(ω̃LPF) ∈
[µ−me,M −me] at which dm̃

dv (m̃, ω̃LPF) = 0, from

(m0 +me) cosλ = me . (43)

By algebraic manipulations, using (36), this reduces to

R2(m0 +me)2 −D2
p(ω̃LPF + ωR)

2ω̃2
LPF

L2 = R2(me)2 ,

whence

m0(ω̃LPF) =

√
D2

p(ω̃LPF + ωR)2L2

R2
ω̃2

LPF
+ (me)2 −me .

(Notice that m0(0) = 0, as expected, since (0, 0) must be an
equilibrium point.) We choose a number c > 0 such that

c ω̃LPF > m0(ω̃LPF) ∀ ω̃LPF ∈ (0, ε].

Let us define the Lyapunov-like function

V
([

m̃
ω̃LPF

])
= max {|m̃|, c |ω̃LPF|} .
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(This is not a Lyapunov function in the usual sense, because
it is not continuously differentiable.) For any a > 0, the set
of states (m̃, ω̃LPF) where V ≤ a is a rectangle centered at
zero. It is easy to check that at any boundary point of such a
rectangle, the flow is pointing strictly inwards. Indeed, on the
top and the bottom edge, this is clear because ω̃LPF is decaying
exponentially. The left edge of the rectangle is to the left of
the curve m0 and the right edge is to the right of the curve
m0, see Fig. 7. Hence, m̃ must increase on the left edge, and
it must decrease at the right edge. Thus, any trajectory starting
on the left or the right edge of the rectangle will enter into
the rectangle. It follows that d

dυV < 0 everywhere in Ũ .
It follows from the above argument that for any initial state

of the system (41) in Ũ , V converges to a limit v0 ≥ 0. Since
|ω̃LPF|→ 0, it follows that |m̃|→ v0. Thus, the state (m̃, ω̃LPF)
converges to either (v0, 0) or to (−v0, 0). The limit point must
be an equilibrium point of (41). This implies that v0 = 0. Thus,
the equilibrium state (0, 0) is GAS. □

D. Stability analysis of the boundary-layer system (42).
Recall that δf = δ−λ. To study its stability, we rewrite the

boundary-layer (fast) system (42) as a pendulum-like equation:

δ̈f +
Dp

J
δ̇f +

Rm

JωLPFL
sin (δf + λ) =

Dp

J
ω̃LPF , (44)

where [ m
ωLPF

] ∈ U and λ are fixed parameters.
To rewrite the above as a pendulum equation, we introduce

the (dimension-less) timescale σ:

σ := t

√
Rm

JωLPFL
. (45)

Then, using the expression (36) for sinλ, we can rewrite (42)
as a damped pendulum equation given by

d2δ

dσ2
+ α

dδ

dσ
+ sin δ = sinλ, (46)

where

α = Dp

√
ωLPFL

JRm
. (47)

For a comprehensive study of pendulum-like dynamical sys-
tems and their connection to PLLs and synchronous machines,
we recommend the book by Reitmann et al. [39].

A dynamical system is said to be almost globally asymp-
totically stable (aGAS) if, for almost every initial state, the
corresponding system trajectory converges to an equilibrium
point (there may be many), see, e.g., [2], [37]. This is the best
global stability property that we can hope to hold for a system
that has more than one equilibrium point.

The following observations about equation (46) will be
needed. This equation is usually studied in the phase space
R2 consisting of all the pairs (δ, dδ

dσ ). It is easy to see that
there is an infinite set of equilibrium points for (46), and they
are of the form (δe, 0), where sin δe = sinλ. By linearization,
it is easy to see that the equilibrium points with cos δe > 0 are
exponentially stable, and the equilibrium points with cos δe <
0 are unstable. The linearization cannot have eigenvalues with
zero real part, because | sin δ| < 1 and α > 0. In addition to
equilibrium points, the equation (46) may also exhibit limit

cycles in the phase space. Hayes [17] has shown that this
cannot happen if the damping is strong enough, namely

α > 2 sin

(
λ

2

)
. (48)

It is most convenient to study the stability of (42) in the
state space T× R, i.e., to consider the angle δf modulo 2π.

