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The methodology for scaling the geometry and operating parameters of Hall Thrusters,
as described in this paper, relies on supervised Machine Learning algorithms. This approach
aims to determine the geometrical dimensions, propellant mass flow rate and discharge
voltage, with thrust and specific impulse as input requirements. The magnetic field is
also taken into account. Gradient Boosting Regression (GBR) is identified as the most
appropriate algorithm for this purpose. The scaling process utilizes a specific database of 54
thrusters, incorporating measurements with xenon, krypton, and argon as propellants. An
analytical method based on the GBR and optimization algorithms has been developed and
validated to design a Hall thruster that meets space mission specifications. Additionally,
the procedure is complemented by a more direct and intuitive graphical method.

Nomenclature

B = magnetic field magnitude, G
d = channel mean diameter, m
dext = channel external diameter, m
dint = channel internal diameter, m
h = channel width, m
Id = discharge current, A
Isp = specific impulse, s
L = channel length, m
ṁn = propellant mass flow rate, kg/s
n = number of tests
Pd = discharge power, W
T = thrust, N
Ud = discharge voltage, V
∆v = increment of velocity, m/s
η = thrust efficiency
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I. Introduction

In recent years, Hall Thrusters (HTs) have attracted increasing interest in the spacecraft propulsion
field due to particular advantages such as high ∆v and total impulse, high thrust-to-power ratio and thrust
density, and an efficiency in excess of 50 %. In addition, HTs are versatile, operating across a broad range
of power levels. This versatility enables their application in both microsatellities and large satellites orbiting
Earth, as well as in deep space missions. Despite their widespread use, certain internal physical mechanisms
remain unknown, such as anomalous electron transport and plasma-wall interactions1,2. This means that
building and optimization of a new thruster is complex, long in duration and mostly empirical whatever
the size and power level. Unfortunately, sophisticated 2D Particle-In-Cell or fluid codes are of little help
in the development of Hall Thrusters, since they are not predictive and necessitate empirical validation.
In fact, the construction of simple models helped with design and data interpretation the development of
Hall thrusters from its inception. The gradual development and maturation of these thrusters over the past
decades have enabled the creation of methodologies based on scaling laws derived from reference thrusters
along with database3,4. The inherent limitations of these approaches lie mainly in the equations on which
they rely. Although useful for obtaining an initial estimate of thruster parameters and performances, the
potential of 0-D scaling relations remains limited. The latter are in fact too simple to correctly reproduce
the physics at play in HTs. Simplifying assumptions are indeed made on loss factors, plume divergence,
thermal load, magnetic field topology, presence of multiply-charged ions, to name just a few examples5. All
these approximations often result in large differences between predictions and performance measurements.

In this work, the problem was addressed through an approach that was no longer purely statistical
but based on Machine Learning (ML) algorithms. The field of ML is very broad and includes complex
algorithms covering a wide range of topics. In this study, supervised machine learning regression algorithms
were analysed with the aim of determining continuous output values from input data6. Such an approach
makes it possible to avoid in principle any kind of initial assumption and is disconnected from the physical
relationships between the parameters involved7. The objective of this study was therefore to improve the
scaling methodologies with a non-statistical approach, in order to assess the size and properties of HTs
from requirements such as thrust and specific impulse. To achieve this, a validation of our database was
carried out with the principal scaling laws derived over the years, see section II. In section III, the Machine
Learning algorithm that is most appropriate for exploring the database is selected. In section IV, the selected
model was used in an optimization method to determine the characteristics of a generic new Hall Thruster.
Intuitive and straightforward graphs are shown in section V to validate the method. Finally, conclusions
and perspectives are given in section VI.

II. Scaling laws: the statistical approach

II.A. Database

The data used in this study came from databases consisting of data collected since 2012 and stored in our
laboratory, combined with an extensive search for new tests in the literature, sometimes supplemented by
extrapolation of data from graphs provided in various scientific journal papers, doctoral theses and conference
articles. The data collected concern Hall thrusters firing from 50 W up to 70 kW8–36. The complete database
features 54 thrusters, with a total number of 3323 different operating conditions. The channel mean diameter
is the parameter d = 1

2 (dext + dint), where dext and dint are the external and internal channel diameter, and
h = 1

