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Cockpit Voice Recorders (CVRs) are one of the two mandatory flight recording devices
embarked in commercial aircraft. Its analysis is crucial to understand the context of an air inci-
dent or accident. However, in such scenarios, when the audio recordings are usable, CVR may
contain strong mixtures of crew member speech signals, radio communications, and cockpit
alarms. However, contrary to the “cocktail party problem” that Blind Source Separation (BSS)
aims to tackle, modeling CVR mixtures—that we here name the “cockpit party problem”—
was never done before. In this paper, we thus propose a CVR mixture model and highlights its
limitations. While not trivial—even in a two-source scenario—BSS methods can be applied
to real CVR recordings. We find that taking into account several BSS outputs provided by
various methods may help audio analysts to transcribe the CVR data. That is near 90% of
unintelligible words can be transcribed from CVR recordings processed by BSS methods.

0 INTRODUCTION

Public transportation aircraft are fitted with two crash-
survival flight recorders—also known as “black boxes”—
which are named the Cockpit Voice Recorder (CVR) and
the Flight Data Recorder, and which need to be retrieved
and analysed by air accident authorities in case of incident
or accident. BEA (Bureau d’Enquêtes et d’Analyses pour
la sécurité de l’aviation civile) is the French authority in
charge such investigations. CVR contents are “manually”
transcribed by specialised investigators (a.k.a. audio ana-
lysts) for the benefits of the safety investigation (Fig. 1).

In a CVR recording, the causes of speech intelligibility
degradation are numerous. In particular, the CVR design
itself generates a significant amount of superimposed—
a.k.a. mixed—speech signals over the 4 audio channels
which are simultaneously recorded. Moreover, in case of an
aircraft accident or incident, superimposed speech signals
are more likely to occur—since voice and cockpit sound
activities become denser—which may yield to the loss of
crucial information for the safety investigators. BEA al-
ready uses sound source subtraction algorithms and aims
to investigate the enhancement provided by Blind Source
Separation (BSS) on CVR speech intelligibility.

*To whom correspondence should be addressed, e-mail:
matthieu.puigt@univ-littoral.fr. Last updated: August 5, 2024

BSS is a generic problem whose pioneering work
emerged 40 years ago [1]. When applied to audio sig-
nals, such a problem is also known as the “cocktail party
problem” [2] and aims to unmix N unknown audio sources
from M observation signals which are obtained from dis-
tant microphones, such that each microphone recording
contains mixtures of these source signals. In this paper, we
investigate the BSS enhancement in CVR recordings to
help the BEA audio analysts in their sound transcription,
segmentation, and identification tasks. To the best of the
authors’ knowledge, such a work is the very first one to be
conducted on real CVR recordings. The overall contribu-
tion of the paper is two-fold. Firstly, we propose a CVR
mixing model for the pilots’ channels. We then discuss its
validity and its limitations. Secondly, we consider some
situations when classical BSS methods can be applied and
we investigate how BSS outputs can help the BEA audio
analysts in their tasks.

The remainder of the paper is organised as follows. We
briefly recall the history of BSS in Sect. 1. We introduce
the CVR audio system in Sect. 2, for which we propose
a dedicated sound source mixture model. We investigate
in Sect. 3 the enhancement provided by some state-of-the-
art BSS methods on CVR transcription. We conclude and
discuss about future work in Sect. 4.
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Fig. 1. After a civil aircraft incident / accident (left), the CVR is opened (middle), and an audio analyst transcribes its content (right).

1 RELATED WORK

CVR recordings are not really known in the scientific
community. In order to properly define them in Section 2,
we first briefly recall the state-of-the-art in BSS.

1.1 Mixture Models
BSS is a generic problem which has been investigated

for many applications [1]. When applied to audio signals,
BSS aims to solve the well-known “cocktail party prob-
lem” [2]. In that framework, we assume that N unknown
acoustic sources are active and are recorded by M micro-
phones which provide mixtures of these sources. Modeling
the acoustic propagation have been intensively investigated
in the pioneering works on BSS [1]. In particular, many
investigations focused on linear mixtures, i.e., the linear
instantaneous (LI), the anechoic and the convolutive mix-
tures (see Fig. 2).

The LI one can model mixtures from a multitrack
recording (provided no additional filtering effect is added).
Denoting xi(n), s j(n), and ai j the i-th observation, the j-th
source signal, and the contribution of Source j in Obser-
vation i, respectively, the observation signals following the
LI model read

∀i = 1, . . . ,M, xi(n) =
N

∑
j=1

ai js j(n). (1)

Due to its simplicity, the LI model has been extensively in-
vestigated, so that the community concluded that “the mix-
ing matrix estimation task is now solved for instantaneous
mixture” [3].

