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Introduction

The present work is devoted to the boundary formulation for an isotropic body with edge and corner singularities
subjected to a distribution of initial strains (or initial stresses). The elastic potentials and their derivatives are
smooth almost everywhere except at the points on the surface where the densities are defined [6]. They can
be discontinuous through the surface and a closer study shows that their behaviour depends on the property of
the point on the surface (smooth or non-smooth) and on the regularity of the surface densities (displacements
and tractions in the direct boundary element method). The behaviour of the potentials at smooth points is well
known [12, 1, 3, 4, 7, 9, 15]. The purpose of this paper is to extend these results to non-smooth points. Additionally,
a new representation of the boundary displacement gradient is given, which gives rise to a new Traction Boundary
Integral Equation (TBIE).

Main results

First let us recall some basic results for smooth points. Let Ω be an open bounded domain with boundary S, where
S is a Liapunov manifold (S ∈ C1,β with β ∈]0, 1]). If ũ ∈ C1,α(S) and t̃ ∈ C0,α(S) with α ∈]0, β], the first and
double layer potential and their derivatives can be uniformly extended to S [4, 8, 12]. The Hölder continuity of the
manifold or of the surface densities is sufficient for numerical purposes. Actually a Dini’s condition is enough if one
looks for a necessary and sufficient condition [8, 13].

Here we consider the case of a piecewise Liapunov’s manifold S. One assumes that Ω possesses the inner and
outer cone property [8, 10]. Both elastic potentials can then be uniformly extended to S provided that ũ ∈ C0,α(S)
and t̃ ∈ L∞(S) with α ∈]0, 1] [10, 11]. Some integral representations of the gradient of the displacement field are
given in [3, 2, 9]. However, there exists no results concerning the displacement gradient in non-smooth domains.
Furthermore, no regularity conditions on the surface densities are provided.

The main difficulty comes from the fact that the class C1,α(S) cannot be defined over a Lipschitz region. the
same problem arises when the trace on the boundary has to be defined in Sobolev spaces [5]. One can also note
that from a physical point of view, the traction t̃ is not continuous on S.

Let v be a vector field defined in Ω, v ∈ C1,α(Ω). The restriction of ∇v on the boundary S is then well defined
and belongs to C0,α(S) whereas neither the surface derivatives Dv nor ∂nv belongs to C0,α(S). Accordingly, it will
be assumed that:

ũ|Si
∈ C1,α(Si) and t̃|Si

∈ C0,α(Si) where S =

i=N⋃

i=1

S̄i (1)

By introducing the notations ũ = u|S and t̃ = tS and by the Hooke law, one can express the normal component of

∇̃u which gives [3, 1]:

∂̃nu =
1

µ
(I −

n⊗ n

2(1− ν)
).t̃−

ν

1− 2ν
(divS ũ)n− n.Dũ (2)

One can then define ∇̃u|Si
on each Si by ∇̃u = Dũ + ∂̃nu ⊗ n and introduce the ”reconstitued boundary stress

field” σ̃ given by σ̃ = C : ∇̃u. Then the gradient of a displacement field satisfying the Navier-Cauchy equations in
R3\S admits the following boundary integral representation when ∇̃u ∈ C0,α(S) :

uk,l(x) =

∫

S

DljU
k
i (x, y)σ̃ij(y)−

∫

S

T k
i (x, y)∇̃uil(y) dS(y) + (δki − Cki)∇̃uil(z) (3)

where z ∈ S and the integrals have to be understood in the principal value sense (for the definition of the free-term
C, see [10]). One can also obtain the regularized form:

uk,l(z) =

∫

S

DljU
k
i (z, y)[σ̃ij(y)− σ̃ij(z)] dS(y)−

∫

S

T k
i (z, y)[∇̃uil(y)− ∇̃uil(z)] dS(y) + ∇̃ukl(z) (4)

A similar reasoning allows us to obtain an integral representation on the boundary S of the gradient displacement
field for a problem with initial strains εp when ∇̃uij(y) ∈ C0,α(S) and ε

p
ij(y) ∈ C0,α(Ω). For the numerical



implementation, an integration by parts can be performed in the first integral. This boundary stress representations
gives then rise to a TBIE in which the boundary integro-differential kernels are U(z, y) and T (z, y).

Conclusion

An original boundary integral representation for the displacement gradient has been established in the case of
domains with edges and corners. These results have also been generalized for problems with initial strains or stresses
and are helpful to determine the associated boundary integral equations of the problem.

At regular points, the simple and double layer potentials can be considered separately when studying the limit
behaviour of the displacement gradient. On the contrary, the situation is more intricate at singular points. Since
neither the surface derivative Du nor the stress vector t can be assumed to belong to C0,α(S), it turns out that
introducing the ”reconstitued boundary displacement gradient” is an appropriate way to obtain a boundary integral
representation and a new TBIE.
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