Proposition 4.4: Under Assumption 5, if the constant α
from (47) satisfies (48), then for almost every initial state
(δf0, ω̃0) ∈ T × R, the trajectories of the boundary-layer
(fast) system (42) converge to the stable equilibrium point
(δf , ω̃) = (0, 0).

Proof: From the Böhm-Hayes theorem [39, Theorem 5.3.3],
under our assumptions, every state trajectory of (46) in the
phase space R2 converges to one of the system’s equilibrium
points (stable or unstable). According to the observations
before the proposition (the absence of imaginary eigenvalues),
we can now argue exactly as in the proof of [34, Lemma 3.5]
to conclude that, for almost every initial state in R2, the state
trajectory of (46) converges to a stable equilibrium point.

There is a simple, smooth, and invertible transformation
(consisting of the scaling (45) and the shift δ = δf + λ)
by which the state trajectories of (42), regarded with the
state space R2, are mapped into the state trajectories of (46).
When we consider (42) with the angle δf measured modulo
2π, all of its stable equilibrium points (described before the
proposition, in terms of the corresponding stable equilibria of
(46)) collapse into (0, 0). Similarly, all the unstable equilibria
of (42) collapse into (δu−λ, 0), where δu is the unique angle
with sin δu = sinλ and δu ∈

(
π
2 − λ, 3π

2 − λ
)

(considered as
an arc on the circle T). Hence, almost all the state trajectories
of (42) converge to the stable equilibrium point (0, 0). □

E. Stability analysis of the model (28).

Recall that under Assumptions 1–3, the equations (28)
represent our internal model S and, in fact, our entire MPLL.
We present here our main stability result for this system.

Theorem 4.5: Under Assumptions 1–5, there exists k∗ > 0
such that for all k ∈ (0, k∗] the following holds:

If N = 0, then the (unique) equilibrium point from (30)
is locally exponentially stable. Moreover, when the system is
at this equilibrium point, then r = y, i.e., the output of the
MPLL tracks the reference signal r.

Proof: Our plan is to use [21, Theorem 11.4] (here, f and g
do not depend on t and ε), concerning the exponential stability
of a singularly perturbed system. We have already recast our
system (28) as a singularly perturbed system in (40) in the
spirit of [21, Chapt. 11]. For this, we have introduced new state
variables in (32), (39), so that the equilibrium point of (40) is at
the origin. Our functions

[
1 0
0 γ

]
h̃, f̃ and Ξ̃ correspond to what

is denoted in [21, Chapt. 11] by f , g, and h, respectively, while
our small parameter k corresponds to ε in [21, Chapt. 11].

An elementary computation shows that the linearization of
(41) around the equilibrium point (0, 0) is of the form

d

dv

[
m̃
ω̃LPF

]
=

[
− R√

ρL ∗
0 −γ

] [
m̃
ω̃LPF

]
,
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where ∗ denotes an irrelevant entry. Thus, it follows that the
reduced model (41) is (locally) exponentially stable. Besides,
from the observations written before Proposition 4.4, the
boundary-layer system (42) is (locally) exponentially stable,
and it is easy to see that this holds uniformly in (m̃, ω̃LPF) when
(m̃, ω̃LPF) are in a small neighborhood of the origin. Hence,
all the conditions in [21, Theorem 11.4] are satisfied, and we
obtain that the origin is an exponentially stable equilibrium
point for (40). Going back to the original state variables m,
ωLPF, δ, and ω, we conclude that the system (28) has an
exponentially stable equilibrium point given by (30). □

Remark 4.6: Theorem 4.5 is a local result, which is not
satisfactory for an MPLL. Indeed, the jumping subsystems
from Subsect. III-C may bring ω, ωLPF and m close to the
equilibrium value, but the initial value of the angle δ is
random. This is why Proposition 4.4 is important: it tells us
that if the slow variables m and ω̃LPF are practically constant
(this is the case if Assumption 4 holds) and if the parameters
satisfy the Hayes condition (48), then for almost every initial
condition the fast variables δ and ω will converge to the correct
values and, hence, the system state will get very close to
its equilibrium point. After this, thanks to Theorem 4.5, the
system will remain near the stable equilibrium point, i.e., it
will be synchronized in frequency, phase, and amplitude. The
small deviations will be due to noise in the input signal.