The anechoic mixture model takes into account the di-
rect propagation time of the acoustic wave from each
source to each microphone. Denoting δi j the time shift re-
lated to Source j in Observation i, this model reads

∀i = 1, . . . ,M, xi(n) =
N

∑
j=1

ai js j(n− δi j). (2)

This model has been comprehensively investigated in
BSS—e.g., in [4, 5, 6, 7]—and was also considered for
BSS-inspired audio source localisation methods [8, 9].

Lastly, the convolutive mixture is the more general linear
model. It assumes that each microphone receives several
attenuated and time-shifted versions of each source, thus
resulting in a filtered version of the latter. Denoting ai j(n)

the propagation filter from Source j to Microphone i and ?
the convolution operation, the observations read

∀i = 1, . . . ,M, xi(n) =
N

∑
j=1

ai j(n) ? s j(n). (3)

Such linear models have been extended in several ways.
First of all, they are here defined for fixed source and mi-
crophone positions. However, when the sources and/or the
microphone move, the mixing parameters evolve with time
as well. Then, some authors started to handle nonlinear
effects such as microphone saturation through the post-
nonlinear (convolutive) mixture model [10, 11, 12] or the
clipped mixture model [13]. Lastly, the lossy audio coding
effect is usually not taken into account while it may have a
major effect on the reached BSS performance [14]1.

1.2 History of the BSS Methods
In terms of methods, the historical approaches are based

on Independent Component Analysis (ICA) [1]. They aim
to combine the observations so that the ICA outputs are sta-
tistically independent. Assuming that the true sources s j(n)
are independent as well, the ICA outputs are then equal to
the sources, up to permutation and scale/filter ambiguities
[16]. These approaches were then generalised under the In-
dependent Vector Analysis (IVA) framework [17]. When
applied to convolutive BSS problem, IVA allows to solve
the permutation ambiguity which occurs in frequency-
domain ICA [18]. As an alternative to independence-based
approaches, some methods based on other source assump-
tions were proposed since the end of the 90s.

On one side, approaches based on Time-Frequency (TF)
representations and source sparsity emerged. While some
authors investigated the use of quadratic TF transfor-
mations and proposed methods inspired by second-order
statistics BSS [19, 20], most authors focused on atomic TF
decompositions and investigated techniques named Sparse
Component Analysis (SCA) [21]. These approaches allow
to separate sources in both (over-)determined mixtures—
i.e., when the number N of sources is (strictly) less than the
number M of microphones—and under-determined mix-
tures, i.e., when N > M. Some SCA methods, e.g., [22,
23], also allow to separate statistically dependent sources.

1However, some informed source separation methods were
specifically proposed to tackle that issue, e.g., [15].
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Fig. 2. Classical linear mixing models met in audio source separation.

The first SCA methods assumed that in any TF point [5]
or in some TF areas to find [22, 23, 7], only one source is
active. These assumptions were further relaxed, allowing
strictly less than M sources to be active in each TF point
[24, 25] or that some sources are unactive in some areas to
find [26].

On the other side, methods based on Nonnegative Ma-
trix Factorization (NMF) and Nonnegative Tensor Factor-
ization (NTF) [27] became extremely popular. NMF is usu-
ally applied to decompose a spectrogram as the product of
two nonnegative matrices, one of them corresponding to
spectral signatures while the second one is a matrix of time-
activation weights [28]. NMF quickly became the state-of-
the-art in audio BSS, especially as it could be performed
in both a supervised way—i.e., one matrix being trained
with clean signals—and an unsupervised way. Some of the
major extensions of NMF include multichannel NMF [29]
or Deep NMF [30]. However, these approaches need the
phase information to be estimated (as it is lost prior to the
decomposition) and alternative were proposed, e.g., com-
plex NMF [31]. NTF can be seen as a “natural” multichan-
nel extension of NMF and several authors investigated its
use for BSS, e.g., [32, 33]. Lastly, please note that there
exist some similarities between NMF and SCA [34].

More recently, techniques based on deep learning
emerged. While some approaches could be seen as deep
extensions of supervised NMF/NTF techniques [35], there
is a tremendous effort to develop novel methods with
different network architectures, e.g., combinations of con-
volutional neural networks and long-short term memory
[36], or attention-based networks [37]. We invite interested
readers to discover several surveys on this topic [38, 39].

1.3 Discussion
The above mixing models and the state-of-the-art ap-

proaches were proposed for classical audio settings. How-
ever, to the best of the authors’ knowledge, no existing
work consider BSS on real CVR signals. Indeed, the au-
thors in [40] claim to investigate the use of ICA for CVR
signals. However, they consider a “simulation” where one
source is an alarm while the other one is some background
noise. These sources are recorded in a true cockpit using a
mobile recording system, and are not issued from a CVR.
However, there exists some prior work on BSS for aircraft
mechanical noise separation / enhancement [41, 42].

