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Abstract 

The scaling methodology described in this paper to find the geometry and working 
parameters of Hall Thrusters is based on algorithms of supervised Machine Learning. 
The approach considers the determination of the geometrical sizes, propellant mass 
flow rate and discharge voltage taking thrust and specific impulse as requirements. 
The magnetic field is also considered. The Gradient Boosting Regression is found 
as the most suitable algorithm for our purpose. Scaling relies on a specific database 
of 54 thrusters for the determination of all parameters. The database includes measure-
ments carried out with xenon, krypton and argon as propellant. A unique analytical 
approach based on the GBR algorithm has been developed and validated to determine 
the suitable design for a Hall thruster according to space mission requirements.

Keywords:  Hall thruster, Machine learning, Scaling laws, Electric propulsion

Introduction
In recent years, Hall Thrusters (HTs) have attracted increasing interest in the spacecraft 
propulsion field due to particular advantages such as high �v and total impulse, high 
thrust-to-power ratio and thrust density, and an efficiency in excess of 50 %. In addition, 
HTs operate over a fairly wide range of power levels and can therefore be used for both 
microsatellites and large satellites in Earth orbit and for deep space missions. Although 
they are commonly used nowadays, some internal physical mechanisms remain 
unknown, such as anomalous electron transport and plasma-wall interactions[1, 2]. This 
means that building and optimization of a new thruster is complex, long in duration and 
mostly empirical whatever the size and power level. Unfortunately, advanced 2D Parti-
cle-In-Cell or fluid codes are of little help in the development of Hall Thrusters, since 
they are not predictive and must be validated using measurements. In fact, the construc-
tion of simple models to help with design and data interpretation has characterized the 
development of Hall thrusters from the outset. Thanks to the gradual development and 
use of these thrusters over the past decades, it has been possible to develop methodolo-
gies based on scaling laws derived from reference thrusters along with database [3, 4]. 
The common limitations of these approaches lie mainly in the equations on which they 
are based. Although useful for obtaining an initial estimate of thruster parameters and 
performances, the potential of 0-D scaling relations remains limited. The latter are in 
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fact too simple to correctly reproduce the physics at play in HTs. Simplifying assump-
tions are indeed made on loss factors, plume divergence, thermal load, magnetic field 
topology, presence of multiply-charged ions, to name just a few examples [5]. All these 
approximations often result in large differences between predictions and performance 
measurements.

In this work, the problem was addressed through an approach that was no longer 
purely statistical but based on Machine Learning (ML) algorithms. The field of ML is 
very broad and includes more or less complex algorithms covering a wide range of top-
ics. In this study, supervised machine learning regression algorithms were analysed with 
the aim of determining continuous output values from input data [6]. Such an approach 
makes it possible to avoid in principle any kind of initial assumption and is disconnected 
from the physical relationships between the parameters involved [7]. The objective of 
this study was therefore to improve the scaling methodologies with a non-statistical 
approach, in order to assess the size and properties of HTs from requirements such as 
thrust and specific impulse. To achieve this, a validation of our database was carried 
out with the principal scaling laws derived over the years, see Scaling laws: the classical 
approach  section. In Machine learning approach  section, the Machine Learning algo-
rithm that is most appropriate for exploring the database is selected. In Procedure to 
design a new thruster section, the selected model was used in an optimization method 
to determine the characteristics of a generic new Hall Thruster. Finally, conclusions and 
perspectives are given in Conclusion section.

Scaling laws: the classical approach
Database

The data used in this study came from databases consisting of data collected since 
2012 and stored in our laboratory, combined with an extensive search for new tests 
in the literature, sometimes supplemented by extrapolation of data from graphs pro-
vided in various scientific journal papers, doctoral theses and conference articles. 
The data collected concern Hall thrusters firing from 50 W up to 70 kW [8–34]. The 
database features 54 thrusters, with a total number of 3323 different operating condi-
tions. The quantities included in the database are given in Table 1. The channel mean 
diameter is the parameter d = 1

2 (dext + dint) , where dext and dint are the external and 
internal channel diameter, while h = 1

2 (dext − dint) is the channel width. L is the dis-
charge channel length. The database only contains information on stationary-plasma-
thruster type HTs, meaning that TAL are not considered. Very little data is available 
on magnetically shielded thrusters, as it is a fairly recent technology. Most of the tests 
were performed with xenon as propellant. There is however data with krypton and 
argon, which allows to study the characteristics of thrusters according to the type of 
propellant. Xenon-fueled HTs cover 82 % of the database and Kripton-fueled thrust-
ers 14 %. Unfortunately, the full set of characteristics is not available for each con-
dition. In fact, leaving aside the magnetic field and considering only complete sets, 
1570 points are available for xenon, 268 for krypton and 80 for argon. The param-
eters we considered cover wide ranges, as the database includes small thrusters and 
large thrusters with powers ranging from a few watts up to 70 kW, as can be seen in 
Fig. 1, where the thrust T is plotted as a function of the input power Pd for the three 
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propellants. It is worth noting that the database has 79 % of the tests for powers below 
5 kW, as illustrated in the inset plot in Fig.  1. In short our database is particularly 
focused on small and medium size Hall thrusters.