2 (dext − dint) is the channel width. L is the discharge channel length. The quantities included in the
database are given in Table 1. The database only contains information on stationary-plasma-thruster type
HTs, meaning that TAL are not considered. Very little data is available on magnetically shielded thrusters, as
it is a fairly recent technology. Most of the tests were performed with xenon as propellant. There is however
data with krypton and argon, which allows to study the characteristics of thrusters according to the type of
propellant. Xenon-fueled HTs cover 82 % of the database and Kripton-fueled thrusters 14 %. Unfortunately,
the full set of characteristics is not available for each condition, especially geometrical characteristics. In
fact, leaving aside the magnetic field and considering only complete sets, 1570 points are available for xenon,
268 for krypton and 80 for argon.
The parameters we considered cover wide ranges, as the database includes small thrusters and large thrusters
with powers ranging from a few watts up to 70 kW, as can be seen in Figure 1, where the thrust T is plotted
as a function of the input power Pd for the three propellants. It is worth noting that the database has
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Table 1: Database parameters

PARAMETER SYMBOL UNIT

Model - -

Developer - -

Type HT(SPT or TAL), -
MS(Magnetic shielded)

Propellant Xe,Ar,Kr -

Diameter d m

Height h m

Length L m

Mass flow rate ṁn kg/s

Voltage Ud V

Current Id A

Power Pd W

Thrust T N

Specific impulse Isp s

Thrust Efficiency η -

Magnetic field B G

79% of the tests for powers below 5 kW, as illustrated in the inset plot in Fig. 1. In short our database is
particularly focused on small and medium size Hall thrusters.

II.B. Standard scaling laws

Statistical scaling methodologies typically depend on well-established and extensively tested thrusters. By
leveraging these methodologies, proportional relationships between intensive and extensive parameters that
characterize thrusters can be identified. Assuming the validity of similarity criteria, these relationships allow
us to determine how parameter values change with variations in thruster scale. Since the advent of Hall
Thrusters (HTs) in the 1970s, extensive research has been conducted in this field, focusing on varying one
or more parameters while maintaining others constant.37–42. Recent works have considered the extraction
of scaling relations from physical processes validated against a database5,43.

In this work, the same approach is applied to the new database described above. In order to obtain the
design characteristics of a new thruster, basically its geometrical characteristics, it is necessary to consider
assumptions on losses and proportionality between channel height and diameter, as described in reference 5.
Starting from mission requirements such as thrust and specific impulse, it is possible to develop an iterative
procedure to determine the characteristics of a new thruster. As explained, laws are determined from physical
processes and coefficients are found using databases. An usual relation for the thrust is:

T ∝ hd ·
√
Ud (1)

where h, d are the channel height and mean diameter, respectively.
Figure 2 illustrates Eq. 1. The data spread is due to the different mass flow rate values for tests made on the
same thruster. A scaling relationship must also be defined for the mass flow rate and the specific impulse44.
Using the established laws and linear fitting coefficients obtained from available data, one can estimate the
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Figure 1: Thrust T as a function of the discharge power Pd. The zoom at the bottom represents the position
of the majority of the data in the database

primary characteristics of a new thruster. This outlined procedure provides a preliminary insight into the
necessary thruster geometry to achieve desired thrust and specific impulse parameters. However, a more
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Figure 2: Thrust as a function of hd ·
√
Ud and linear fit for Hall Thrusters in the database. Data are divided

by type of propellant.
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detailed analysis is needed, taking into account factors such as thermal stresses on walls, the presence of
multiple charged ions, various forms of energy losses, and anomalous electron transport. The main drawbacks
of the traditional approach lie in its neglect of magnetic field effects and its reliance on assumptions regarding
geometric relationships.
In contrast, in the following approach which is based on machine learning algorithms applied to the database,
the model will be left free of initial assumptions, although it still depends on the available data, and in the
second analysis the magnetic field will be included in the fundamental parameters of the model.

III. Machine learning approach

III.A. Introduction

The machine learning approach is based on the determination of thrust and specific impulse by knowing the
values of mass flow rate, discharge voltage, geometric dimensions (h,d,L) and, secondarily, magnetic field.
The type of propellant was also added as a parameter in the model. Thrust and specific impulse are in fact
the usual mission requirements, while all the others parameters are the targets. But algorithms are designed
to obtain a continuous value from a set of inputs, usually greater in number than the desired outputs.