2 CVR MODELING

2.1 General Principles of the CVR
CVR is a 4-channel audio recording device. While they

were previously recorded on magnetic bands until the end
of 90s, CVR data are now digitised and saved on a memory
card within a crash-survival box. The regulations define the
content of the channels recorded by the CVRs on board
commercial transport aircraft.

Channels 1 and 2 contain the signals which were emit-
ted and received by the audio system of the pilots in the
left and right seats, respectively. Channel 3 contains sig-
nals transmitted and emitted by the audio system of the
third crew position (jump-seat) and the messages to the
passengers. Channel 4 corresponds to the Cockpit Area Mi-
crophone (CAM). CAM is an omnidirectional microphone
usually installed on the cockpit ceiling between the pilots
(see Fig. 3). The CAM channel records the several sounds
and the speech communications in the cockpit. It also cap-
tures some spectral content about the aircraft powertrains.
However, as it is sampled at 12 kHz—while the other CVR
signals are sampled at 7 kHz—we do not consider it in this
study. Lastly, all the CVR signals are filtered and coded us-
ing a lossy audio compression as the Adaptive Differential
Pulse Code Modulation (ADPCM).

Each of the three CVR “crew” channels contains a com-
bination of signals which are received and emitted in each
pilot headset, i.e., a mixture of sounds heard in the head-
set and recorded by the microphone of each crew mem-
ber. While the aircraft can host a third pilot, such a situa-
tion only appears in a small number of flights and almost
never happens in BEA investigations. Moreover, if such a
scenario might be met, in practice, the third CVR channel
is configured to record announcements to passengers by
flight attendants and pilots, and significantly differs from
the other CVR channels. As a consequence, we do not con-
sider the third channel in the remainder of the paper.

Typically, the sound sources heard in a pilot headset are
those recorded by the microphones of the other crew mem-
bers, the radio messages received from air traffic control
and other aircraft on the frequency, as well as communica-
tions with flight attendants. The activation of these sources
as well as their sound levels in a headset are adjusted by
each pilot thanks to an individual control panel. Each pilot
seat is equipped with a headset, a handheld microphone,
and a third microphone mounted inside an oxygen mask.
Each of these microphones mainly picks up the voice of
the pilot who uses it, but it is common to also perceive
at a lower level the audio environment of the cockpit and
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Fig. 3. Examples of a CVR system (left), a CAM (center), and a pilot headset (right).

in particular the sound alerts emitted by the loudspeakers
of the cockpit. The pilots do not hear their own voice in
their headset, except when transmitting on the radio chan-
nel. The signals sent into a pilot’s headset are also repro-
duced through speakers located forward left and right of
the cockpit.

However, the signals which are stored in the CVR sys-
tem are slightly different from those available for the crew
members. Indeed, the respective levels of each listening
source presented to the CVR are adjusted during the instal-
lation of the CVR and do not faithfully reflect the individ-
ual adjustments of the pilots. Moreover, due to the request
of safety investigators, a “hot mic” or “open microphone”
function is implemented on mouth mics and oxygen mask
microphones. Lastly, when they are superimposed before
being recorded by the CVR, the relative levels of the sound
signals recorded by the microphones and those heard in the
pilot headsets are dynamically adapted by the aircraft audio
system in order to guarantee a certain speech intelligibility.

2.2 CVR Mixture Model

Fig. 4. Cockpit sound mixing process in the CVR.

In this paper and to the best of the authors’ knowledge,
the first mixing model dedicated to CVR recordings is pro-
posed. We would like to point out that the models presented
in this article were obtained by reverse engineering of CVR
recordings and on the basis of exchanges with pilots. The
precise knowledge of each system is an industrial secret.
The novelty of such a model lies in its hybrid form as it
consists of an acoustic mixture, followed by a numerical
one and a compression stage (see Fig. 4).

For space considerations, we express it in the time-
frequency domain obtained after a Short-Time Fourier
Transform (STFT) of the signals. We consider the sources
of interest—denoted S1(ω,n) and S2(ω,n), where ω and

n stand for the angular frequency and time index of the
considered time-frequency bin, respectively—which corre-
spond to the speech signal of the pilots on the left and right
seats, respectively. These signals are acoustically propa-
gated to the microphones—whose recorded signals are de-
noted MICi(ω,n) (i = 1,2)—and are mixed with acoustic
signals emitted by the left and right cockpit loudspeakers
denoted LS1(ω,n) and LS2(ω,n), respectively. The whole
source propagation channel can be modeled by convolutive
mixtures. Using the narrow-band frequency BSS approxi-
mation, they read




MIC1(ω,n) ≈ A11(ω)S1(ω,n) + A12(ω)S2(ω,n)
+A13(ω)LS1(ω,n) + A14(ω)LS2(ω,n),

MIC2(ω,n) ≈ A21(ω)S1(ω,n) + A22(ω)S2(ω,n)
+A23(ω)LS1(ω,n) + A24(ω)LS2(ω,n),

(4)

where Ai j(ω) (i = 1,2, j = 1, . . . ,4) is the Fourier trans-
form of the acoustic propagation filter from a sound source
(emitted by a pilot or a loudspeaker) to the i-th microphone.