Standard scaling laws

The statistical scaling methodologies often rely upon well-known and widely tested 
thrusters. Starting from that, it is possible to determine proportionality relationships 
between intensive and extensive parameters that characterize thrusters. Assuming simi-
larity criteria are valid, thanks to the above-mentioned laws it is possible to identify the 
variation in the value of the parameters when the thruster scale is changed. Since the 

Table 1  Database parameters

PARAMETER SYMBOL UNIT

Model - -

Developer - -

Type HT(SPT or TAL), MS(Magnetic shielded) -

Propellant Xe,Ar,Kr -

Diameter d m

Height h m

Length L m

Mass flow rate ṁn kg/s

Voltage Ud V

Current Id A

Power Pd W

Thrust T N

Specific impulse Isp s

Thrust Efficiency η -

Magnetic field B G

Fig. 1  Thrust T as a function of the discharge power Pd . The zoom at the bottom represents the position of 
the majority of the data in the database
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development of HTs in the 1970s, numerous works have concerned this field, varying 
one or more parameters while keeping others constant [35–37, 22, 38, 39].

Recent works have considered the extraction of scaling relations from physical pro-
cesses validated against a database. Dannenmayer et al. took into account an atom den-
sity constraint inside the channel, they also assume the height h and the mean diameter 
d of the channel are proportional [5]. They developed two approaches, one with few 
assumptions and one with numerous assumptions on different performance parameters, 
based on the determination of coefficients associated with linear trends in the data. The 
same approach was followed by Lee et al. [40] with the creation of a database focusing 
on sub-kilowatt Hall thrusters.

In this article, this approach is applied to the new database described above. In order 
to obtain the design characteristics of a new thruster, basically its geometrical charac-
teristics, it is necessary to consider assumptions on losses and proportionality between 
channel height and diameter, as described in [5]. Figure 2 shows clearly that h ∝ d is a 
very good assumption. However, as demonstrated by Mazouffre et al. [41], considering 
that the surface-to-volume ratio scales as 2/h, to reduce losses and to increase thrust the 
height of the channel should increase, without relation to the diameter. Figure 2 in fact 
illustrates a technological consequence resulting from the fact that thrusters are always 
scaled from a reference thruster, quite often the Russian SPT100 thruster.

Starting from mission requirements such as thrust and specific impulse, it is possible 
to develop an iterative procedure to determine the characteristics of a new thruster. As 
explained, laws are determined from physical processes [5, 40] and coefficients are found 
using databases. An usual relation for the thrust is:

where ṁn is the propellant mass flow rate and Ud is the discharge voltage.
Figure 3 indicates Eq. 1 is valid for a broad range of parameters. Inserting the propel-

lant atomic mass Mn in the linear relation avoids the dependence of the latter on the 

(1)T ∝ ṁn · Ud ,

Fig. 2  Linear relation between channel height and diameter
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type of propellant, as can be seen in Fig. 3. Given the linear dependence of mass flow 
rate on cross-sectional area of the Hall Thruster, Eq. 1 becomes:

where h, d are the channel height and mean diameter, respectively.
Figure  4 illustrates Eq.  2. The data spread in Fig.  4 is large compared to Fig.  3. The 

observed scatter in the data can be attributed to the collection methodology, wherein 
measurements were taken from same thrusters operating at varying mass flow rates. This 
approach results in a vertical distribution pattern on the graph in Fig. 4, characterized by 

(2)T ∝ hd ·
√

Ud

Fig. 3  Thrust against a function of (ṁn ,Ud ,Mn) for Xe, Kr and Ar. A linear fit to all data is also shown

Fig. 4  Thrust as a function of hd ·
√
Ud  and linear fit for Hall Thrusters in the database. Data are divided by 

type of propellant
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constant abscissa values. Consequently, the thrust, represented on the y-axis, depends 
on mass flow rate values. A scaling relationship must also be defined for the specific 
impulse. Since it is directly proportional to the ion velocity, one gets:

where Isp is the specific impulse. Figure 5 shows the linear trend of data where the spread 
is due to the different anode flow rate values.

Using the laws presented above and the determination of linear fitting coefficients on 
the available data, the main characteristics of a generic new thruster can be estimated. 
The procedure illustrated helps to give an idea of the geometry that a thruster should 
have if certain thrust and specific impulse are required, in a first approximation. It is 
certainly necessary to go into more detail, considering aspects such as thermal loads on 
walls, multiple charged ions, several losses and anomalous electron transport. The main 
limitations of the traditional approach are the lack of consideration for the magnetic 
field and necessary assumptions about links between geometrical characteristics.