Remark 4.7: Unfortunately, there are no available results in
the literature for aGAS singularly perturbed systems, which
could strengthen the stability result from Theorem 4.5. Pre-
liminary results on this class of systems can be found in [30],
but the theory is not yet mature enough to be applied here.

V. ADAPTIVE TUNING OF THE MPLL PARAMETERS

In usual synchronverter applications, the operating fre-
quency is in a narrow interval around 50 Hz (in Europe)
and the amplitude of the line voltage is around 230

√
3 Volts

[27, Sect. II]. Given these two values, the parameters of
the synchronverter model can be tuned so that stability is
guaranteed, as described in [27, Sect. VI.A]. However, the
synchronverter-based MPLL proposed in this paper is expected
to operate over a wide range of frequencies/amplitudes, which
are not known a priori. Therefore, in order to guarantee its
stability, we propose here an adaptive tuning of its parameters.

Based on our previous experience with the synchronverter
algorithm [24], [27], [34], [35], [47], we choose the nominal
parameters for a sine wave with amplitude 300 and frequency
50Hz. The nominal values for J,Dp, k, L, τ are:

Jn = 0.02, Dp,n = 1.21, kn = 0.2, Ln = 0.05, τn = 0.5.

We mention that, with respect to usual synchronverter appli-
cations, the inertia J is lower. The frequency droop Dp is
chosen such that the linearized version of (44) has two real
poles, which coincide. With this choice, we guarantee critical
damping, and thus, the fastest convergence without overshoot.

We introduce a frequency-scaling term ωsc and an
amplitude-scaling term rsc given by

ωsc =
ω

2π · 50
, rsc =

Rest,LPF

300
,

where ω (in rad
sec ) is the internal frequency of S and Rest,LPF

is obtained as in (23), but using rdq,LPF in place of rdq . Recall
the jumping subsystems from Subsect. III-C. Whenever ω, ωLPF

and m are updated (according to (22) and (24)), the parameters
of (28) are scaled as follows:

J =
Jn
ω4
sc

, Dp =
Dp,n

ω3
sc

, k = kn ·
√
ωsc · rsc,

L = Ln · r2sc, τ =
τn
ωsc

.
(49)

In (24) we often use Rest,LPF in place of Rest.
The parameters of the OSG from Fig. 3 also need to be

updated. Denoting the time constant of the low-pass filter at
the output of the OSG by τr, we choose as nominal values

pn = 2, τr,n = 0.05,

and we update p and τr according to the law:

p = pn · ωsc, τr =
τr,n
ωsc

.

Further, in case of a frequency jump, the state of the quasi
integrator inside the OSG is updated as

rβ = rβ,prωsc,

where rβ,pr is the value before the frequency jump. Finally,
the time constant for the jumping subsystem is chosen (and
updated) according to: Tjump = 0.6/ωsc.

VI. SOME APPLICATIONS OF THE PROPOSED MPLL

A. Using the MPLL for estimating several fundamental
components of the input signal

In some applications, it might be relevant to estimate several
sinusoidal components of r, where

r(t) =

n∑
i=1

Ri sin(ωR,it+ γR,i),

with rapidly decreasing amplitudes. Suppose that we want to
track the first nR components of r. To solve this problem, nR

copies of the MPLL from Fig. 2 can be connected as shown
in Fig. 8, where, for simplicity, we have chosen nR = 3.
Each MPLL receives the reference r minus a signal h̄j which
removes those components from r that are already tracked
by another MPLL: h̄j =

∑
k ̸=j

yksk where sk = 1 if the k-th

MPLL is synchronized and sk = 0 otherwise. The output of
the multi-MPLL is given by yΣ =