Moreover, the signals played by both loudspeakers are
themselves some mixtures of different sound sources. In
particular, we assume that such a mixture is linear instan-
taneous (LI) and that both signals read
{

LS1(ω,n) = α11HS1(ω,n) + α12ALM(ω,n),
LS2(ω,n) = α21HS2(ω,n) + α22ALM(ω,n), (5)

where HSi(ω,n) is the signal heard in the headset of Pi-
lot i, ALM(ω,n) is the set of alarms which are activated
in the cockpit, and αi1 and αi2 are the LI mixing coef-
ficients. While αi1 is manually set by Pilot i—such that
sounds played into its headset can be heard even if the lat-
ter is not worn—the value of αi2 is automatically fixed by
the plane system with respect to the flight phase, and is set
so that α12 = α22. Furthermore, the signals played in the
headsets are also modeled as LI mixtures of several sig-
nals, i.e.,
{

HS1(ω,n) = β11MIC2(ω,n) + β12R(ω,n),
HS2(ω,n) = β21MIC1(ω,n) + β22R(ω,n), (6)

where R(ω,n) is the radio channel and the βi j coefficients
denote the mixing parameters which are set by Pilot i.

Combining Eqs. (4), (5), and (6) yields some loops. For
example, MIC1(ω,n) directly captures S1(ω,n) but also
through LS2(ω,n). In practice, the sound levels are set so
that there is no feedback effect.

4 Submitted to J. Audio Eng. Soc., 2024 August
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Lastly, the CVR channel associated with one pilot—say
Pilot i—corresponds to a mixture of the signals recorded
in the pilot microphone and of those heard in his headset.
Again, we model such a mixture as an LI one, whose mix-
ing coefficients are preset during the CVR installation in
the cockpit aircraft, i.e.,
{

X1(ω,n) = γ11MIC1(ω,n) + γ12MIC2(ω,n) + γ13R(ω,n),
X2(ω,n) = γ21MIC1(ω,n) + γ22MIC2(ω,n) + γ23R(ω,n). (7)

Let us stress again that this model was obtained by reverse
engineering of CVR recordings and by exchanging with
pilots. Still, we analyse it and propose scenarios where it
can be simplified below.

2.3 Analysis and Limitations
The proposed mixing model in Eq. (7) is valid for au-

dio systems of a large amount of aircraft types. However,
in practice, it will face many sources of variability, e.g.,
(i) the geometry of the cockpits, (ii) the layout and the
sound volume of the loudspeakers and the sources, (iii)
the correct positioning, the selectivity, and the sensitiv-
ity of the mouth microphones, (iv) the instantaneous rel-
ative positions between the sources and the microphones
which vary over time with respect to pilot head movements.
Moreover, these characteristics may not be symmetrical be-
tween the pilots in the left and right seats, respectively.
All these sources of variability will make the real mixture
model of a CVR recording—or even of a speech segment—
somewhere between a dynamic convolutive model and a
fixed or dynamic LI model.

Indeed, incorporating Eqs. (4) and (5) into Eq. (7), we
obtain an overall convolutive mixture of speech sources, ra-
dio signals, and alarms but such a model may be simplified
in many situations. More specifically, if ALM(ω,n) = 0 in
Eq. (5) and if Microphone i is very selective—in particu-
lar, if it is well placed in front of the pilot mouth—one may
assume that in Eq. (4), ∀i ∈ {1,2}, Ai,3−i(ω), Ai,3(ω), and
Ai,4(ω) are negligible over all the angular frequencies ω .
In that case, Eq. (4) reads

∀i = 1,2, MICi(ω,n) ≈ Aii(ω)Si(ω,n) , S′i(ω,n), (8)

and the audio mixtures in the CVR recordings can be seen
as LI mixtures of the pseudo-sources S′i(ω,n) and of the
radio signal R(ω,n), i.e.,
{

X1(ω,n) ≈ γ11S′1(ω,n) + γ12S′2(ω,n) + γ13R(ω,n),
X2(ω,n) ≈ γ21S′1(ω,n) + γ22S′2(ω,n) + γ23R(ω,n).

(9)

On the contrary, if the microphones are not very selective,
the signals emitted by the loudspeakers may then be picked
up by both microphones and a hybrid mixture is obtained
with LI combinations of the signals S′i(ω,n) and convolu-
tive mixtures of the other sound sources, i.e., R(ω,n) and
ALM(ω,n).

