
HAL Id: hal-04666859
https://hal.science/hal-04666859

Submitted on 2 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Under Control: A Control Theory Introduction for
Computer Scientists

Quentin Guilloteau, Sophie Cerf, Raphaël Bleuse, Bogdan Robu, Eric Rutten

To cite this version:
Quentin Guilloteau, Sophie Cerf, Raphaël Bleuse, Bogdan Robu, Eric Rutten. Under Control: A Con-
trol Theory Introduction for Computer Scientists. ACSOS 2024 - 5th IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS 2024), Sep 2024, Aahrus, Denmark.
pp.1-10. �hal-04666859�

https://hal.science/hal-04666859
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Under Control: A Control Theory Introduction for
Computer Scientists

Quentin Guilloteau 4 Sophie Cerf 2 Raphaël Bleuse 1 Bogdan Robu 3 Eric Rutten 1

Abstract—This hands-on tutorial aims at introducing the basis
of Control Theory, applied to the runtime management of
computing systems, through a practical example. This tutorial is
composed of two parts. In the first part, we present the motivation
and classical tools of Control Theory: formulation, modeling,
and controllers. During the second part, the participants will
experiment with the concepts presented in the first part through
interactive computational documents, via a Jupyter Notebook.
Attendees will need a computer with an internet connection
and a ”recent” web browser, and only basic programming
knowledge. The tutorial is available at the following URL:
https://control- for-computing.gitlabpages.inria.fr/tutorial/

Index Terms—autonomic computing, control of computing
systems, control theory, feedback management

I. GENERAL INFORMATION

This hands-on tutorial is an introduction, addressed to
beginners in control theory. Its duration may vary between
participants, between 3 and 4 hours. It is aimed for students,
academics, and industry. Table I summarizes the general
information about this tutorial.

This tutorial does not have any strong prerequisite for the
participants. On the technical side, participants are required
to have access to a computer with an internet connection
and a “recent” browser (Firefox 90+, Chromium 89+) which
supports WebAssembly.

On the knowledge side, participants need basic program-
ming knowledge. Some mathematical analysis knowledge can
be useful to fully understand the section explaining the prin-
ciples behind control theory guarantees, however it is not
necessary to understand the key principles.

1: Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble,
F-38000, France; 2: Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189
CRIStAL, F-59000 Lille, France; 3: Univ. Grenoble Alpes, CNRS, Grenoble
INP, GIPSA-lab, Grenoble, F-38000, France; 4: University of Basel, Switzer-
land

Characteristics Details

Content level Beginner
Duration 3 hours, up to 4 hours
Target Audience Industry & Academia
Tutorial format Hands-on
Prerequisites Computer with internet

TABLE I: General Information

Fig. 1: MAPE-K Loop representation

II. INTRODUCTION

A. Motivation of Control for Computing

Computing systems are getting more and more complex.
The software stacks are growing, and are executed on top
of complex hardware. The behavior of applications is thus
becoming extremely difficult to predict or model correctly in
the design phase. We need regulation to provide Quality-of-
Service guarantees.

One approach consists in building a theoretical model of the
system, and design a complex configuration algorithm based
on this model. Such an approach is limited by the quality of the
model, and its ability to capture all runtime events. Modelling
all the possible cases, and behaviors is tedious and error-prone.

A different approach to regulate the behavior of a computing
system is to periodically take measurements of relevant met-
rics, and adapt the configuration based on these measurements.
This runtime approach is called closed-loop, and this is the
interest of the Autonomic Computing community [17].

The Autonomic Computing formulation relies on the
MAPE-K loop (Figure 1), called after the different phases of
the loop: Monitor, Analyze, Plan, Execute, and Knowledge.
There are several ways to perform this runtime adaptation.
One can use ad-hoc solutions based on arbitrary rules or IA
for example [24], see Figure 2. These solutions, however, do
not often come with guarantees on the closed-loop system. On
the contrary, the Control Theory field has been applying math-
proven methods to closed-loop physical systems for decades.
But the application of Control Theory to computing systems
is only quite recent. Figure 3 represents a feedback loop from
the point of view of Control Theory.

https://orcid.org/0009-0003-7645-5044
https://orcid.org/0000-0003-0122-0796
https://orcid.org/0000-0002-6728-2132
https://orcid.org/0000-0001-7568-007X
https://orcid.org/000-0001-8696-8212
https://control-for-computing.gitlabpages.inria.fr/tutorial/


N/A

Learning

Protocol

Policy

MAS

Control theory

Multiple

0 25 50 75
Number of papers

Year 2019 2018 2017

Approach used to implement an Autonomic Controller

Fig. 2: Approaches used to implement an autonomic controller
in 210 surveyed papers of three autonomic computing confer-
ences. Regenerated from [24]

yref ek
Controller

uk
System

yk

-
+

Disturbances

Fig. 3: Control Loop representation. uk is the control action,
yk the sensed measure, yref its desired reference value, and
ek is the corresponding error.