∑
yksk. The algorithm

works as follows. First, MPLL1 is connected and the upper
switch is open. Then, once y1 has converged to the first
sinusoidal component of r, h̄2 = h̄3 = y1. The upper switch is
closed. In this way, MPLL2 is connected and, at steady-state,
y2 converges to the second sinusoidal component of r such
that h̄1 = y2, h̄2 = y1 and h̄3 = y1 + y2. Finally, MPLL3 is
connected and synchronizes.
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-

Fig. 8: The connection of three copies of the MPLL from
Fig. 2 when nR = 3 in Subsect. VI-A.

OSG

rdq

ωLPF, θ

u

S

∆ωest

P

freq./ampl.
jumping

Cs

r

y

ydq

Rest

Fig. 9: Closed-loop system formed by the linear stable plant
P in feedback with the controller Cs. The signal r is the
reference to be tracked by the output y of P. There are two
copies of the OSG from Fig. 3: one for r and one for y. In S
here (14d), (14e) are replaced with (51), (50) respectively.

B. Using the proposed MPLL as an internal model
controller for reference tracking

The MPLL from Fig. 2 can be also employed to solve the
reference tracking problem for a stable unknown linear plant
P, when the reference r is a sinusoid with uncertain frequency,
as described in [28], [29]. For this application, the closed-
loop system has to be formed as shown in Fig. 9, where y
is the output of the plant. In this configuration, yd and yq
need to be computed using an additional OSG. The idea here
is that, thanks to the robustness of S to amplitude changes
and phase shifts in y, caused by P, the closed-loop system
from Fig. 9 behaves similarly to the MPLL from Fig. 2. The
stability analysis becomes more involved in this case, due to
the presence of the unknown plant P. In these settings, the
currents id, iq in S have to be computed from

ωLPFLid = yq − rq, ωLPFLiq = rd − yd, (50)

(instead of (14e)) and the swing equation (14d) in S becomes

Jω̇ = − ydid + yqiq
ωLPF

−Dp(ω − ωLPF). (51)

We present an outline of how the arguments from Sect. IV
can be modified to study the stability of the system from Fig.
9. The signal y is now the output of P, given by

y = |P(jω)|mω sin(θ + argP(jω)), (52)

where |P(jω)|, argP(jω) are, respectively, the magnitude and
the phase shift of the plant transfer function P(s) at s = jω.
Since P is unknown, we cannot recover the dq components
of y from the states of S, and we need an additional OSG.

Assumption 6: We assume that the dynamics of P can be
replaced with its steady-state input-output map. We further
assume that P(s) ̸= 0 for s = ±jωR.

Under Assumptions 2, 3, and 6, for y from (52) we have
yα = y and yβ = −|P(jω)|mω cos(θ+argP(jω)). Applying
(9) to the above signals yields

yd = |P(jω)|mω sin(argP(jω)),

yq = − |P(jω)|mω cos(argP(jω)).
(53)

Assumption 7: We assume that for ω, ωLPF ∈ (ωR−ε, ωR+
ε), with ε > 0 small (as in Assumption 2), we have

|P(jω)| ≈ |P(jωR)| = Ar ,

argP(jω) ≈ argP(jωR) = φr .

Remark 6.1: Assumptions 2 and 7 can be found also in [9],
even though no “jumping” feature is employed there.

Under the above assumption, we can rewrite (53) as follows:

yd = Armω sinφr , yq = −Armω cosφr . (54)

The sinusoidal reference r is as in (4), with N = 0. Thus,
rd and rq are as in (12), with, respectively, nd = 0 and
nq = 0. (There is no need to low-pass filter the outputs of
the OSG here.) Following Sect. IV, we can derive the closed-
loop system equations, similar to (28), with the difference that
here yd and yq are as in (54) (replacing, respectively yd = 0
and yq = −mω), and Te has to be computed using

P = ωTe = rdid + rqiq.