It is worth noting that the above signals are sparse in the
time-frequency domain [5], so that the scatter plots of their
LI mixtures—i.e., the plot obtained by drawing the mod-
ulus of the TF transform of one observation with respect
to the other—show lines [21]. Indeed, in that case, in each

time-frequency point (ω,n), one source clearly dominates
the others, which implies that both observations are propor-
tional to the dominant source and are thus linked through
a linear relationship, hence the lines in the scatter plots.
However, when the reverberation time increases, the dis-
jointedness of the sources—i.e., the probability of source
dominance in each time-frequency point—is less-likely to
be satisfied [43] and the lines tend to be “blurry” or to dis-
appear, as convolutive mixtures are frequency dependent.

As a consequence, analysing the scatter plots of the spec-
trograms of the CVR recordings might allow to analyse
the nature of the source signals met in the observation sig-
nals. This phenomenon is illustrated on Figure 5, showing
the scatter plots of |X1(ω,n)| with respect to |X2(ω,n)| for
three kinds of signals, i.e., the pilot’s voice and the radio
(top), the pilot’s voice and an announcement to passengers
(middle), and the pilot’s voice and an alarm (bottom). The
plots have been computed using STFTs of short audio seg-
ments containing overlapping speech on Channels 1 and
2, i.e., x1(t) and x2(t) respectively, from 3 different CVR
recordings. The top plot corresponds to the scenario de-
picted in Eq. (9)—which tends to show its validity—while
the other plots correspond to more complex mixtures to
separate.

Moreover, it should be noticed that the above models
are defined for a fixed position. However, in practice, the
aircraft pilots can turn their head, which might result in
less selectivity to the cockpit sounds and in particular to the
loudspeakers. Even if we did not model this phenomenon
in this paper, we would like to emphasise the fact that many
BSS methods have been extended to time-varying adaptive
mixtures.

In addition, despite our efforts, we found that separating
real CVR recordings was far more difficult than simulated
ones using our model. This means that there remain some
effects that we did not model and which need to be investi-
gated. We particularly think that these effects are due to the
aircraft system, prior to the recording in the CVR, e.g., dy-
namical filtering, pre-amplification, and gain control (with
possibly clipping effects) of each pilot’s microphone, the
presence or the absence of anti-feedback filters. Lastly, we
found one specific CVR model which quantises differently
the signals with respect to their amplitude. This has some
non-negligible effect on the BSS outputs.

To illustrate these different issues, we show on Fig. 6
the variability over speech segments selected from several
CVR recordings where a mixture of one one pilot’s voice
and the radio channel has been found. According to Eq. (9),
this mixture is LI and, as the sources are sparse in the TF
domain, their scatter plots should consist of two lines. This
is true when no additional effect is applied to the signals,
as we can see on the left plot of Fig. 6. However, one
may encounter situations when one channel is clipped (see
the middle plot of Fig. 6) while—as already mentioned—
we found one specific CVR model which quantises—with
nonuniform quantisation—the CVR signals (right plot of
Fig. 6). These specific issues have significant consequences
on the source sparsity in the TF domain. However, they
are out of the scope of this paper. In particular, deeply in-
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Fig. 5. Scatter plots for several source signals in real CVR
recordings. From top to bottom: speech / radio signals; speech
/ passenger address; speech / cockpit alarm.

vestigating their effect on the BSS performance as well as
proposing BSS methods which take them into account are
let for future work.

Still, except for these specific situations, state-of-the-art
BSS methods can be applied to CVR signals. This is the
aim of the next section.

3 APPLICATION OF BSS METHODS TO CVR
SIGNALS

3.1 Insights from a preliminary investigation
We do not have access to the true sources in real CVR

recordings. This makes the evaluation of BSS methods
quite difficult, as the classical objective performance crite-
ria [44] cannot be used. As an alternative, we could firstly
investigate their performance on simulations satisfying our
proposed model. We then found that most of the tested BSS
techniques were able to separate the sources in simulations
while a similar scenario on real CVR recordings was much
harder for all of them. This is probably due to the fact that,
as mentioned above, the aircraft system may add some au-
dio effects which are not taken into account in our model.
This may explain why we found that, in SCA methods, es-
timating the sources using TF binary masking [5] was far
better than after applying a sparsity-based technique [45],
while the opposite result is usually found for “classical”
audio mixtures. Indeed, binary masking is quite robust to
some un-modeled effects (for example, it allows to sepa-
rate convolutive mixtures of sources using a simpler model
[5]). However, this comes at the price of generating more
musical noise than alternative techniques such as [45].

3.2 Experimental protocol
As a result of the above insights, we propose a subjec-

tive experimental analysis which copes with typical BEA
investigations. We limit the size of the corpus in this eval-
uation, so that it can be performed by BEA audio analysts.
To that end, it consists of 25 anonymised speech segments
for the scenario considering the superimposed speech of
pilots and 21 speech segments for the scenario in which a
pilot’s voice is covered by the radio. These audio segments
have a duration between 7 and 25 seconds and come from
15 distinct non-major incidents occurring during parking,
taxi, takeoff, cruise, approach, and landing. They contain
the voices of 12 men and 3 women, recorded by 4 types of
CVRs.