In the following approach, which is based on machine learning algorithms applied to 
the database, the model will be left free of initial assumptions, although it still depends 
on the available data, and in the second analysis the magnetic field will be included in 
the fundamental parameters of the model.

Machine learning approach
Introduction

The machine learning approach is based on the determination of thrust and specific 
impulse by knowing the values of mass flow rate, discharge voltage, geometric dimen-
sions (h,d,L) and, secondarily, magnetic field. The type of propellant was also added as 
a parameter in the model. Thrust and specific impulse are in fact the mission require-
ments, while all the others parameters are the targets. But algorithms are designed 

(3)Isp ∝
√

Ud

Fig. 5  Specific impulse as a function of 
√
Ud  and linear fit to all data
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to obtain a continuous value from a set of inputs, usually greater in number than the 
desired outputs.

Data pre‑processing

Before analysing the machine learning algorithms, it is necessary to prepare the avail-
able data. In fact, the range of values for the variables considered here is very different 
(e.g. mass flow rate in orders of 10−6 and voltage in orders of hundreds). This different 
scale does not allow an equal treatment of variables. The methods for scaling data in the 
same range are many and should be chosen carefully according to the type of data. The 
most common is the standardization that subtracts the mean value from each data item 
and places all data in a range with zero mean and unit variance [7]. Usually, this kind of 
scaling is used for data that presents a Gaussian distribution, which is not the case of 
our database. For this reason this method was discarded. The method chosen is the nor-
malization, where all the values are normalized inside a range from 0 to 1. Technically, 
we normalize the data between a value very close to 0 and a value very close to 1 to avoid 
singularity. The normalization law reads:

where x is the actual value, xmax and xmin are the maximum and minimum value of each 
parameter. When scaling data for machine learning models, it is imperative to restrict 
the scaling process to the training set only. Including the entire dataset in the scaling 
process introduces information leakage, whereby the model inadvertently learns from 
the test set. This leakage occurs because the normalization parameters calculated from 
the whole dataset incorporate information from both the training and test sets. Con-
sequently, when predictions are made on the test set, the model has indirectly been 
exposed to the test data during the scaling process. This exposure results in an unre-
alistic evaluation, as the test set should represent unseen data to accurately assess the 
model’s performance. Hence, to ensure the validity of the evaluation procedure and the 
generalizability of the model, scaling should be strictly confined to the training data 
prior to any model fitting or testing.

Given the constraints imposed by the relatively small dataset size, traditional parti-
tioning methods for training and testing were impractical. The Kfold-cross-validation 
procedure was adopted to make the model more robust and reliable [42].

This technique, illustrated in Table 2, is based on dividing the available data into sub-
folders, in this case five, where 4/5 of the data is used for training and 1/5 for testing, per 
each sub-folder. In this way, the model is trained five times instead of just one, and there 
are five mean errors between the target and the predicted values. Finally, a global mean 
error is calculated. There are several metrics to evaluate the performance of a model. In 
this work, the Mean Absolute Error (MAE) was chosen. It evaluates the modulus of the 
difference between the predicted value and the actual value, without taking direction 
into account. The choice was dictated by the fact that this type of metric is much less 
sensitive to outliers, i.e. data that shows a different trend from the general trend, usually 
due to measurement errors [7]. The expression of MAE [6] is the following:

(4)xscaled =
x − xmin

xmax − xmin
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where n is the number of samples, yi are the actual values and ŷi are the predicted val-
ues. Furthermore, in order to enhance the clarity of the results presentation, percentage 
error was employed as a comparative measure across different models or outcomes. The 
percentage error is calculated according to Equation 6. This metric facilitates a straight-
forward comparison of the predictive accuracy of various models, thereby providing a 
consistent and interpretable measure of performance.

Finally, a one-hot encoding (O-HE) procedure [42] was considered to also include the 
propellant within the parameters, as it is intended that the model uses the type of pro-
pellant as useful data in determining the optimal characteristics of a thruster. The type 
of propellant was converted into a three dimensional vector in which the component 
corresponding to the propellant type was set to 1 and the others were set to 0, as shown 
in Table 3.

Model selection

Introduction

The first step in determining a model capable of predicting thrust and specific impulse 
values by learning from the available data is to choose the most suitable machine learn-
ing algorithm. The selected algorithms are part of the supervised group, in the regres-
sion branch, as the aim is to determine continuous values [43].