Therefore,

id =
1

ωLPFL
(Armω cosφr +R cos δ) ,

iq =
1

ωLPFL
(−Armω sinφr −R sin δ) ,

Q =
1

ωLPFL

[
RArmω cos(δ + φr)−R2

]
,

Te =
RArm

ωLPFL
sin(δ + φr).

Using the above, we obtain the following (simplified) descrip-
tion of the closed-loop system from Fig. 9:

ṁ = − k

(
RArmω cos(δ + φr)−R2

ωLPFL

) 1
2

ρ

,

τ ω̇LPF = − ωLPF + ω ,

δ̇ = ω − ωR ,

Jω̇ = −Dp(ω − ωLPF)−
RArm

ωLPFL
sin(δ + φr).

(55a)

(55b)

(55c)

(55d)

From here, using the same singular perturbation arguments of
Sect. V, the stability of the reduced (slow) model and of the
boundary-layer (fast) system can be studied (as in Subsect. IV-
C and Subsect. IV-D) and conclusions on the overall stability
of (55) can be obtained when k and 1

τ are “sufficiently” small.
Remark 6.2: Extensive simulation results for adaptive inter-

nal models with an architecture similar to Fig. 9 are in [28],
[29]. With respect to [28], [29], the novelty of the architecture
presented here is the amplitude jumping feature described in
Sect. III-C and the adaptive tuning described in Sect. V.
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VII. SIMULATION RESULTS

We present simulation results for the full system from Fig.
2 in Simulink, for different choices of ωR, ωN , R and N .
In all simulations, the MPLL has been initially tuned for
Rest(0) = Rest,LPF(0) = 300 and ω(0) = 100 · 2π rad/s.
To compare the tracking quality of the MPLL, we define
the normalized tracking error ε =:

√
2y−r

R . For convenience,
we show frequencies in Hz and not in rad/s, and we denote
fR = ωR/(2π) and fN = ωN/(2π). We use the noise to
signal ratio η = N/R and the ratio of the noise frequency to
the signal frequency ν = ωN/ωR.

A. Convergence towards a reference signal

We demonstrate here the capability of the MPLL to track
reference signals with R ∈ [3; 30,000] and fR ∈ [1; 10,000]
Hz. Fig. 10 shows the normalized tracking error ε (a), the
MPLL frequency f = ω/(2π) (b) and the amplitude scaling
rsc (c) for fR = 1 Hz. The MPLL performs 2 or 3 jumps
in all cases before converging and, apart from the simulation
where R = 600, the system initially jumps to an even lower
frequency of 0.5Hz, before again jumping back to a frequency
close to 1Hz. After 70 seconds, the system tracks fR closely.
Fig. 10(a) shows that after frequency convergence, another
50 cycles are required for the MPLL to adapt to the correct
amplitude of r. Fig. 11 shows results for fR = 50Hz.

Fig. 12 shows results for fR = 10,000Hz. Interestingly, only
one jump is performed for the system to be sufficiently close
to fR. After the jump, occurring at t = 0.3s, both frequency
and normalized tracking error quickly converge.

Remark 7.1: We emphasize that the adaptive tuning pre-
sented in Sect. V has been employed in all our simulations.
Without it, the pull-in range of the proposed MPLL would
drastically decrease, and the system may become unstable
when operated far from its “nominal tuning” range. Indeed,
without adaptive tuning, we have shown in our conference
paper [28] that synchronization is possible only for ωR ∈
[0.25ωn, 4ωn], where ωn = ω(0) indicates the nominal value
according to which the algorithm in [28] is tuned. As shown
above, the algorithm proposed in this paper has a much
wider pull-in range. For instance, the above simulations show
convergence for ωR ∈ [0.01ω(0), 100ω(0)].