We focused on the most widely installed CVR manufac-
turers (Honeywell 6022, Honeywell 6020, L3COM A100,
and L3COM FA2100) and considered both magnetic-tape
and solid-state memory CVR generations (12 solid-state
CVR and 3 magnetic-tape CVR). These recordings also
cover a set of 10 aircraft types from major aircraft man-
ufacturers (Airbus A318, A319, A320, A321, A330, ATR-
42, ATR-72, Boeing B777, Embraer EMB145, and Fokker
FK100). While we consider BSS problems with only two
sources, the separation process is not that easy to perform
on real CVR signals, as we will see below.

We now investigate the potential benefits of using BSS
outputs to help the audio analyst transcribe unintelligible
superimposed speech signals. In this study, we decided not
to investigate the performance of ICA/IVA approaches. In-
deed, anticipating the use of BSS for BEA investigations in
a near future, CVR signals may correspond to determined
or under-determined mixtures while most ICA/IVA meth-
ods were proposed for (over-)determined mixtures only.
Moreover, as already highlighted, the mixtures may evolve
during time and the mixing parameters should be computed
over small time intervals / STFT windows. However, the
independence assumption of speech signals is questionable
in that case [46]. Lastly, SCA methods outperform ICA
ones [22, 23] and are more versatile, as they can process
both the over-determined and the under-determined mix-
tures. Similarly, we decided not to investigate deep learning
methods because they require training data, whose quality
may have a significant impact on the BSS performance.
Such a behaviour is not acceptable for regulatory inves-
tigations conducted by BEA. As a consequence, we aim
to investigate the performance of SCA and NMF methods.
We choose to use BSS methods whose sources are free and
accessible.

We have chosen three BSS methods which all apply
in the STFT representation domain, i.e., two SCA and
one NMF methods. The first considered SCA method is
DEMIX2 [7]—used here in its version for LI mixtures—
seeks to count the sources and to estimate the LI mix-

2We investigated the performance of much more methods in
preliminary tests. We then found that DEMIX provided the same
BSS enhancement as TIFROM [22] and TIFCORR [23], except in
a few cases where it was outperforming them. This is the reason
we only keep DEMIX in these tests. Moreover, we investigated
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Fig. 6. Examples of CVR variability for several mixtures of one pilot’s voice and the radio signals. Top: waveforms wrt. time. Middle:
scatter plot of the observations in the time domain. Bottom: scatter plot of the observations in the TF domain. From left to right: CVR
signals without visible quantisation effect nor clipping. Middle: Case of one clipped CVR channel. Right: Case of quantised CVR
signals with non-uniform quantisation.

ing matrix using a dedicated clustering approach. The sec-
ond method we investigate is a convolutive SCA tech-
nique named UCBSS [47] which estimates the mixing fil-
ters. For both SCA methods—and as explained in Sub-
sect. 3.1—once the mixing parameters are estimated, the
sources are estimated using binary masking [5]. Lastly, we
also evaluate the enhancement provided by a multichannel
NMF method [29]. In particular, we chose the expectation-
maximisation algorithm and the sources are lastly esti-
mated by applying a Wiener filter.

We now introduce the experiments done with the evalua-
tion corpus. An audio analyst first produces a transcription
of the segments of the evaluation corpus, indicating uncer-
tain or unintelligible terms with a question mark (?). At
this stage the number of question marks is not necessar-
ily reflecting the real amount of unintelligible words. The
number of question marks is hence changed in the refer-
ences before scoring depending on the number of words
available in the output of all BSS methods. Fig. 7 shows
two examples of such transcribed segments. The consid-
ered segments all contain at least one word that could not
be transcribed with certainty by the analyst. A sequence
of several unintelligible words are replaced by a sequence
of question marks with the corresponding number of to-
kens. This primary transcription represents the best and the
most honest result a CVR audio analyst can reach using his
knowledge and skills.

The three BSS methods are then independently applied
to Channels 1 and 2 over the corresponding segments and
the audio analyst can use and listen to both BSS outputs as
many times as he wants to replace the question marks with
the correct words. Lastly, as we do not aim to evaluate the
individual BSS performance, we consider a scenario where

the performance of a silence-based technique [26]—i.e., an SCA
method with a relaxed source sparsity assumption—but it pro-
vided a poor enhancement in all our tests. Lastly, we also tried a
method designed for anechoic mixtures—i.e., DUET [5]—but it
almost always provided a lower BSS enhancement than DEMIX.

the audio analyst get all the BSS outputs—i.e., 6 outputs in
this paper—to help him to transcribe CVR recordings.