Model selection with default hyperparameters

The procedure started by evaluating various types of supervised machine learning algo-
rithms, aiming to cover almost the full spectrum of this category. Below are the algo-
rithms initially chosen [42, 43]:

(5)MAE =
1

n

n
∑

i=1

|yi − ŷi|

(6)%error =
|yi − ŷi|

yi
× 100%

Table 2  Schematic representation of the work made by the cross-validation tool

Table 3  One-hot encoding for propellant
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•	 Linear Regression (LR) [43]
•	 Decision Tree Regression (DTR) [43]
•	 K-Nearest Neighbors Regression (KNR) [43]
•	 Random Forest Regression (RFR) [43]
•	 Gradient Boosting Regression (GBR) [43]
•	 Bagging Regression (BR) [43]

Each of these algorithms was tested on the database which, as previously explained, 
only has 1918 tests available due to missing data; 30% of data was set aside for the 
final validation of the chosen model, while 70% was used for training and testing with 
the cross validation procedure described above. Each model has its own hyperparam-
eters, which are parameters of the algorithm class that define its learning process. 
Algorithms have default hyperparameters, based on the most common functions 
used per each model [43]. In a first attempt, models were tested with them, to have 
an initial estimation of their performances. Table 4 shows the results of the approach. 
One can notice that the mean errors found are all in the same order of magnitude. 
Linear Regression is, however, the worst algorithm in predicting. The best two are 
instead the Random Forest and the Gradient Boosting, both coming from the group 
of Ensemble Learning and both having decision trees as estimators [43].

Model selection with hyperparameters tuning

A more efficient procedure is to allow the algorithm itself to define the best hyperpa-
rameters for the specific database, instead of using the default ones. A procedure of 
this type is called hyperparameters tuning [42]. The most common tool that performs 
this task is the GridSearchCV, that essentially tests all combinations of all possible 
choices and evaluate the performance for each one. It is a very long process when 
the possible hyperparameters choices are numerous and when the procedure has to 
be applied per each model. The computational time increases exponentially. For that 
reason the tool was discarded. To speed up the process of finding the best model with 
the best hyperparameters, the HalvingGridSearchCV tool was considered. Briefly, 
this machine learning tool does not check combinations of hyperparameters directly 
on all available data, but starts by evaluating combinations on a small amount of data 
called resources. Only some of these combinations called candidates are selected 
for the next iteration to which more resources will be allocated. The number of 

Table 4  Mean Absolute Errors of the models with default hyperparameters analysed using a cross 
evaluation

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

LR 0.052 0.062 0.06 0.054 0.059 0.057

DTR 0.019 0.026 0.022 0.021 0.027 0.023

KNR 0.023 0.031 0.023 0.024 0.028 0.026

RFR 0.012 0.022 0.017 0.014 0.021 0.017

GBR 0.015 0.019 0.017 0.015 0.019 0.017

BR 0.013 0.02 0.019 0.015 0.025 0.019
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iterations is established based on the number of samples and the number of param-
eters involved. The combination that arrives at the end of the iterations is the best 
one in terms of the smallest prediction error. It’s worth noting that this tool is much 
faster than GridSearchCV. In all the process, the algorithm performs a cross-field val-
idation per each combination, as explained in Data pre-processing section. Thus, the 
tool combines the subdivision procedure for evaluating the analysed models through 
MAE with the search within the models themselves for the best hyperparameters in 
order to achieve the lowest possible error.

Table  5 shows the results obtained with the tuning procedure. All models show 
improvements over the case analyzed in the Model selection with default hyperparam-
eters  section, except for the Bagging Regression which now performs worst together 
with the linear regression. The other models work in a high-performance manner, with a 
percentage error below the 60 % with respect to the Linear Regression. This percentage 
has been calculated following the formula presented in Eq. 6. As a final step, the models 
are evaluated on the testing set left apart. The graph in Fig. 6 illustrates the comparative 
performance of the models by the absolute errors made in predicting the output values 
for each test case present in the testing dataset.

The performances of KNR, RFR and GBR are almost similar, but the distribution curve 
of the Gradient Boosting seems to drop first to null values of absolute errors. Moreover 
its histogram is more concentrated on the extreme left, where the errors are close to 
zero. Thus, considering in addition the results in Model selection with default hyperpa-
rameters section, the model chosen as the best one for our data is the Gradient Boosting 
Regression, with an overall Mean Absolute Error of 0.0134.

Gradient Boosting Regression

Building of trees and prediction

The Gradient Boosting Regression (GBR) is an ensemble algorithm that puts together 
weaker models to perform better as a whole [43]. It is based on decision trees, whose 
number is decided in the hyperparameters tuning phase. In this analysis, the model 
generates 200 sequential trees. Gradient Boosting works on the gradient of the Loss 
function, minimizing the errors between predicted and actual data [44]. The model is 
initialized with an initial value:

Table 5  Hyperparameters tuning and evaluation of the six models

Model Best hyperparameters MAE

LR (‘fit_intercept’: True, “positive”: False) 0.019

DTR (‘criterion’: ‘absolute_error’, ‘max_depth’: 10, ‘min_samples_leaf’: 1, ‘min_samples_split’: 3, ‘ran-
dom_state’: 10, ‘splitter’: ‘best’)