B. Noise rejection

In order to investigate the robustness of the MPLL to noise,
we have simulated the system for various combinations of N
and ωN when the reference signal is given by R = 300 and
fR = 100Hz. In Fig. 13 we plot a pixel for each choice of
η and ν. The color of a pixel is defined by the rms-value of
the normalized tracking error Erms =

√
LPF (ε2) that the

system achieves after converging, where LPF (·) denotes a
low pass filter with time constant 1

ωR
. A purple line indicates

(5). We note that the for the values of η and ν that fulfill (5),
namely pixels that are on the left of the purple line, Erms is
low. When η is much larger than what is defined by (5), the
tracking error becomes large. At ν = 1, meaning ωR = ωN ,
the amplitude of the MPLL adapts to R+N because noise and
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(a) The normalized tracking error ε. We see that ε decays exponen-
tially once f ≈ fR, i.e., from t = 80s (approximately).
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(b) The frequency f of the MPLL when tracking a 1Hz signal. The
system jumps 2 to 3 times to reach fR = 1Hz.
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(c) The estimated amplitude Rest (continuous line) and the scaling
factor rsc (step function) used for tuning of the MPLL.

Fig. 10: MPLL performance for tracking a sine wave with
fR = 1Hz and R ∈ [3; 30,000], without noise.
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(a) The normalized tracking error ε (for fR = 50Hz) converges,
almost independently of R, within 25 oscillations to a low value.
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(b) After an initial jump, the frequency f = ω/(2π) converges within
about 50 cycles.

Fig. 11: MPLL performance for tracking a sine wave with
fR = 50Hz and R ∈ [3; 30,000], without noise.
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(a) The normalized tracking error ε decays exponentially for t > 0.3s.
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(b) The frequency f of the MPLL when tracking a 10kHz signal.
The system jumps once and then after ≈ 50 cycles, f ≈ fR.

Fig. 12: MPLL performance for tracking a signal of 10kHz
and R ∈ [3; 30,000], without noise.
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Fig. 13: A map where the color of each pixel denotes the low-
pass filtered rms-value of the normalized tracking error after
convergence. The purple line indicates the right boundary of
the region satisfying condition (5).

reference signal cannot be distinguished, such that the actual
tracking error is proportional to N .

In order to further illustrate performance of our MPLL
under the presence of noise, Fig. 14 shows some results with
fR = 200Hz and for different fN where (5) holds. The
system is stable and converges quickly after one initial jump
in all cases. As already seen in Subsect. VII-A, frequency
convergence is faster than amplitude convergence. This follows
from the inherent two time-scales behavior of the proposed
MPLL: the boundary-layer (fast) system (42) represents the
frequency dynamics, while the reduced (slow) model (41)
represents the amplitude dynamics of the MPLL output signal.

C. MPLL and QPLL compared
We give here a comparison of our MPLL’s performance

with another example from the literature: the quadrature PLL
(QPLL) from [19]. Since the QPLL does not use adaptive
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(a) The normalized tracking error ε when noise is present.
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(b) The frequency of the MPLL quickly converges to fR = 200Hz.
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Fig. 14: MPLL performance for fR = 200 Hz and various
amplitudes and frequencies of the noise, all satisfying (5).

tuning features such as the jumping mechanism detailed in
this paper, we do not expect it to work far away from its
tuning point. In Fig. 15 we show the obtained tracking results
for the QPLL when tuning was done for R = 300 and
fR = 100Hz. In this case, the relevant parameters (see [19])
are: µf = 200π, µs = µc = 300. The way the QPLL is
constructed, the QPLL frequency f = ω/(2π) is very volatile.
If only signal tracking is of interest, f is not a good indicator
for the QPLL’s performance: The frequency f may have very
large fluctuations (by a multiple of the reference frequency)
while r is still relatively well tracked. We show in Fig. 15 both
indicators: We plot Erms (left) and Wrms for R ∈ [30; 30,000]

and fR ∈ [10; 1,000]Hz, where Wrms =

√
LPF

(
f−fR
fR

)2

,
similar to Erms. It can be seen that the QPLL is able to track
most signals relatively well, while interestingly there are some
combinations of R and fR that lead to very large tracking
errors. The indicator Wrms performs poorer. We did the same
tests with the MPLL, however we do not plot these results
here, since both graphs for Erms and Wrms were entirely
blue (meaning that the MPLL performed much better).