• First example
Pilot: première à gauche ouais c’est là on va on va

se garer et puis après on (?)
CTRL: three two zero push back approved

• Second example
CDB: euh (?)
FO: ça on avait (?)

Fig. 7. Examples of transcriptions without BSS.

3.3 Obtained results
To evaluate the experiment introduced in the previous

subsection, we propose two performance criteria. The first
one corresponds to the proportion of segments with im-
proved transcription. Indeed, each tested BSS method is
applied on each audio segment. When he listens to BSS
outputs, if he is able to understand at least one non-
transcribed word or sequence of words, without any doubt,
the audio analyst considers that the BSS method succeeds
in enhancing the signals. Once all the segments have been
studied, we are then able to derive the proportion of im-
proved segments for each method, as one may see on the
top part of Table 1.

Then, we only consider the above improved segments
and the audio analyst analyses again the CVR recordings
while using the corresponding BSS outputs in addition.
The performance of each method is evaluated in terms of
Unintelligible Word Recognition Rate (UWRR), which is
the percentage of initially unintelligible words that could
ultimately be transcribed after application of BSS. In par-
ticular, we first estimate the number of initially unintelligi-
ble worlds by summing the number of interrogative points.
Then, after applying BSS, when an unintelligible segment
can be transcribed, we can count the number of transcribed
words and we update the number of initially unintelligible
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ones. This tends to possibly overestimate the UWRR val-
ues, as excerpts which remain unintelligible are counted as
a single word. Still, in absence of data with ground truth,
we keep this criterion which should be seen as an optimistic
measure. The obtained UWRRs are shown on the bottom
part of Table 1.

Let us now focus on the segment transcription rates.
First, one may notice that the “pilot / pilot” scenario seems
harder to improve, as the better-suited method can improve
28% of the segments. On the contrary, the “pilot / radio”
scenario seems a bit simpler, as the worse-suited method
can improve the transcription of 28.5% of the segments.
Moreover, in all the scenarios, UCBSS provides the lowest
enhancement. In addition, NMF and DEMIX are the best
approaches in terms of “pilot / radio” and “pilot / pilot”
segment transcription improvement (with a proportion of
38% and 28%, respectively), respectively. Lastly, it is very
interesting to notice that when we allow the audio analyst
to listen to the outputs of the 3 methods, the transcription of
44% and 66% of the “pilot / pilot” and “pilot / radio” seg-
ments is improved, respectively. This means that the tested
BSS methods do not enhance the same segments.

We now focus on UWRR. Let us recall that the propor-
tions are derived from the transcribed words in the im-
proved segments only. First of all, these proportions for
“pilot / pilot” segments are quite high, as 50 to 57.5% of
unintelligible words can be transcribed by using one of the
tested BSS methods. This proportion is much higher for
“pilot / radio” segments as it ranges between 56 and 70%.
Still, from a BEA investigator point of view, the most inter-
esting result we get is due to the combination of all the BSS
outputs. In that case, the above rates are equal to 80 and
89.6% for “pilot / pilot” and “pilot / radio” segments, re-
spectively. Lastly, it should be noticed that the tested multi-
channel NMF method not only provides the highest num-
ber of transcribed words which were initially unintelligible
but also produces the most intelligible sources on a major-
ity of audio segments.

To illustrate the ability of BSS to help the BEA audio
analyst in his transcription tasks, Fig. 8 provides the same
example as in Fig. 7, except that BSS outputs were here
used for the transcription.

4 CONCLUSION ET PERSPECTIVES

In this paper, we investigated the enhancement which
may be provided by blind source separation methods on
real recordings of some cockpit voice recorders, more com-

• First example
Pilot: première à gauche ouais c’est là on va on va

se garer et puis après on fera le reste hein
CTRL: three two zero push back approved

• Second example
CDB: euh l’APU est démarré
FO: ça on avait prévenu

Fig. 8. Examples of transcriptions using BSS outputs.

monly called “black boxes”. To that end, we firstly pro-
posed a CVR mixing model, obtained by reverse engineer-
ing. While we highlighted the limits of this model, we
could apply classical BSS methods on a corpus of real CVR
recordings. We found that combining the ouptuts of vari-
ous BSS methods can be really helpful for BEA audio ana-
lysts, with a word recognition rate of initially unintelligible
words ranging from 80 to 90%. Still, while the obtained re-
sults are promising, there remain challenges.

First of all, some of the audio effects due to the air-
craft system were not taken into account, e.g., the clip-
ping effects. Combining BSS and declipping has been in-
vestigated and it would be interesting to measure any im-
provement by extending the tested multichannel-NMF to
that case. Moreover, the pilots may move during the flight,
which may result in time-varying mixing parameters. This
should also be considered in future investigations.