III.B. Data pre-processing

Prior to implementing machine learning algorithms, it is imperative to preprocess the available data. In fact,
the range of values for the variables considered here is very different (e.g. mass flow rate in orders of 10−6
and voltage in orders of hundreds). Various methodologies exist to address this issue, necessitating careful
consideration to select the most appropriate technique based on the data type. One prevalent method
is standardization, which entails subtracting the mean value from each data point and scaling all values
to achieve a mean of zero and a unit variance. However, it is important to note that standardization is
generally suited for data with a Gaussian distribution, which may not correspond with the characteristics of
our dataset. The standardization was therefore discarded. The method chosen is the normalization, where
all the values are normalized inside a range from 0 to 1. Technically, between a value very close to 0 and a
value very close to 1 to avoid singularity. The normalization law reads:

xscaled =
x− xmin

xmax − xmin
(2)

where x is the actual value, xmax and xmin are the maximum and minimum value of each parameter.
Scaling data exclusively using the training set is imperative in machine learning to ensure the integrity of
the predictive model. Utilizing the entire dataset for scaling can lead to information leakage, where the model
indirectly learns from the test data. This compromises the model’s generalization capability, as predictions
on unseen data are influenced by pre-exposed information, thus distorting the evaluation process.

Due to a relatively small amount of data in the database, it was not possible to use a simple splitting
procedure between a large amount of data for training and a small amount for testing. The model selection
was then performed using the Kfold-cross-validation procedure45.

Table 2: Schematic representation of the work made by the cross-validation tool

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

TRAINING TRAINING TRAINING TRAINING TESTING ERROR

TRAINING TRAINING TRAINING TESTING TRAINING ERROR

TRAINING TRAINING TESTING TRAINING TRAINING ERROR MEAN ERROR

TRAINING TESTING TRAINING TRAINING TRAINING ERROR

TESTING TRAINING TRAINING TRAINING TRAINING ERROR
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Table 3: One-hot encoding for propellant

Type O-HE Xe Kr Ar

Xe 1 0 0

Kr 0 1 0

Ar 0 0 1

This technique, illustrated in Tab. 2, is based on dividing the available data into sub-folders, in this case five,
where 4/5 of the data is used for training and 1/5 for testing, per each sub-folder. In this way, the model is
trained five times instead of just one, and there are five mean errors between the target and the predicted
values. Finally, a global mean error is calculated. There are several metrics to evaluate the performance of a
model. In this work, the Mean Absolute Error (MAE) was chosen. It evaluates the modulus of the difference
between the predicted value and the actual value, without taking direction into account. The choice was
dictated by the fact that this type of metric is much less sensitive to outliers, i.e. data that shows a different
trend from the general trend, usually due to measurement errors7. The expression of MAE6 is the following:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

where n is the number of samples, yi are the actual values and ŷi are the predicted values. Furthermore,
to enhance results clarity, percentage error was used as a comparative measure across different results,
calculated according to Equation 4. This metric enables straightforward comparisons of predictive accuracy,
offering a consistent and interpretable performance measure.

%error =
|yi − ŷi|

yi
× 100% (4)

A one-hot encoding (OHE) procedure45 was applied to incorporate the propellant type into the model
parameters, aiming to utilize this information for optimizing thruster characteristics. The propellant type
was transformed into a three-dimensional vector, with the relevant component set to 1 and others to 0, as
illustrated in Table 3.

III.C. Model selection

1. Introduction

The first step in determining a model capable of predicting thrust and specific impulse values by learning
from the available data is to choose the most suitable machine learning algorithm. The selected algorithms
are part of the supervised group, in the regression branch, as the aim is to determine continuous values46.
The guide in determining the most suitable model is the database, as it is crucial to choose the algorithm
that best fits the data. In fact, the outcomes can be quite different according to the model and to the
hyperparameters inside each model.

The procedure started by considering different types of supervised machine learning algorithms, trying
to cover the working range of the entire branch. Below are the algorithms initially chosen45,46:

• Linear Regression (LR)

• Decision Tree Regression (DTR)

• K-Nearest Neighbors Regression (KNR)

• Random Forest Regression (RFR)

• Gradient Boosting Regression (GBR)
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• Bagging Regression (BR)

Each of these algorithms was tested on the database which, as previously explained, only has 1918 tests
available due to missing data; 30% of data was set aside for the final validation of the chosen model, while
70% was used for training and testing with the cross validation procedure described above. Each model
has its own hyperparameters, which are parameters of the algorithm class. They define its learning process.
Algorithms have default hyperparameters, based on the most common functions used per each model46. In a
first attempt, models were tested with them, to have an initial estimation of their performances. The results
are presented in reference 44.