0.009

KNR (‘algorithm’: ‘kd_tree’, ‘n_neighbors’: 3, ‘weights’: ‘distance’) 0.007

RFR (‘criterion’: ‘absolute_error’, ‘max_depth’: 10, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘n_esti-
mators’: 200, ‘random_state’: 500)

0.007

GBR (‘criterion’: ‘squared_error’, ‘learning_rate’: 0.1, ‘loss’: ‘absolute_error’, ‘max_depth’: 10, ‘min_sam-
ples_leaf’: 1, ‘min_samples_split’: 5, ‘n_estimators’: 200, ‘random_state’: 500)

0.006

BR (‘estimator’: DecisionTreeRegressor(), ‘max_features’: 8, ‘max_samples’: 10, ‘n_estimators’: 200, 
‘random_state’: 500)

0.02
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where F0 is the initial value of the model and it is equal to the value of γ that minimizes 
the loss function 

∑n
i=1 L(yi, γ ) , represented by the Mean Absolute Error, where yi are the 

actual value, γ the predicted values and n the number of tests. To find therefore the value 
of γ , a derivative of the loss function is taken and is set to zero:

The sign function is either -1, 0 or 1 and no matter how distant the target is from the 
current prediction. The model is trained on just the direction, without the magnitude. 
Considering the latter in fact the computations are easily skewed by outliers. Solving 
the equation above, we obtain that the value of γ that minimizes the loss function is 
the median of the output values in the training dataset. It is worth remind that we have 
both thrust and specific impulse as outputs of the model, therefore the GBR is trained 
on each output separately but the performance evaluation is a mean of the performance 
evaluation of the model on the two separate outputs. Once F0(x) is calculated, the GBR 
generates decision trees. Each leaf is created by splitting the training data through values 
greater or lower of a certain threshold. The algorithm itself is able to analyse the conse-
quences of each splitting and from there to decide for which threshold value the results 
are best in terms of prediction. The evaluation of the split is made through the criterion 
function, see Table 5. Since the magnetic field is not considered in this first analysis, our 
inputs are eight. The GBR is capable of dividing the training set by acting on all param-
eters simultaneously, finding the optimal threshold values for best performance. The 
mechanism is therefore quite complex. The same formula is then applied for each leaf, 
where the output is in fact:

(7)F0(x) = arg min
γ

[

n
∑

i=1

L(yi, γ )

]

(8)
dL

dγ
=

d
∑n

i=1 |yi − γ |

dγ
= −

n
∑

i=1

sign(yi − γ ) = 0

Fig. 6  Models comparison in terms of absolute errors on the testing set
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where j is the leaf, m is the tree and Rij are the output of the leaves. For the same reason 
as before, the output in each leaf is exactly the median value. Finally, this value is first 
multiplied by a α , the learning rate, that controls the speed of the process and then is 
added to the previous one, that in this case was F0(x):

Once the first decision tree is built on the training data, it has to be evaluated on 
the testing set through the MAE. It is important to remind that the Gradient Boosting 
Regression builds sequential decision trees, thus the first one gives the worst prediction 
and step by step, i.e. tree by tree, the performance is improved.

Evaluation of the model

Splitting the data with respect to a certain parameter values is also useful to know which 
are the most important parameters in the model. In fact, if the performance of the model 
varies significantly when the threshold value of a certain parameter is changed, it means 
that the parameter is important.

Figure  7 represents the percentage of importance of the various parameters consid-
ered in the decision tree building procedure. The histograms are normalized to a value 
up to 1. The mass flow rate is the most important input of the model: a change in its val-
ues generates a change in the model predictions. A physical explanation for this behavior 
may lie in the fact that the geometrical features of the thruster are linked to the mass 
flow rate, which by varying implicitly generates a change in the others. Furthermore, 
the correlation between the geometrical features themselves makes very difficult for the 
model to understand the single contribution of them in the prediction of the thrust and 
specific impulse. Therefore the model gives more importance to parameters where the 

(9)γjm = arg min
γ

∑

xi∈Rij

L(yi, Fm−1(xi)+ γ )

(10)Fm(x) = Fm−1(x)+ α

Jm
∑

j=1

γjm

Fig. 7  Features importance in the training phase of the Gradient Boosting
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independence is clearer, as mass flow rate and voltage. This correlation can be visualized 
with a correlation matrix, see Fig. 8.

The correlation matrix helps in understanding the correlation between variables. 
It measures the covariance, i.e. how much a parameter changes if another one is 
changed. It is normalized between -1 and 1. Usually, if the value is between 0.3 and 1 
there is a direct correlation between the two parameters. In fact, see Fig. 8, the geo-
metrical features have an high value of correlation among themselves and with mass 
flow rate. If the values are between -0.3 and -1, there is an inverse correlation, while 
if it is between -0.3 and 0.3 there is no correlation. In our case, the only independ-
ent variable is the discharge voltage Vd and the propellants are dependent among 
themselves.