B. Motivation of this tutorial

Despite its promising results and guarantees, the use of
Control Theory as tool for autonomic systems is only limited,
possibly due to very few interactions between the Control
Theory and Computer Science fields, in universities and indus-
try. This tutorial aims at bringing accessible Control Theory
concepts to computer scientists.

While a theoretical approach can be given on the topic
of control for computing systems [23], we advocate that a
complementary hands-on, interactive experience with compu-
tational notebooks is a suitable tool for computer scientists to
favor the actual usage of Control Theory in their systems.

C. Impact of this tutorial

This tutorial aims at introducing Control Theory, a method
particularly suited for autonomic management of dynamic
systems. It explains Control Theory to computer scientists
in a simple and (almost) mathematical-free way. It allows
understanding the principles of the guarantees that Control
Theory provides. After this tutorial, attendees will be able to
apply basic Control Theory tools and practices to their own
systems, but also will have the knowledge and understanding
to discuss and collaborate with experts in Control Theory.

At the end of the tutorial, the attendees should have:

• understood the motivations, methodology, and basic tools
(PID Controller) of Control Theory

• performed an ”identification” of a system
• designed a Proportional (P) Controller for this system,

and understood the limits of the controller
• designed a Proportional-Integral-Derivative (PID) Con-

troller for the same system
• apprehend advanced control techniques
• formalize a control closed-loop of their own system.

III. EXAMPLES OF APPLICATIONS

In the following, examples of successfull application of
control theory on computing systems are presented. Each time,
we briefly describe the system, emphasize the sensor(s) and
actuator(s) used, as well as the type of controller. Examples
have been selected to reflect diversity.

A. Runtime powercaping to regulate performance in HPC

In High Performance Computing, applications
have varying behaviors, with more or less comput-
ing/memory/communication needs. Energy savings can
be obtained, e.g., by leveraging the processors’ power when
the application is in a memory intensive phase. Proportional-
Integral Control [3] and Adaptive Control [14] have been
used to ensure applications’ progress while acting on RAPL
power limit.

B. Resource harvesting at cluster level

A regulation problem arises in the context of CiGri [8],
where the general objective is to harvest unused computing
resources by injecting low-priority jobs in order to maximize
the utilization of the computing cluster. However, filling up
the CPUs can cause bottlenecks on other parts of the infras-
tructure, e.g., memory access. Therefore, the more specific
objective is to control the load of the distributed file-system
of a computing cluster by adapting the number of low-
priority jobs to submit to the cluster’s scheduler, using various
controllers like PI [11], adaptive control [22], and Model-Free
Control [12], as well as coordination with the system scheduler
[9].

C. Dynamic privacy preservation for mobile devices users

In the mobile computing context, users sharing their per-
sonal data to third-party services (i.e., position shared to a
navigation app) can ensure that their privacy is respected, e.g.,
by using protection mechanisms. Users’ privacy requirements
can however vary in time, as it implies trading-off utility of
the service. Control can be used to ensure that a privacy metric
keeps a minimal value, by acting on protection mechanisms’
parameters with a PI [4], or directly by computing the pro-
tected positions with optimal control [20].

D. More examples

More examples can be found in the literature e.g., ”brown-
out” approaches to build more robust cloud applications
by control for bounding response times [18, 21], feedback
scheduling in real-time systems [27], MIMO control of CPU



and Memory in a web server [6], dynamic adaptation of the bit
rate of a live video streaming in order to provide a ”Quality
of Experience” (quality of the image, fluidity, etc.) for the
users[5]. More references are available in overview or survey
papers like [26, 23, 19, 25].

IV. PLANNED CONTENT

A. Introductory presentation (20 minutes)

The tutorial begins with a 15 to 20-minute presentation
by the speaker. This presentation aims to motivate the use
of Autonomic Computing [17] and the use of the feedback
loop, as presented in Section II. It then exposes regulation
problems that arise in Computer Science. We discuss the
different approaches to answer such regulation problems: ad-
hoc solutions, rule-based solutions, artificial intelligence based
solutions, etc. We then introduce Control Theory, its principle,
closed-loop formulation and its methodology [7]. Then, the
different types of controllers are introduced, including the
Proportional-Integral-Derivative (PID) Controller. The proper-
ties desired for a closed-loop system are discussed.

A version of the slides of this presentation is available
online [10]. We recall here the essential elements in the
Control Theory formulation, and the next sections dive more
in details on the methodology steps and controllers. The
theoretical part of the tutorial is based on the book of Joseph
L. Hellerstein e.a. [13].

The main tool of Control Theory is the Controller, that links
the control error, i.e., the distance between the desired state
of the system and the current state of the system, to the next
value of the actuator. There exists a large corpus of controllers
with different behavior and properties. We mainly focus on the
classical Proportional-Integral Controller, as it is the widest
used control technique, and also introduce the participants to
mode advances controllers, such as Model Predictive Control
and Feedforward control.