Lastly, we would like to emphasise that other CVR chan-
nels are available. In particular, the CAM was not con-
sidered in this paper as it is not sampled at the same fre-
quency rate than the pilots’ microphones. However, it pro-
vides some interesting information, e.g., the aircraft en-
gine noise, or the announcements to passengers, which are
hardly recorded by the pilots’ microphones3. Jointly sep-
arating the pilots’ channels and the CAM will be investi-
gated in the future.
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Chang, and T. Sainath, “Deep learning for audio signal
processing,” IEEE J. Sel. Topics Signal Process., vol. 13,
no. 2, pp. 206–219 (2019 May), doi:10.1109/JSTSP.2019.
2908700.

[40] F.-B. Hsiao, S.-Y. Han, S.-C. Hsieh, and L. K.
Wang, “Sound source separation and identification for air-
craft cockpit voice recorder,” Journal of Aerospace Com-
puting, Information, and Communication, vol. 1, no. 12,
pp. 466–483 (2004 Dec.), doi:10.2514/1.11266.

[41] D. Nie, X. Li, and G. Qiao, “Cockpit noise en-
hancement for aircraft type recognition in short-wave
speech communication,” presented at the International
Conference on Image Processing, Computer Vision, and
Pattern Recognition (IPCV’13), p. 1 (2013).

[42] A. Martinez, L. Sanchez, and I. Couso, “Interval-
valued Blind Source Separation Applied to AI-based Prog-
nostic Fault Detection of Aircraft Engines,” Journal of
Multiple-Valued Logic & Soft Computing, vol. 22, p. 151
(2014).

[43] S. Schulz and T. Herfet, “On the window-disjoint-
orthogonality of speech sources in reverberant humanoid
scenarios,” presented at the 11th International Conference
on Digital Audio Effects DAFx–08, pp. 241–248 (2008).

[44] E. Vincent, R. Gribonval, and C. Févotte, “Per-
formance measurement in blind audio source separation,”
IEEE Trans. Audio, Speech, Language Process., vol. 14,
no. 4, pp. 1462–1469 (2006 July), doi:10.1109/TSA.2005.
858005.

[45] E. Vincent, “Complex nonconvex lp norm min-
imization for underdetermined source separation,” pre-
sented at the 7th International Conference on Independent
Component Analysis and Signal Separation (ICA’07), pp.
430–437 (2007), doi:10.1007/978-3-540-74494-8 54.

[46] M. Puigt, E. Vincent, and Y. Deville, “Validity
of the independence assumption for the separation of in-
stantaneous and convolutive mixtures of speech and mu-
sic sources,” presented at the 8th International Confer-
ence on Independent Component Analysis and Signal Sep-
aration (ICA 2009), pp. 613–620 (2009), doi:10.1007/
978-3-642-00599-2 77.

[47] V. G. Reju, S. N. Koh, and I. Y. Soon, “Un-
derdetermined Convolutive Blind Source Separation via
Time–Frequency Masking,” IEEE Trans. Audio, Speech,
Language Process., vol. 18, pp. 101–116 (2010 Jan.), doi:
10.1109/TASL.2009.2024380.

10 Submitted to J. Audio Eng. Soc., 2024 August



DRAFT
DRAFT JAES TEMPLATE

THE AUTHORS

Matthieu Puigt Benjamin Bigot Hélène Devulder

Matthieu Puigt graduated in 2003 from University Paul
Sabatier Toulouse 3 (Toulouse, France) with an M.Sc. in
signal, image processing, and acoustics. He received a
Ph.D. in signal processing from the University of Toulouse
(Toulouse, France) in 2007. He was Lecturer at the Uni-
versity Paul Sabatier Toulouse 3 from September 2007 to
August 2009. He was Assistant Professor at the University
for Information Science and Technology, in Ohrid, North
Macedonia, from September 2009 to June 2010. From Au-
gust 2010 to July 2012, he was a Marie Curie Postdoctoral
fellow with the Signal Processing Lab, Institute of Com-
puter Science, Foundation for Research and Technology-
Hellas, Heraklion, Crete, Greece. From September 2012 to
August 2024, he was Associate Professor at the University
of Littoral Cote d’Opale, in Calais and Saint-Omer, France
while he is currently Professor at the same university. His
research interests include sparse and nonnegative latent
variable analysis methods and their applications to acous-
tics, environment monitoring, and hyperspectral imaging.r

Benjamin Bigot received a Master degree in Signal pro-
cessing from the University Paul Sabatier Toulouse 3 in
2007, and a Ph.D. degree in Computer Science with appli-
cation to Automatic Speech Processing from the Univer-
sity Paul Sabatier Toulouse 3 in 2011. He is currently a se-
nior air accident safety investigator, specialised in the audio
analysis of Cockpit Voice Recorders at the French Air Ac-
cident Investigation Bureau (BEA for Bureau d’Enquêtes
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