As explained previously, the model is evaluated on the testing dataset. In Fig. 9 is rep-
resented the prediction of the two outputs made by GBR after all the 200 trees are built.

The collective behavior is good enough, since the model, represented by the blue 
crosses, is effective in prediction of thrust and specific impulse values in the entire 
range. In the upper right prediction is weaker due to the lack of data for high power 
thrusters in the database. To better understand the improvement in performance 
of the Gradient Boosting algorithm, it is useful to compare it to a thrust prediction 
model based on a scaling law, see Eq. (2), which is recalled for clarity:

Figure 10 shows the thrust predictions of the Gradient Boosting model for the thrust 
as a function of diameter, while Fig. 11 shows the predictions of the linear scaling law 
described by the Eq.  (2). The vertical distribution of data for a given diameter value is 
linked to changes of mass flow rate values for tests performed with a given Hall thruster 
(d fixed then).

It is worth noting that the two models were not tested on the same data, because the 
splitting of data in training and testing is done randomly. The GB model in Fig. 10 was 

(11)T ∝ hd ·
√

Ud

Fig. 8  Correlation matrix between inputs parameters in GBR
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tested on 576 samples, while the scaling law model in Fig. 11 on 493 samples. The dif-
ference in prediction quality is obvious. In Fig. 10 the model predicts thrust values very 
accurately, whereas in Fig. 11 agreement between data and calculation is poor. Moreo-
ver, the model follows a parabolic trend due to the quadratic dependence of thrust on 
diameter and fails to capture the punctual distribution of the test data. Figure 12 illus-
trates the absolute errors of the two models, in a graph similar to the one in Fig. 6. The 
errors of the Gradient Boosting are very small and the density curve goes fast to zero. 
On the contrary, the scaling law errors are almost two orders of magnitude greater.

Fig. 9  Model prediction of thrust and specific impulse on testing data

Fig. 10  Gradient Boosting Regression predictions of the thrust against mean diameter for the testing set
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Procedure to design a new thruster
Introduction

As explained in Introduction  section, in the process of building a new thruster some 
parameters are specified by mission requirements. Usually, thrust and specific impulse 
are the initial design parameters from which the other characteristic parameters of the 
thruster are determined, as the geometrical sizes, voltage, mass flow rate and magnetic 
field. The Gradient Boosting model predicts accurately thrust and specific impulse val-
ues, knowing the other parameters. However, when the thruster design is considered, 
a back-propagation problem arose. Indeed the model should be able to reconsider the 
relationship generation process underlying the creation of decision trees in order to 
extrapolate information about the various parameters when a particular output is 

Fig. 11  Scaling law predictions of the thrust with respect to mean diameter values for the testing set

Fig. 12  Comparison of absolute errors for the GBR model and the scaling relation when predicting the 
T = f (d) behavior
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desired. Since Gradient Boosting is built with sequential decision trees and each one 
splits the parameters in different ways finding relations among them, the challenge is 
practically unfeasible, and the problem must be tackled in another way. The solution was 
find in an analytical approach based on an optimization problem. The database was ini-
tially divided based on the propellant type. Furthermore, the magnetic field was inserted 
secondarily in the model, as described in Magnetic field  section, as it plays a key role 
in the thrust process although very little data is available, resulting in reduced model 
performance.

Analytical approach

The problem of determining the parameter values when a certain thrust and a certain 
specific impulse are required is addressed by the analytical approach through an optimi-
zation algorithm. The way this approach proceeds is the following: first, a desired out-
put is provided. The Gradient Boosting model then takes random inputs and calculates 
thrust and specific impulse values. After this, the error between the output found and 
the desired output is calculated. The task of the optimization algorithm is then to mod-
ify the values of the input parameters to minimize the loss function represented by the 
absolute error between the two output pairs. Once the error is minimized, the model 
found the best parameters that provide the required outputs. This procedure is sum-
marized in Fig.  13, where the box ‘Differential Evolution’ represents the optimization 
algorithm.

The choice of the optimization algorithm is mainly based on the loss function minimi-
zation procedure. In fact, it is a stochastic algorithm that does not require the optimiza-
tion problem to be differentiable, as is required by other classic algorithms as gradient 
descent [45]. Since the GBR consists of sequential decision trees, it is impossible to 
determine how the model depends on the various parameters individually and therefore 
it is not feasible to calculate their partial derivatives. Instead, Differential Evolution opti-
mizes the problem iteratively, trying to improve a candidate solution [46]. The working 
principle of this algorithm is given below. Only the main steps are described; a full expla-
nation can be found in [46] and [47]. The Differential Evolution (DE) is based on four 
steps, schematically represented in Fig. 14.