The presentation also aims at introducing important termi-
nology, concepts, and notations of Autonomic Computing and
Control Theory, such as actuator (u), sensor (y), reference
value (yref ), control error (e), etc.

After this presentation, the attendees are invited to connect
on the tutorial website. Figure 4 depicts the visual of the
website of the tutorial. The left panel shows the different steps
of the tutorial. The right panel hosts the interactive notebooks
where the attendees will interact via sliders with the simulated
system. These notebooks do not require deploying an instance
of JupyterLab, but instead rely on JupyterLite [15], a web-
assembly powered version of JupyterLab executing directly in
the attendees’ browser without the need for a server. Hence, the
tutorial is permanently available, even outside the tutorial time
slots. Instructions on how to interact with a Jupyter notebook
in recalled in the front page of the tutorial.

Fig. 4: Screenshot of the tutorial web interface

Take Away: Introductory Presentation

At the end of this step, attendees should have under-
stood the main motivation and high level concepts
of Autonomic Computing and Control Theory, and
understand the closed-loop approach.

B. Introduction to the simulated system (15 minutes)

In this first step on the notebooks, attendees get acquainted
with the objects that they will manipulate in the rest of the
tutorial. We introduce a simulated system that the attendees
will learn to control/regulate in the following steps of this
tutorial. The simulated system takes the form of a Python class
with three methods:

• sense: takes no argument, and returns the value of the
sensor of the system. This signal is often referred to as
measurement or output signal in the control terminology.

• apply: takes one argument – the desired value of the
actuator – and apply this value to the actuator. This
method also causes simulation time to progress. The
control action is usually called input signal in Control
Theory.

• get_time: returns the current time, or iteration of the
system.

Here is a small scenario:



(a) Single step response (b) Multiple steps response (c) Dirac response

Fig. 5: Response of the system for different types of control actions in open-loop.

> system = IntroSystem()
> system.get_time()
0
> system.sense()
0
> system.apply(2)
> system.get_time()
1
> system.sense()
1.0
> system.apply(1)
> system.get_time()
2
> system.sense()
1.3

Attendees observe the behavior of the system when applying
a constant actuator value, and when the value of the actuator
abruptly changes. Figure 5 shows different types of control
signals. Figure 5a depicts the response of the system to a
constant control action, and Figure 5b depicts the response
of the system to a step signal. We observe a transitory state
before the system reaches a converged state. This dynamics, a
sort of inertia in the system, is a key behavior that makes the
configuration challenging, particularly if one needs to avoid
unsafe transient states. If instead of submitting the system to
a constant control signal, we can also submit an impulse, or
Dirac, we obtain the response of Figure 5c. Note that this
behavior corresponds to a first order system. Details on the
model is, however, set aside for the attendee at this point,
since it is only needed for the demonstration on the tuning of
the P controller in Section IV-D.

Take Away: System under study

At the end of this step, attendees should have under-
stood how the simulated system works, its dynamics
behavior, and how to interact with it through a sensor
and an actuator.

Fig. 6: Behavior of a threshold-based regulation

C. Designing a threshold-based solution (20 minutes)

In this step, attendees are asked to design a first solution to
regulate the system’s measure around a desired value. The
objective is to highlight that choosing the adequate action
is not straightforward, especially due to the dynamics of the
system. At first, a threshold-based approach is proposed, as a
simple solution that do not require Control Theory knowledge,
however it shows some limitations.

The threshold-based algorithm is already implemented and
can be described as: If the value of the sensor is greater than
upper_bound then decrease the value of the actuator by 1.
If the value of the sensor is smaller than lower_bound then
increase the value of the actuator by 1. Else, keep the current
value of the actuator. The values of upper_bound and
lowerer_bound can be set by the attendee, see Figure 6.

The objective is to show to attendees that finding acceptable
values for the thresholds is a tedious and experiments-driven



(a) Small gain (Kp = 1.5) (b) Medium gain (Kp = 3.3) (c) Large gain (Kp = 3.7)

Fig. 7: Behavior of a Proportional Controller for different values of the gain Kpfor the simulated system.

task, and always results in an oscillating sensor signal. More-
over, such threshold-based solutions lead to non-converging
systems which oscillate (see Figure 6), and are thus non-
satisfactory.

Based on our experience with the previous sessions of this
tutorial, attendees appreciate this step as they usually set up
a small competition to see who can find the threshold values
yielding the best control.

Take Away: Threshold-based Solution

At the end of this step, attendees should have under-
stood that threshold-based solutions are tedious to set
up, that there is no methodology to do so, and that the
resulting measure signal has an oscillatory behavior.

D. Designing a Proportional Controller (30 minutes)

We introduce a first controller, that overcomes the limita-
tions of the threshold-based approach by providing a design
methodology and tunable measurement behavior. In this step,
we present the simplest controller of Control Theory: the
Proportional Controller.