Similar results can be obtained if noise is added to r: Fig. 16
shows the performance of the QPLL when in each simulation
ωN = 0.75ωR and N = 0.5R. Clearly, the system behavior
deteriorates when compared to the noiseless scenario. The
same simulations conducted with our MPLL give the results
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Fig. 15: Tracking performance of the QPLL in [19] without
noise: Erms (left) and Wrms (right) for different R and ω.
The error Erms is small, even if the frequency is fluctuating.
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Fig. 16: Tracking performance of the QPLL in [19] with noise:
Erms (left) and Wrms (right) for different R and ω.

shown in Fig. 17. Due to the system inertia, the frequency
error Wrms (right) is very low in all cases. A very light
tracking error Erms is distinguishable for lower frequencies
(left). We show plots of ω, r and y when fR = 160Hz and
R = 475.5 in Fig. 18. The top plots of Fig. 18a and 18b show
the performance of the MPLL and the bottom parts show the
performance of the QPLL. The QPLL actually reproduces r
including the noise signal.

D. Tracking of several frequencies

We show here an example when r is not composed of
a single frequency. We took r =

∑3
1 Rj sin(ωjt) where

ω = [2 3 4] · 200π, R = [2 1.5 1] · 300, ωN = 600 · 2π
and N = 150. Fig. 19a shows e = r − yΣ in gray, with
yΣ as defined in Sect. VI-A. Fig. 19b shows the frequency
of the three MPLLs as a solid line and their expected target
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Fig. 17: Tracking performance of the proposed MPLL with
noise: Erms (left) and Wrms (right) for different R and ω.
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at t = 0.3s (top). The QPLL shows a highly fluctuating f .
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(b) r (red) and y (blue) for the MPLL (top) and the QPLL (bottom).
After jumping at t = 0.3s, y converges to r in the case of the MPLL,
while the QPLL produces a more noisy output.

Fig. 18: Comparison of the MPLL and the QPLL for fR =
160Hz, R = 475.5, N = R/2, fN = 120 Hz.

frequency as a dashed line. In both graphs, a vertical dash-
dotted line indicates the start of operation of a MPLL and
a dashed vertical line indicates a frequency jump. We see
that each MPLL converges correctly and that the noise signal
decreases each time a new MPLL has synchronized.

VIII. CONCLUSION

A novel synchronverter-based MPLL has been proposed,
with a wide pull-in range and great noise rejection proper-
ties. Using singular perturbation methods, we have derived
sufficient conditions on the MPLL parameters guaranteeing
stability. These conditions, together with the performance of
the proposed MPLL, have been validated through extensive
simulations. Future work will be devoted at using the proposed
MPLL to build an adaptive internal model-based controller, to
solve the output regulation and disturbance rejection problem
when the plant is uncertain and the reference frequency is
unknown, improving the results from [28], [29].
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and he is now with Université de Lorraine, Nancy. He is the re-
cipient of the IFAC Young Author Award of the MICNON2021
conference. His research interests include nonlinear systems,
nonlinear control, and power systems stability.

Florian Reissner received the BSc and MSc degree from
Technical University Berlin, Germany in 2015. Between 2015
and 2020 Florian worked in project management at Vinci
Energies, Lyon and as innovation consultant in incubators in
Frankfurt and Berlin. In 2020, he was selected as an Early
Stage Researcher in the Marie Curie ITN project “WinGrid”
and has started working towards the PhD in the Control and
Power Electronics group in Tel Aviv University. He likes to
build complex systems from scratch, overseeing every detail.

George Weiss received the MEng degree in control engi-
neering from the Polytechnic Institute of Bucharest, Romania,
in 1981, and the PhD degree in applied mathematics from
Weizmann Institute, Rehovot, Israel, in 1989. He was with
Virginia Tech, Blacksburg, VA, Ben-Gurion University, Beer
Sheva, Israel, the University of Exeter, UK, and Imperial
College London, UK. His research interests include distributed
parameter systems, operator semigroups, power electronics,
and the grid integration of distributed energy sources.