In the initialization phase, random values are generated for each parameter, creating 
vectors made by random numbers. After, for each of these vectors, three other ones are 
chosen to generate respective mutant vectors, the so-called Mutation phase. Consider-
ing the vector a, its mutant vector V is:

Fig. 13  Flowchart of the analytical approach
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where b, c and d are three vectors chosen initially and F is a scaling factor that controls 
the mutation process, with a value in the range [0,1]. The performances of the new vec-
tors are evaluated then, and a certain threshold is decided, the Crossover: if the error is 
less than the crossover value, the mutant vector is changed with the old one. There is 
therefore a recombination of the initial arrays where some places are occupied by ini-
tial vectors, while other by mutant ones. The same procedure is repeated until a cer-
tain threshold is reached or after a certain amount of iterations. Bounds within which 
the algorithm is guided in searching the optimal inputs are defined. The database was 
divided in subgroups and the DE was looking for parameters values only in the subgroup 
containing values able to generate that desired output. Different algorithm were devel-
oped for the three propellants and also for the consideration or not of the magnetic field. 
Naturally, the more the outputs are far from values present in the database, the worst are 
the performances of Differential Evolution algorithm, struggling to converge. However, 
in the various cases we tried, the algorithm was performing quite well, as shown in Final 
example section.

Final example

To help understand how the approach works, it is useful to show an example for deter-
mining the characteristics of two new thrusters: one for a possible low-power HT 
(Example A) and the other for a high-power HT (Example B), both working with xenon 
as propellant. The requirements in terms of thrust and specific impulse are reported in 
Table 6. The characteristics of the thrusters are obtained with the analytical approach, 
determining the mass flow rate ṁn , discharge voltage Ud , diameter d, height h and 
length L of the channel. In Magnetic field section, the magnetic field B is also added. The 
approach is based on the application of the diagram shown in Fig. 13. It is worth noting 
that the mean absolute errors are calculated between scaled outputs, since the GBR is 
working on a scaled set of inputs. At the end, the parameters are unscaled to be shown 
in the appropriate way. Finally, for a better understanding of the discrepancy between 
desired and predicted values, the error is presented as a percentage and separately for 
the two outputs, although the algorithm optimizes their average.

(12)V = b+ F(c − d)

Fig. 14  Schematic representation of DE

Table 6  Desired outputs

T[N] Isp[s]

Example A 0.02 1900

Example B 1 4000
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For the Example A, the differential evolution algorithm takes 84 iterations to find the 
minimum values of the MAE. The percentage error on the thrust is 0.14 % while on the 
specific impulse is 0.002 %. The output obtained are therefore almost identical to the 
ones desired. Whereas, for Example B, the algorithm uses 33 iterations and, while the 
percentage error for the thrust is 0.023 %, for the specific impulse it is 20.68 %. Basically, 
the optimization stop to converge at 3188 s of Isp . This is due to the limited amount of 
data in the range selected. The approach in fact relies on data: the more data is avail-
able, the more precise is the model. Table 7 illustrates the optimal inputs found with the 
analytical approach for the two cases. Furthermore, in the table are present also values 
corresponding to real thrusters taken from our database that were giving quite the same 
values of thrust and specific impulse, as an help to understanding the physical mean-
ingfulness of the results obtained. The outputs required are recalled. In conclusion, it 
can be stated that the performance of the optimization algorithm is highly contingent 
upon the availability of data. Specifically, in the case of Low-Power Hall Thrusters, the 
algorithm demonstrates robust performance, successfully iterating numerous times to 
progressively reduce error and achieve the desired values. Conversely, in the scenario 
involving High-Power HT, the algorithm encounters difficulties in locating available data 
that simultaneously satisfy both thrust and specific impulse requirements, resulting in 
convergence with a significantly higher error in specific impulse.

Magnetic field

The magnetic field B has been treated separately, as it plays a crucial role in the per-
formance of a thruster [1]. But the very limited data availability does not allow it to be 
considered as one of the main parameters in the model. In fact, tests available when the 
magnetic field is considered amount to 1000, while without the number is 1918. Further-
more, the indicated value only represents the maximum intensity on the channel axis, 
when what counts is the the entire topology of the magnetic field. This results in a loss of 
performances of the model that can be directly seen in Figs. 15 and 16. It is clear that the 
model predictions no longer match the actual data as closely as they used to without B, 
see Figs. 9 and 10.

Table 7  Parameters values obtained with the analytical approach

Example A Real LP HT Example B Real HP HT

Prop. Xe Xe Xe Xe

ṁn [mg/s] 0.49 1.5 32.36 29.59

Ud [V ] 620.4 700 551.73 550

d [mm] 57.07 68 259.48 250

h [mm] 10.38 12 37.93 40

L [mm] 18.04 11 35.87 35

T %err 0.14 % - 0.023 % -

Isp %err 0.002 % - 20.68 % -

iter 84 - 33 -

Tdesired [N] 0.02 - 1 -

Isp desired [s] 1900 - 4000 -

Tactual [N] 0.0198 0.024 0.99 0.92

Isp actual [s] 1869.9 1893.5 3188 3171
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However, an attempt was made introducing the magnetic field as a model parameter 
for examples A and B previously described. Table 8 shows the optimal parameters val-
ues found with the optimization. The errors are higher as expected and the values are 
changed, due to less data available for the GBR model to learn. Magnetic field values are 
given and, as made before, results are compared to real tests present in the database.