The formulation of the Proportional Controller is as follows:

uk = Kp × ek (1)

where uk is the value of the actuator, ek is the control error
at iteration k (ek = yref − yk), and Kp is a gain.

This controller has a single parameter to define (Kp), and
a limited set of behaviors, but its study lays the bedrock for
the following steps of the tutorial.

We then introduce the attendees to important properties of
a controller and closed-loop systems (depicted in Figure 8):

• Stability: the capacity for the controlled system to reach
a converged state, i.e., no divergence.

• Precision: the capacity for the controlled system to con-
verge close to the reference, measured as an error.

• Settling Time: the time required by the controlled system
to reach stay within ±5% of the reference value.

Fig. 8: Representation of the important properties of a con-
troller and closed-loop system. Taken from [26]

• Maximum Overshoot: the maximum point above the
reference value.

We ask the attendees to experiment with different value
of the gain Kp. Figure 7 depicts 3 types of behavior of
a Proportional Controller. With small gains (Figure 7a), the
controller quickly reaches a stable state, but does not converge
close to the desired reference value (straight orange line).
When we increase the gain (Figure 7b), the controller gets
closer to the reference value, but we see some oscillations
and overshoots the reference value, but the system still ends
up converging. When we push even further the gain Kp

(Figure 7c), then the oscillations are large and increasing: there
is no convergence, the system is unstable.

These properties are then explained mathematically, and
how they are linked to the value of the Kp – the gain of
the Proportional Controller. The tutorial guides the attendees
to theoretically find the value of the gain Kp that meets the
different closed-loop properties. Note that these mathematical
explanations assume the system is a first-order one. The
conditions on the gain Kp can then be observed on the
interactive plot of the Proportional controller, to illustrate the



Fig. 9: Interactive representation of the tradeoff between the
different properties of a Proportional controller to find a
suitable value of Kp

considered properties and the link with the gain.
Figure 9 depicts the tradeoff between the different properties

of a Proportional controller to find a suitable value of Kp.
Attendees can then use the sliders on the properties of the
controller (maximum overshoot, settling time, precision) to
find a value of Kp that satisfies their properties. Attendees
can trade-off some precision and find a Kp value around 1.25,
or increase the maximum overshoot and find a Kp value of
around 2.5. The example provided is a first order system:
yk+1 = ayk + buk with a = 0.8 and b = 0.5.

Take Away: P Controller

At the end of this step, attendees should have under-
stood the behavior and tuning of the Proportional Con-
troller, and its limitations: its precision, and tradeoffs
between the different properties.

E. Designing a Proportional-Integral Controller (20 minutes)

To overcome the precision limitation of the P controller, we
introduce the Proportional-Integral Controller (PI).

The formulation of the PI (in discrete time) is as follows:

uk = Kp × ek +Ki ×
k∑

i=0

ei (2)

where Ki is the gain of the integral part.
There are now two gains to set up: Kp and Ki. Contrary to

the previous step of the tutorial for the Proportional controller,
we do not dive into the mathematical proof of how to find
the relations to set up the gains, but directly use the classical
pole placement method [13]. The attendees can set their
desired settling time ks and maximum overshoot mp, and the

Fig. 10: Proportional-Integral controller with sliders on the
desired properties.

computed gains Kp and Ki are computed, see Figure 10. The
objective here is not to focus on the tuning method, but rather
to show that the integral action cancels the steady-state error.

Attendees can interact with the sliders for the gains Kp and
Ki and observe the impact of the Integral term. Interesting
configurations of the gains could be: (Kp ̸= 0,Ki = 0),
(Kp = 0,Ki ̸= 0), or (Kp ̸= 0,Ki ̸= 0).

Take Away: PI Controller

At the end of this step, attendees should have under-
stood that using a PI instead of a P controller brings
precision to the closed loop system. Attendees should
also be introduced to the limits of the PI, namely that
a large value of Ki can lead to unstable systems.

F. Proportional-Integral-Derivative Control (15 minutes)

One limitation of the Proportional control is the trade-off
between rapidity and overshoot. As one increases the Kp

parameter, the settling time lowers, while overshoot increases.
The PI controller suffers the same drawback.

A derivative action can be added to improve the quality
of the measure signal, i.e., reduce the oscillations. Indeed,
adding a component in the control action formula that is
proportional to the rate of change of the error allows damping
of the action when close to convergence, and boosting it when
there are large changes in the error (e.g., at initial moments).
The derivation acts as an anticipation action, predicting a
continuation in the error signal trend (increase or decrease).

The derivative control is however sensitive to noise, as it
amplifies high frequency signals, and is thus not always used
in practice.



Take Away: PID Controller

By now, the attendees should understand which prop-
erties are improves by each element of a Proportional-
Integral-Derivative controller, and know the trade-offs
tuning allows.