2. Model selection with hyperparameters tuning

A more efficient approach involves allowing the algorithm to determine the optimal hyperparameters for the
specific dataset, rather than relying on default settings. This process, known as hyperparameter tuning45,
is commonly performed using GridSearchCV. GridSearchCV exhaustively tests all combinations of hyper-
parameters and evaluates their performance. However, this method is computationally intensive, especially
when numerous hyperparameter combinations and models are involved, leading to exponential increases in
computational time. Consequently, GridSearchCV was deemed impractical for our purposes.
To expedite the identification of the best model and hyperparameters, we employed the HalvingGrid-
SearchCV tool. This innovative machine learning method evaluates hyperparameter combinations on a
small subset of the data, referred to as resources. Iteratively, a subset of these combinations, called can-
didates, are selected for evaluation with an increasing amount of resources. The number of iterations is
determined by the sample size and the number of parameters involved. The combination that progresses
through all iterations with the smallest prediction error is considered optimal. HalvingGridSearchCV sig-
nificantly reduces computational time compared to GridSearchCV. Throughout this process, the algorithm
performs cross-validation for each combination, as detailed in Sec. III.B. This approach integrates fold-based
evaluation using Mean Absolute Error (MAE) with the search for optimal hyperparameters, aiming to min-
imize prediction error. Table 4 shows the results obtained with the tuning procedure. KNR, RFR and GBR
work in a high-performance manner, with a very low Mean Absolute Error. As a final step, all the models
were evaluated on the test set left apart. Figure 3 shows the comparison between the models. Absolute
errors are counted between each test and its corresponding predicted value. The performances of KNR, RFR
and GBR are almost similar, but the distribution curve of the Gradient Boosting seems to drop first to null
values of absolute errors.

Table 4: Hyperparameters tuning and evaluation of the six models

Model Best hyperparameters MAE

LR (’ fit_intercept ’: True, ’ positive ’: False) 0.019

DTR (’ criterion ’: ’absolute_error’, ’max_depth’: 10,
’min_samples_leaf’: 1, ’min_samples_split’: 3,
’random_state’: 10, ’splitter ’: ’best’) 0.009

KNR (’algorithm’: ’kd_tree’, ’n_neighbors’: 3,
’weights’: ’distance’) 0.007

RFR (’ criterion ’: ’absolute_error’, ’max_depth’: 10,
’min_samples_leaf’: 1, ’min_samples_split’: 2,
’n_estimators’: 200, ’random_state’: 500) 0.007

GBR (’ criterion ’: ’squared_error’, ’learning_rate’: 0.1, ’ loss ’: ’absolute_error’,
’max_depth’: 10, ’min_samples_leaf’: 1, ’min_samples_split’: 5,
’n_estimators’: 200, ’random_state’: 500) 0.006

BR (’estimator’: DecisionTreeRegressor(), ’max_features’: 8,
’max_samples’: 10, ’n_estimators’: 200, ’random_state’: 500) 0.02
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Figure 3: Models comparison in terms of absolute errors

Moreover its histogram is more concentrated on the extreme left, where the errors are close to zero. Thus
the model chosen as the best one for our data is the Gradient Boosting Regression.

III.D. Gradient Boosting Regression

1. Building of trees and prediction

The Gradient Boosting Regression (GBR) is an ensemble algorithm that puts together weaker models to
perform better as a whole46. It is based on decision trees, whose number is decided in the hyperparameters
tuning phase. In this analysis, the model generates 200 sequential trees. Gradient Boosting works on the
gradient of the Loss function, minimizing the errors between predicted and actual data47. The model is
initialized with an initial value:

F0(x) = argmin
γ

[

n∑
i=1

L(yi, γ)] (5)

where F0 is the initial value of the model and it is equal to the value of γ that minimizes the loss function∑n
i=1 L(yi, γ), represented by the Mean Absolute Error, where yi are the actual value, γ the predicted values

and n the number of tests. To find therefore the value of γ, a derivative of the loss function is taken and is
set to zero:

dL

dγ
=

d
∑n

i=1 |yi − γ|
dγ

= −
n∑

i=1

sign(yi − γ) = 0 (6)

The sign function is either -1, 0 or 1 and no matter how distant the target is from the current prediction.
The model is trained on just the direction, without the magnitude. Considering the latter in fact the
computations are easily skewed by outliers. Solving the equation above, we obtain that the value of γ that
minimizes the loss function is the median of the output values in the training dataset. It is worth remind
that we have both thrust and specific impulse as outputs of the model, therefore the GBR is trained on each
output separately but the performance evaluation is a mean of the performance evaluation of the model on
the two separate outputs. Once F0(x) is calculated, the GBR generates decision trees. Each leaf is created
by splitting the training data through values greater or lower of a certain threshold.
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The algorithm itself is able to analyse the consequences of each splitting and from there to decide for which
threshold value the results are best in terms of prediction. The evaluation of the split is made through the
criterion function, see Table 4. Since the magnetic field is not considered in this first analysis, our inputs are
eight. The GBR is capable of dividing the training set by acting on all parameters simultaneously, finding
the optimal threshold values for best performance. The mechanism is therefore quite complex. The same
formula is then applied for each leaf, where the output is in fact:

γjm = argmin
γ

∑
xi∈Rij

L(yi, Fm−1(xi) + γ) (7)

where j is the leaf, m is the tree and Rij are the output of the leaves. For the same reason as before, the
output in each leaf is exactly the median value. Finally, this value is first multiplied by a α, the learning
rate, that controls the speed of the process and then is added to the previous one, that in this case was
F0(x):

Fm(x) = Fm−1(x) + α

Jm∑
j=1

γjm (8)

Once the first decision tree is built on the training data, it has to be evaluated on the testing set through
the MAE. It is important to remind that the Gradient Boosting Regression builds sequential decision trees,
thus the first one gives the worst prediction and step by step, i.e. tree by tree, the performance is improved.
Figure 4 shows the final decision tree generated by the GBR model in the training phase. Each box contains
information about the splitting procedure, but the purpose is to present a complete tree to help the reader
understand how the model works.

2. Evaluation of the model

Dividing the data based on specific parameter values can provide insights into the significance of these pa-
rameters within the model. Specifically, if the model’s performance exhibits considerable variation when the
threshold value of a parameter is altered, it underscores the parameter’s importance. Figure 5 illustrates the
relative importance of various parameters employed in the decision tree construction process. The histograms
are normalized to a maximum value of 1. Among the inputs, the mass flow rate emerges as the most critical
factor in the model: variations in this parameter result in significant changes in the model’s predictions. This
phenomenon can be attributed to the intrinsic relationship between the thruster’s geometrical characteristics
and the mass flow rate.

ṁ Vd d L h Xe Ar Kr
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Figure 5: Features importance in the training phase of the Gradient Boosting
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Figure 6: Correlation matrix between inputs parameters in GBR

Alterations in the mass flow rate inherently lead to modifications in other parameters. Additionally, the
interdependence among the geometrical features complicates the model’s ability to isolate their individual
contributions to the prediction of thrust and specific impulse. Consequently, the model attributes greater im-
portance to parameters with clearer independence, such as mass flow rate and voltage. This interdependence
can be further elucidated through a correlation matrix, as shown in Figure 6. The correlation matrix helps
in understanding the correlation between variables. It measures the covariance, i.e. how much a parameter
varies if another one is changed. It is normalized between -1 and 1. Usually, if the value is between 0.3 and
1 there is a direct correlation between the two parameters. In fact, see Fig. 6, the geometrical features have
an high value of correlation among themselves and with mass flow rate. If the values are between -0.3 and
-1, there is an inverse correlation, while if it is between -0.3 and 0.3 there is no correlation. In our case, the
only independent variable is the discharge voltage Ud and the propellants are dependent among themselves.

As explained previously, the model is evaluated on the testing dataset. In Figure 7 is represented the
prediction of the two outputs made by GBR after all the 200 trees are built.
The collective behavior is good enough, since the model, represented by the blue crosses, is effective in
prediction of thrust and specific impulse values in the entire range. In the upper right prediction is weaker
due to the lack of data for high power thrusters in the database. To better understand the improvement
in performance of the Gradient Boosting algorithm, it is useful to compare it to a thrust prediction model
based on a scaling law, see Eq. (1), which is recalled for clarity:

T ∝ hd ·
√
Ud (9)

Figure 8 shows the thrust predictions of the Gradient Boosting model for the thrust as a function of diameter,
while Figure 9 shows the predictions of the linear scaling law described by the Eq. (1). The vertical distri-
bution of data for a given diameter value is linked to changes of mass flow rate values for tests performed
with a given Hall thruster (d fixed then). It is worth noting that the two models were not tested on the same
data, because the splitting of data in training and testing is done randomly. The GB model in Fig. 8 was
tested on 576 samples, while the scaling law model in Fig. 9 on 493 samples. The difference in prediction
quality is obvious. In Fig. 8 the model predicts thrust values very accurately, whereas in Fig. 9 agreement
between data and calculation is poor. Moreover, the model follows a parabolic trend due to the quadratic
dependence of thrust on diameter and fails to capture the punctual distribution of the test data. Figure 10
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Figure 7: Model prediction of thrust and specific impulse on testing data

illustrates the absolute errors of the two models, in a graph similar to the one in Fig. 3. The errors of the
Gradient Boosting are very small and the density curve goes fast to zero. On the contrary, the scaling law
errors are almost two orders of magnitude greater.
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Figure 8: Gradient Boosting Regression predictions of the thrust against mean diameter for the testing set.
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IV. Design of a new Hall thruster