In general, the errors are smaller when the magnetic field is not taken into account, 
but there is still a large difference between the low-power and high-power cases. While 
the algorithm performs more accurately in the former case where the outputs obtained 
are close to the desired ones, in the latter, represented by Example B, it struggles to con-
verge. In fact, no data are available in the working range requested and therefore the 
model is forced to consider data where the specific impulse is of 2777 s, since the error is 

Fig. 15  Model prediction of thrust and specific impulse on data including the magnetic field

Fig. 16  Predicted thrust as a function of the mass flow rate for data that include magnetic field values
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of 31.15 % as it’s possible to see in Table 8. The poor performances regard the geometri-
cal features mainly, where the model finds difficult to generalize from existent thrusters.

Conclusion
The aim of this work was to develop a model capable of determining the geometrical 
characteristics and operating parameters of a new Hall thruster, based on the use of 
Machine Learning algorithms. For this purpose, a database of 54 thrusters was cre-
ated, collecting data from previous databases and publications. The database was 
initially validated through a statistical approach based on scaling laws extensively 
discussed in previous works. Scaling relations served as a starting point in the crea-
tion of a supervised machine learning model based on the Gradient Boosting Regres-
sion algorithm. This model is highly efficient in the process of predicting thrust and 
specific impulse values when the magnetic field is not considered in the model input 
parameters, as its presence reduces the amount of data available and, consequently, 
the performance of the model itself. The Machine Learning model is capable of com-
bining all the parameters with each other by learning relationships that allow accu-
rate determination of thrust and specific impulse values for data never seen before. 
A backpropagation problem was then tackled using an analytical method to generate 
a procedure capable of guiding the process of building a new thruster. The advan-
tages of using this model lie mainly in the possibility of avoiding initial assumptions 
related to loss factors or dependencies between geometric parameters. Naturally this 
approach relies completely on data. Although data used by the model is derived from 
tests carried out on thrusters built using the classical approach, the model neverthe-
less recognizes dependencies between parameters, in particular between geomet-
ric ones. The model performs very well in the range available for training, while the 
extrapolation remains less accurate where there is a lack of data. It is important to 
clarify that the Gradient Boosting model was meticulously constructed and demon-
strates robustness in predictions on unseen data. However, what slightly undermines 

Table 8  Parameters values obtained with the analytical approach including the magnetic field

Example A Real LP HT Example B Real HP HT

Prop. Xe Xe Xe Xe

ṁn [mg/s] 0.96 1 39.55 39.77

Ud [V ] 391.87 350 612.58 500

d [mm] 38.27 39 270 270

h [mm] 10.65 11 50 50

L [mm] 25 25 70 70

B [G] 177.59 180 121.15 130

T %err 52.11 % - 5.25 % -

Isp %err 2.87 % - 31.15 % -

iter 24 - 14 -

Tdesired [N] 0.02 - 1 -

Isp desired [s] 1900 - 4000 -

Tactual [N] 0.03 0.019 0.947 1.047

Isp actual [s] 1847.6 1924.78 2777 2683.37
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the model is the optimization algorithm, which heavily relies on the available data. 
Consequently, the error increases significantly when the algorithm is required to 
optimize in regions with sparse or absent data. Nonetheless, the adoption of this 
algorithm was the only method found to fulfill the objective of determining the char-
acteristics of new Hall thrusters based on a supervised Machine Learning model. 
This suggests that future studies should first aim to reduce the rigidity of the con-
straints applied during optimization to enable the use of a broader dataset. However, 
care must be taken to ensure that the solutions obtained remain physically feasible. 
Besides, the utilization of neural networks might mitigate or improve the issues asso-
ciated with backpropagation.

However, this work clearly demonstrates the interest and power of a Machine-Learn-
ing-based approach to defining scaling laws and, what is new, predicting the geometric 
characteristics and operating points of a Hall thruster according to mission require-
ments. The approach developed and validated here, although complex, remains acces-
sible and relatively simple to implement, since the tools used, notably the Gradient 
Boosting Regression and the tree generation, exist in different versions and languages.

Finally, our work shows that the quantity and quality of data is the key to obtaining 
accurate and reliable results. It is therefore essential today to generate databases con-
taining a large amount of data over a wide power range, either through measurements, 
which are nevertheless long and costly, or through numerical simulations to help engi-
neers build the next generation of Hall thrusters.
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