G. Performing the identification of a system (30 minutes)

In the previous steps, the attendees were implicitly relying
on the parameters of the underlying model for the tuning of
the controller gains. In practice on computing systems, these
parameters are unknown and must be found through what
control theorists call, identification. This step of the tutorial
presents how to design the experimental identification of our
simulated system, and find the parameters of the model via
the Least Mean Square algorithm.

First, attendees focus on a system without any noise, where
the identification of the parameters is straightforward. Then,
we introduce noise in the system to make the process more
realistic. The noise makes the identification more difficult, and
the estimation of the model parameters less precise. However,
we show that even with less precise parameters, a PI Controller
is still able to regulate the system, illustrating that modeling is
only an intermediary step in the Control Theory methodology,
focussed on closed-loop performances.

Take Away: Identification

At the end of this step, attendees should have under-
stood that the model parameters needed for controllers’
tuning can be found experimentally by identification,
and apprehend its challenges.

H. Envisioning the variety of Controllers (30 minutes)

So far, the tutorial focused on PID feedback controllers,
that compute the action based on the measured system states.
Other types of controllers can be used, either to provide further
guarantees, or when the system shows challenging properties
(e.g., non-constant sampling time, varying model parameters).

In cases where the system undergoes some disturbances,
i.e., a non-controllable signal affects the measure signal, it
can be useful to design a controller able to anticipate rather
than just react. Measuring the disturbance, one can adjust
the control action accordingly with a so-called feedforward
controller. This allows for a perfect compensation of the
disturbance, provided some hypothesis are fulfilled (such as
the control acts faster than the disturbance), while a purely
feedback control, as a PID, would only compensate for the
disturbance once it affects the measure. Feedforward control
is often combined with feedback controllers, to ensure the
tracking of the reference.

Another approach when designing a controller is to solve
an optimization problem. Model Predictive Control considers
the problem of choosing a set of control actions over a future
horizon, so as to minimize a cost function (often composed

of elements such as reference tracking yref − yk and control
amplitude uk). The first control action is applied, and the MPC
is solved again in the next time step. MPC has the advantage of
providing optimal trajectories. However, as it relies on future
steps prediction, its performance can degrade if the modeling is
not reliable. This limitation is mitigated by the re-computation
of the optimal solution at each time step.

Take Away: Advanced controllers

At this point, attendees should understand that a con-
troller is simply a function giving the action to per-
form. The different controllers enable to have various
guarantees on different types of systems.

I. Formulate your own control problem (1 hour)

Now that the steps of design of a controller (and model)
are understood, the attendees are invited to consider their
own self-adaptive systems as a control loop. Those with no
specific system under study can join other groups. Following
the methodology of applying control theory to computing
systems [7, 3], the attendees are guided with a list of questions
to identify the goals of the adaptation, the challenges that
make it non-straightforward, the potential actions that can be
performed at runtime, and the suitable measure of the state
of the system. Actuators and sensors are analyzed to ensure
that they fit the requirements for control, e.g., continuous-like
signals and inertia in the actions. A first attempt of analytical
modeling is performed. A reflection on the specificities and
challenges of the system aims at selecting a suitable control
form.

Take Away: Formulating a control problem

At the end of this part, the attendees should have all the
elements formulated (e.g., action, measure) in order to
apply identification and control design on their own
system.

J. Application to more complex (simulated) system (optional)

In the last step of the tutorial, the attendees are invited
to use what they learned in the previous steps to design a
controller for a more realistic system inspired from the one
mentioned in III-B. The system is a simulation of CiGri [8],
a computing grid middleware, to harvest the idle resources
of a set of computing machines. CiGri takes as input Bag-
of-tasks applications, i.e., a set of numerous independent jobs
with similar characteristics. These tasks cannot be submitted
directly to the scheduler of the computing cluster, as they
would overload the scheduling algorithm. Hence, the role of
CiGri is to submit periodically batches of tasks to the scheduler
in order to use the idle resources of the computing cluster
while not overloading the scheduler.



Take Away: Application to more complex system

At the end of this step, attendees should be able
to apply the Control Theory methodology on a new
system and design a controller.

V. PREVIOUS SESSIONS

As of June 2024, there have been 7 sessions of this
tutorial, for a total number of attendees around 110. Table II
summarizes the information about the previous sessions.

VI. PERSPECTIVES

Perspectives of this tutorial include the development of an
extension where attendees would be able to apply what they
learned on a real system. We envision that attendees could
connect to a testbed such as Grid’5000 [2] or Chameleon [16],
deploy a real computing system, and design a Proportional
Controller for this system.

The system described in [1] represents an interesting case
for experimenting on a real system. In this system, a ”for” loop
is parallelized between threads: each thread receives a number
of iterations of the loop to execute – a task –, and, once done,
will ask for a new task until all the iterations are executed.
In general, small task sizes lead to low load imbalance and
increased performance. However, in [1], the authors observed
that for their application, having load imbalance improved the
performance of the application as the synchronization patterns
of the loop were slightly desynchronized, and lead to less
congestion on memory. Once, set up, the attendees would need
to dynamically adapt the size of tasks based on the bandwidth
of the memory to control the congestion on memory in order
to exploit the trade-off between load imbalance and memory
congestion.