IV.A. Introduction

As detailed in section III.A, the development of a new thruster begins with defining certain parameters based
on mission requirements. Typically, thrust and specific impulse serve as the initial design parameters, which
guide the determination of other thruster characteristics such as geometrical dimensions, voltage, mass flow
rate, and magnetic field. The Gradient Boosting model demonstrates a high level of accuracy in predicting
thrust and specific impulse values when given the other parameters. However, when the thruster design
is considered, a back-propagation problem arises. It is therefore necessary to reconsider the relationship
generation process underlying the creation of decision trees in order to extrapolate information about the
various parameters when a particular output is desired. Given that Gradient Boosting is constructed with
sequential decision trees, each of which splits the parameters in a different manner in order to identify relations
between them, the challenge is practically unfeasible. Consequently, the problem must be addressed in a
different way. The solution was find in an analytical approach based on an optimization problem. The
database was initially divided based on the propellant type. Furthermore, the magnetic field was inserted
secondarily in the model, as described in Sec. IV.D, as it plays a key role in the thrust process although very
little data is available, resulting in reduced model performance.

IV.B. Analytical approach

The analytical approach to determining parameter values for achieving a specified thrust and specific impulse
involves an optimization algorithm. The procedure begins with providing a desired output. Subsequently, the
Gradient Boosting model utilizes initial random inputs and computes the corresponding thrust and specific
impulse values. The error between the computed output and the desired output is then evaluated. The
optimization algorithm’s objective is to adjust the input parameters to minimize the loss function, defined as
the absolute error between the two sets of output values. When the error is minimized, the model identifies
the optimal parameters that yield the required outputs. This methodology is illustrated in Figure 11, where
the box ’Differential Evolution’ denotes the optimization algorithm.
The choice of the optimization algorithm is mainly based on the loss function minimization procedure. In
fact, it is a stochastic algorithm that does not require the optimization problem to be differentiable, as is
required by other classic algorithms as gradient descent48. Since the GBR consists of sequential decision trees,
it is impossible to determine how the model depends on the various parameters individually and therefore
it is not feasible to calculate their partial derivatives. Instead, Differential Evolution optimizes the problem
iteratively, trying to improve a candidate solution49. The Differential Evolution (DE) algorithm operates in
four main steps: initialization, mutation, crossover, and selection. Initially, random values are generated for
each parameter to create vectors. In the mutation phase, mutant vectors are generated by combining three
randomly chosen vectors with a scaling factor. During the crossover phase, the mutant vectors are evaluated,
and if their performance exceeds a certain threshold, they replace the original vectors. This process continues
iteratively until a specified threshold or a predefined number of iterations is reached44,49,50. Bounds within
which the algorithm is guided in searching the optimal inputs are defined. The database was divided in
subgroups and the DE was looking for parameters values only in the subgroup containing values able to
generate that desired output. Different algorithm were developed for the three propellants and also for the
consideration or not of the magnetic field.

(ṁn, Ud, h, d, L,B) GBR MODEL (T, Isp) MAE

TRAINING ON DATABASE (T, Isp)desired

DIFFERENTIAL EVOLUTION

Figure 11: Flowchart of the analytical approach
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Table 5: Desired outputs

T [N ] Isp[s]

Example A 0.04 1000
Example B 1.7 3200

Naturally, the more the outputs are far from values present in the database, the worst are the performances
of Differential Evolution algorithm, struggling to converge. However, in the various cases we tried, the
algorithm was performing quite well, as shown in section IV.C.

IV.C. Final example

To clarify the working of the approach, it is beneficial to provide examples of determining the characteristics
of two new thrusters: a potential low-power Hall Thruster, designated as Example A, and a high-power
Hall Thruster, designated as Example B. Both thrusters utilize xenon as the propellant. The requirements
in terms of thrust and specific impulse are reported in Table 5. The characteristics of the thrusters are
obtained with the analytical approach, determining the mass flow rate ṁn, discharge voltage Ud, diameter
d, height h and length L of the channel. In section IV.D, the magnetic field B is also added. The approach
is based on the application of the diagram shown in Fig. 11. It is noteworthy that the mean absolute errors
are computed between scaled outputs, as the Gradient Boosting Regressor (GBR) operates on a scaled set
of inputs. Subsequently, the parameters are unscaled to be presented in the appropriate format. Moreover,
to enhance comprehension of the disparity between desired and predicted values, the error is expressed as
a percentage and delineated separately for the two outputs, notwithstanding the algorithm’s optimization
of their average. In the case of Example A, the optimization procedure requires 82 iterations to ascertain
the minimum of the loss function, as denoted by the mean absolute error. The attained results exhibit a
high degree of accuracy, as evidenced by the negligible percentage errors observed in the Table 6, indicative
of minimal disparity between the desired and actual values. Additionally, the inclusion of data pertaining
to an existing thruster from the database within the Table 6 facilitates comparative analysis and aids in
understanding their physical implications.
Regarding Example B, despite encountering slightly higher errors, particularly in specific impulse, the out-
comes remain promising. The optimized input parameters exhibit values coherent with physical expectations.
However, it is notable that the efficacy of the differential evolution algorithm is contingent upon data avail-
ability. When operating within regions abundant in data, the algorithm demonstrates robust generalization
capabilities; conversely, its convergence falters in data-scarce domains, resulting in an amplification of the
discrepancy between actual and desired outputs.

IV.D. Magnetic field

The magnetic field B has been addressed separately due to its pivotal role in thruster performance1. How-
ever, the notably constrained data availability precludes its inclusion as a primary parameter in the model.
Specifically, the magnetic field consideration is based on a limited dataset, encompassing merely 1000 tests,
in contrast to 1918 tests available when omitting this factor. Moreover, the provided value solely represents
the maximum intensity along the channel axis, neglecting the comprehensive topology of the magnetic field.
Consequently, the model’s efficacy diminishes, as evident in Figure 12 and Figure 13. Notably, discrepancies
between model predictions and actual data become apparent when compared to scenarios excluding B, as
depicted in Fig. 7 and Fig. 8.
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Table 6: Parameters values obtained with the analytical approach

Example A Real LP HT Example B Real HP HT

Prop. Xe Xe Xe Xe

ṁn [mg/s] 3.33 2.54 61.18 62.6

Ud [V ] 202.66 200 710.37 650

d [mm] 60.44 75 393 393

h [mm] 10 10 59.95 64

L [mm] 14.61 15 73.98 83

T %err 0.64 % - 1.44 % -

Isp %err 0.02 % - 5.609 % -

iter 82 - 28 -

Tdesired [N ] 0.04 - 1.7 -

Isp desired [s] 1000 - 3200 -

Tactual [N ] 0.0397 0.027 1.724 1.791

Isp actual [s] 999.8 1004.49 3024.74 2917

0 500 1000 1500 2000 2500 3000 3500

Isp [s]

0.0

0.2
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Test data

Predicted data

Figure 12: Model prediction of thrust and specific impulse on data including the magnetic field
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Figure 13: Predicted thrust as a function of the mass flow rate for data that include magnetic field values

However, an attempt was made introducing the magnetic field as a model parameter for examples A and B
previously described. Table 7 shows the optimal parameters values found with the optimization. It can be
observed that the errors committed by the algorithm are greater than in the case without B. This is to be
expected, given the lack of data available for both training and the optimization itself.

Table 7: Parameters values obtained with the analytical approach including the magnetic field

Example A Real LP HT Example B Real HP HT

Prop. Xe Xe Xe Xe

ṁn [mg/s] 3.40 2.54 44.48 40.78

Ud [V ] 208.39 200 613.29 500

d [mm] 84.86 75 270 270

h [mm] 9.7 10 50 50

L [mm] 14.87 15 70 70

B [G] 108.32 130 106.77 130

T %err 7.58 % - 41.07 % -

Isp %err 0.42 % - 13.53 % -

iter 39 - 11 -

Tdesired [N ] 0.04 - 1.7 -

Isp desired [s] 1000 - 3200 -

Tactual [N ] 0.037 0.027 1.002 1.058

Isp actual [s] 1003.9 1004.49 2777 2644.01
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In order to facilitate a more accurate comparison between the two cases, a mean relative error has been
calculated between the percentage errors on thrust and specific impulse. The approach that considers the
magnetic field has therefore yielded a percentage increasing error of approximately 93.39 % for Example A,
while for Example B it is approximately 77.52 %. The performance has deteriorated, particularly in relation
to geometric dimensions. The optimization, constrained by imposed physical limits, lacks sufficient data to
identify optimal inputs and, consequently, fails to generalize effectively.