A companion tutorial could also be offered to control
scientists, to introduce them to computing systems as a sub-
ject of regulation. The objectives would be to illustrate the
challenges specific to computing systems, such as variability
between runs, multiplicity of sensing and actuation options,
choice of the sampling frequency, unknown sources of dis-
turbances/noise/variability, hardware dependence, etc. Such
tutorial could consist in a simple interface (e.g. in Python
or Matlab) allowing to perform open-loop and closed-loop
experimentation, modify sensors/actuators, while hiding the
complexity of the deployment of the computing application on
a real testbed. We hope that such a setup could allow control
theorist to easily design identification and control, tackling
the challenges of computing systems with dedicated or novel
control techniques.

VII. AUTHORS BIOGRAPHIES

A. Quentin Guilloteau

Quentin Guilloteau holds a Ph.D. in Computer Science
from Univ. Grenoble Alpes in France (2023) on the topic of
applying Control Theory approaches to the regulation of High
Performance Computing systems. He is currently a Post-doc

at the University of Basel in Switzerland, working on multi-
level scheduling. He is also interested in reproducible research
and autonomic computing in HPC.

B. Sophie Cerf

Sophie Cerf is a Research Scientist in the Spirals team
at Inria center of the University of Lille. She got her Ph.D.
from the Univ. Grenoble Alpes in 2019. Her research interests
are Control Theory for Distributed Systems. She focuses her
research on sustainable and social computing.

C. Raphaël Bleuse

Raphaël Bleuse is an Associate Professor at Univ. Grenoble
Alpes, France since 2019. He received is Ph.D. in 2017
from Univ. Grenoble Alpes. His research focuses on the
combination of control theory with scheduling theory, aiming
at designing pragmatic solutions for the allocation of resources
on HPC systems and alike. His research ranges from modeling
computing systems, designing controllers and scheduling algo-
rithms to conducting reproducible experiments by simulation
or on real hardware.

D. Bogdan Robu

Bogdan Robu is an Associate Professor in the GIPSA-
lab research laboratory of the Univ. Grenoble Alpes. He
received his Ph.D. in 2010 from the University of Toulouse.
His research focus is on applying Control Theory techniques
(discrete, continuous, hybrid) to Distributed Systems for the
runtime dynamic management of learning algorithms and neu-
ral networks, Cloud/Fog software, parallel computing systems
as well as IoT systems.

E. Eric Rutten

Éric Rutten (Ph.D. 90, Habil. 99 at U. Rennes, France) is
researcher at Inria in Grenoble, France, where he heads the
Ctrl-A team. After working in the past on embedded, real-time
and robotic systems, contributing methods and tools to support
computing for control systems, he then reversed the perspec-
tive by considering control for computing systems, exploring
the potentials of Control Theory (discrete and continuous)
in the runtime management of self-adaptive Cloud/Edge or
High Performance Computing systems, with objectives of
self-(re)configuration, self-optimization, self-healing, and self-
protection.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr).

https://www.grid5000.fr
https://www.grid5000.fr


Event Date Speaker Attendees Duration Details

FlexScience 2024 03/06/24 Quentin Guilloteau ≃ 10 1 hour Attendees of a conference in parallel and distributed computing, beginners
ANR ADAPT 14/03/24 Sophie Cerf ≃ 10 1 hour Research project seminar, beginners
VELVET Days 2023 13/12/23 Sophie Cerf ≃ 25 1 hour Event on reconfiguration, adaptation, and DevOps, beginners
ComPas 2023 04/07/23 Quentin Guilloteau ≃ 10 2 hours Attendees of a conference in parallel and distributed computing, beginners
Spirals Seminar 27/06/23 Sophie Cerf ≃ 35 2 hours Research team seminar, audience of self-adaptive researchers
WAX GLSI 13/06/23 Quentin Guilloteau ≃ 10 2 hours Research lab seminar, beginners
CtrlA Seminar 21/04/23 Quentin Guilloteau ≃ 10 2 hours Research team seminar, initiated attendees

TABLE II: Summary of the previous sessions

REFERENCES

[1] A. Afzal, G. Hager, and G. Wellein. Desynchroniza-
tion and wave pattern formation in MPI-parallel and
hybrid memory-bound programs. In High Performance
Computing: 35th International Conference, ISC High
Performance 2020, Frankfurt/Main, Germany, June 22–
25, 2020, Proceedings 35, pages 391–411. Springer,
2020.

[2] D. Balouek, A. C. Amarie, G. Charrier, F. Desprez,
E. Jeannot, E. Jeanvoine, A. Lèbre, D. Margery, N.
Niclausse, L. Nussbaum, et al. Adding virtualization ca-
pabilities to the grid’5000 testbed. In Cloud Computing
and Services Science: Second International Conference,
CLOSER 2012, Porto, Portugal, April 18-21, 2012.
Revised Selected Papers 2, pages 3–20. Springer, 2013.