V. Graphical approach

As a final proof, 2-D graphs containing information on the thrusters present in the database were ex-
tracted. In fact, data regarding mass flow rate, voltage discharge, diameter, thrust, specific impulse and
magnetic field were gathered inside 2-D maps to help the validation of the procedure described in the section
IV. The graphs were obtained dividing the database for propellant type first, and adding the magnetic field
values in a second step, to follow the same approach as before. The database was divided in subgroups
based on parameters values. Considering one parameter at a time, tests with neighbouring values of that
parameter were combined into a group characterized by the average value of the parameter considered for
the split, as we can see in Figure 14, where specific impulse and thrust are the two model’s outputs and the
mission requirements, on the x axis and y axis respectively, and data is subdivided based on mass flow rate
values. The values indicated in the legend are the average ones for each subgroup. In the case of Fig. 14, a
linear pattern is seen between thrust and specific impulse for constant mass flow rate values, confirming the
theory. When considering the discharge voltage, the same subdivision procedure gives a parabolic trend for
constant voltage values of thrust versus specific impulse. At this point, these trends can be extrapolated and
replaced by straight lines for mass flow rate and parabolas for voltage. Figure 15 and Figure 16 represent in
fact data on tests made with xenon as propellant and they give information about mass flow rate, discharge
voltage, diameter, thrust and specific impulse. The diameter values are presented as scatter plot. The
averages obtained with the procedure mentioned above are shown. Example A and Example B discussed in
IV.C are presented as a red triangle. Figure 15 provides a detailed zoomed-in view of the lower section of
Figure 16, where the low-power Hall thrusters (HT) are predominantly located. These figures offer valuable
insights into the primary characteristics of Hall thrusters, facilitating an initial estimation based on thrust
and specific impulse requirements.
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Figure 14: Thrust against specific impulse values grouped by mass flow rate values in tests made with xenon.
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Figure 15: 2-D map of xenon tests present in the database with info on T , Isp, ṁn, Ud and d. Example A
is also shown.

Examples A and B on the graphs serve as clear evidence of the previously explained procedure, demonstrating
that the optimization-derived values align well with the test data available in the database.
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Figure 16: 2-D map of xenon tests present in the database with info on T , Isp, ṁn, Ud and d. Example B
is also shown.
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Similar graphical analyses can be generated for different propellants, such as Krypton and Argon, and can
incorporate the magnetic field.

VI. Conclusion

The objective of this research was to develop a model capable of determining the geometrical character-
istics and operating parameters of a novel Hall thruster, utilizing Machine Learning algorithms. A compre-
hensive database comprising data from 54 thrusters was established, incorporating information from existing
databases and scholarly publications. The database was initially validated using a statistical methodology
based on scaling laws, which have been thoroughly explored in previous literature. A machine learning-based
model selection was then performed on the same dataset, resulting the Gradient Boosting Regressor being
identified as the optimal algorithm in terms of mean absolute error. This model demonstrated high efficiency
in predicting thrust and specific impulse values, particularly when the magnetic field was excluded from the
input parameters. The inclusion of the magnetic field significantly reduced the available data, thereby dimin-
ishing the model’s performance. By learning the intricate relationships among the various parameters, the
Machine Learning model adeptly integrates all parameters, learning relationships that enable the accurate
determination of thrust and specific impulse values for previously unseen data. Thus, the model showcases
its potential for accurate and reliable performance in the design and analysis of Hall thrusters. The primary
advantage of this model lies in its ability to eliminate the need for initial assumptions regarding loss factors
or dependencies between geometric parameters, relying entirely on empirical data. Although the data used
for the model is derived from tests on thrusters built using traditional approaches, the model effectively
identifies dependencies between parameters, particularly geometric ones. The model performs well within
the range of available training data; however, its extrapolation accuracy decreases in regions with sparse
or absent data. The Gradient Boosting model was meticulously constructed and demonstrates robustness
in predictions for unseen data. However, the optimization algorithm’s heavy reliance on available data re-
sults in a significant increase in error when optimizing in data-sparse regions. Despite this limitation, the
adoption of this algorithm was essential for achieving the objective of determining the characteristics of new
Hall thrusters based on a supervised Machine Learning model. Future research should focus on reducing
the constraints applied during optimization to enable the use of a broader dataset while ensuring that the
solutions remain physically feasible. The incorporation of neural networks might also mitigate issues associ-
ated with backpropagation. This study demonstrates the significant potential of a Machine Learning-based
approach in defining scaling laws and, uniquely, in predicting the geometric characteristics and operating
points of a Hall thruster based on mission requirements. The approach developed and validated here, though
complex, remains accessible and relatively straightforward to implement, given the availability of tools like
Gradient Boosting Regression and tree generation in various versions and languages. Ultimately, this work
underscores the importance of the quantity and quality of data in achieving accurate and reliable results.
Thus, it is crucial to generate extensive databases covering a wide power range, either through long and
costly measurements or through numerical simulations, to aid engineers in developing the next generation
of Hall thrusters.
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