[3] S. Cerf, R. Bleuse, V. Reis, S. Perarnau, and E. Rutten.
Sustaining performance while reducing energy con-
sumption: a control theory approach. In Euro-Par 2021:
Parallel Processing: 27th International Conference on
Parallel and Distributed Computing, Lisbon, Portugal,
September 1–3, 2021, Proceedings 27, pages 334–349.
Springer, 2021.

[4] S. Cerf, B. Robu, N. Marchand, and S. Bouchenak. Pri-
vacy protection control for mobile apps users. Control
Engineering Practice, 134(May):105456, May 2023.
DOI: 10.1016/j .conengprac.2023.105456. URL: https
://hal.science/hal-03977386.

[5] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback
control for adaptive live video streaming. In Proceed-
ings of the second annual ACM conference on Multi-
media systems, pages 145–156, 2011.

[6] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and
D. M. Tilbury. Using mimo feedback control to enforce
policies for interrelated metrics with application to the
apache web server. In NOMS 2002. IEEE/IFIP Network
Operations and Management Symposium.’Management
Solutions for the New Communications World’(Cat. No.
02CH37327), pages 219–234. IEEE, 2002.

[7] A. Filieri, M. Maggio, K. Angelopoulos, N. d’Ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P.
Jamshidi, E. Kalyvianaki, C. Klein, et al. Software
engineering meets control theory. In 2015 IEEE/ACM
10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 71–82.
IEEE, 2015.

[8] Y. Georgiou, O. Richard, and N. Capit. Evaluations of
the lightweight grid cigri upon the grid5000 platform.
In Third IEEE International Conference on e-Science
and Grid Computing (e-Science 2007), pages 279–286.
IEEE, 2007.

[9] Q. Guilloteau. Control-based runtime management of
HPC systems with support for reproducible experiments.
Theses, Université Grenoble Alpes, Dec. 2023. URL: h
ttps://hal.science/tel-04389290.

[10] Q. Guilloteau, S. Cerf, E. Rutten, R. Bleuse, and B.
Robu. Under Control: A Control Theory Introduction
for Computer Scientists, Apr. 2023. URL: https : / / hal
. science /hal - 04460285. Tutorial to introduce Control
Theory to Computer scientists.

[11] Q. Guilloteau, O. Richard, B. Robu, and E. Rutten.
Controlling the Injection of Best-Effort Tasks to Harvest
Idle Computing Grid Resources. In ICSTCC 2021 - 25th
International Conference on System Theory, Control
and Computing, pages 1–6, Ias, i, Romania, Oct. 2021.
DOI: 10.1109/ICSTCC52150.2021.9607292. URL: http
s://hal.inria.fr/hal-03363709.

[12] Q. Guilloteau, B. Robu, C. Join, M. Fliess, É. Rutten,
and O. Richard. Model-free control for resource har-
vesting in computing grids. In Conference on Control
Technology and Applications, CCTA 2022, Trieste, Italy.
IEEE, Aug. 2022. URL: https://hal.archives-ouvertes.fr
/hal-03663273.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback control of computing systems. John Wiley &
Sons, 2004.

[14] C. Imes, H. Zhang, K. Zhao, and H. Hoffmann. Copper:
soft real-time application performance using hardware
power capping. In 2019 IEEE International Conference
on Autonomic Computing (ICAC), pages 31–41. IEEE,
2019.

[15] [Software] jupyterlite, 2024. URL: https://github.com/j
upyterlite/jupyterlite, SWHID: ⟨swh:1:dir:9b5c2e6b11a
3acab3bfa3772a082c930cbeb6ba9;origin=https://github
.com/jupyterlite/jupyterlite⟩.

[16] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth,
D. Stanzione, M. Cevik, J. Colleran, H. S. Gunawi, C.
Hammock, et al. Lessons learned from the chameleon
testbed. In 2020 USENIX annual technical conference
(USENIX ATC 20), pages 219–233, 2020.

https://sites.google.com/view/flexscience
https://projects.femto-st.fr/ANR-ADAPT/news/kick-besancon-2024-march-14-15
https://helene-coullon.fr/pages/velvet/
https://2023.compas-conference.fr/tutoriaux
https://doi.org/10.1016/j.conengprac.2023.105456
https://hal.science/hal-03977386
https://hal.science/hal-03977386
https://hal.science/tel-04389290
https://hal.science/tel-04389290
https://hal.science/hal-04460285
https://hal.science/hal-04460285
https://doi.org/10.1109/ICSTCC52150.2021.9607292
https://hal.inria.fr/hal-03363709
https://hal.inria.fr/hal-03363709
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.archives-ouvertes.fr/hal-03663273
https://github.com/jupyterlite/jupyterlite
https://github.com/jupyterlite/jupyterlite
http://archive.softwareheritage.org/swh:1:dir:9b5c2e6b11a3acab3bfa3772a082c930cbeb6ba9;origin=https://github.com/jupyterlite/jupyterlite
http://archive.softwareheritage.org/swh:1:dir:9b5c2e6b11a3acab3bfa3772a082c930cbeb6ba9;origin=https://github.com/jupyterlite/jupyterlite
http://archive.softwareheritage.org/swh:1:dir:9b5c2e6b11a3acab3bfa3772a082c930cbeb6ba9;origin=https://github.com/jupyterlite/jupyterlite


[17] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[18] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-
Rodriguez. Brownout: building more robust cloud ap-
plications. In Proceedings of the 36th International
Conference on Software Engineering, pages 700–711,
2014.

[19] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H.
Müller, H. Giese, R. Rouvoy, and E. Rutten. What Can
Control Theory Teach Us About Assurances in Self-
Adaptive Software Systems? In R. de Lemos, D. Garlan,
C. Ghezzi, and H. Giese, editors, Software Engineering
for Self-Adaptive Systems 3: Assurances. Volume 9640,
LNCS. Springer, May 2017. URL: https://inria.hal.scie
nce/hal-01281063.

[20] E. Molina, M. Fiacchini, S. Cerf, and B. Robu. React
to the Worst: Lightweight and proactive protection of
location privacy. IEEE Control Systems Letters, 7:2371–
2376, 2023. DOI: 10.1109/LCSYS.2023.3286989. URL:
https://hal.science/hal-04128118.

[21] T. Nylander, C. Klein, K.-E. Årzén, and M. Maggio.
Brownout cc: cascaded control for bounding the re-
sponse times of cloud applications. In 2018 Annual
American Control Conference (ACC), pages 3354–
3361. IEEE, 2018.

[22] R. Pagano, S. Cerf, B. Robu, Q. Guilloteau, R. Bleuse,
and É. Rutten. Making Control in High Performance
Computing for Overload Avoidance Adaptive in Time
and Job Size. In Conference on Control Technology and
Applications, CCTA 2024, Newcastle upon Tyne, UK.
IEEE, Aug. 2024.

[23] A. V. Papadopoulos. Designing self-adaptive software
systems with control theory: an overview. In 2022 IEEE
International Conference on Autonomic Computing and
Self-Organizing Systems Companion (ACSOS-C), 2022.
DOI: 10.1109/ACSOSC56246.2022.00027.

[24] B. Porter, R. R. Filho, and P. Dean. A survey of
methodology in self-adaptive systems research. In 2020
IEEE International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS), pages 168–
177, 2020. DOI: 10.1109/ACSOS49614.2020.00039.

[25] E. Rutten, N. Marchand, and D. Simon. Feedback
control as mape-k loop in autonomic computing. In
Software Engineering for Self-Adaptive Systems III.
Assurances: International Seminar, Dagstuhl Castle,
Germany, December 15-19, 2013, Revised Selected and
Invited Papers, pages 349–373. Springer, 2017.

[26] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio.
Control-theoretical software adaptation: a systematic
literature review. IEEE Transactions on Software En-
gineering, 44(8):784–810, 2017.

[27] D. Simon, A. Seuret, and O. Sename. Real-time control
systems: feedback, scheduling and robustness. Interna-
tional Journal of Systems Science, 48(11):2368–2378,
2017. DOI: 10 . 1080 / 00207721 . 2017 . 1316879. URL:
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01515226.

https://inria.hal.science/hal-01281063
https://inria.hal.science/hal-01281063
https://doi.org/10.1109/LCSYS.2023.3286989
https://hal.science/hal-04128118
https://doi.org/10.1109/ACSOSC56246.2022.00027
https://doi.org/10.1109/ACSOS49614.2020.00039
https://doi.org/10.1080/00207721.2017.1316879
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01515226

	General Information
	Introduction
	Motivation of Control for Computing
	Motivation of this tutorial 
	Impact of this tutorial

	Examples of applications
	Runtime powercaping to regulate performance in HPC
	Resource harvesting at cluster level 
	Dynamic privacy preservation for mobile devices users
	More examples

	Planned Content
	Introductory presentation (20 minutes)
	Introduction to the simulated system (15 minutes)
	Designing a threshold-based solution (20 minutes)
	Designing a Proportional Controller (30 minutes)
	Designing a Proportional-Integral Controller (20 minutes)
	Proportional-Integral-Derivative Control (15 minutes)
	Performing the identification of a system (30 minutes)
	Envisioning the variety of Controllers (30 minutes)
	Formulate your own control problem (1 hour)
	Application to more complex (simulated) system (optional)

	Previous Sessions
	Perspectives
	Authors Biographies
	Quentin Guilloteau
	Sophie Cerf
	Raphaël Bleuse
	Bogdan Robu
	Eric Rutten


