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!Centre Inria d’Université Cote d’Azur - Epione Team, 2004 Rte des Lucioles, 06902, Valbonne, France

Abstract

The multimodal nature of clinical assessment and decision-making, and the high rate of healthcare
data generation, motivate the need to develop approaches specifically adapted to the analysis of these
complex and potentially high-dimensional multimodal datasets. This poses both technical and conceptual
problems: how can such heterogeneous data be analyzed jointly? How can modality-specific information
be identified from shared information? Variational autoencoders (VAEs) offer a robust framework for
learning latent representations of complex data distributions, while being flexible enough to adapt to
different data types and structures, and have already been successfully applied for latent disentangle-
ment of multimodal data. Identifying causal relationships between available modalities, beyond simple
statistical associations, could provide valuable and actionable insights, but conventional causal discovery
techniques suffer from the curse of dimensionality. To address these issues, we propose Multi-Channel
Causal VAE (MC?VAE), a causal disentanglement approach for multichannel data, whose objective is to
jointly learn modality-specific latent representations from a multichannel dataset, and identify a linear
causal structure between the latent variables. Each modality is projected into its own latent space, where
a causal discovery step is integrated to learn the hidden causal graph. Finally, the decoder takes into
account the discovered graph to predict the data. We formally derive MC2VAE and the optimization
strategy for its parameters. Experiments on synthetically generated data-sets underline the ability of our
model to identify ground-truth hidden causal relationships, opening up a viable avenue for actionable
interventions on multichannel systems.
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1. Introduction

Multichannel data refers to data-sets where observations generated from multiple sources are
gathered together: each of those sources is intended to capture a specific information of the
phenomenon under study, and can contribute to its overall understanding. This type of data
(sometimes called multimodal or multiviews) is becoming increasingly common in various fields,
spanning e.g. from finance, to increase the predicting abilities of market trends analysis [1], to
healthcare [2]. In the healthcare domain, clinical decision making, both for diagnosis, prognosis
or therapeutics, is typically done considering as much information as possible on patients,
which may come for instance from medical imaging, clinical scores, and medical reports. This
simple statement, together with the increasing availability of healthcare data, motivates the
development of methods specifically tailored to the joint analysis of multimodal data, which
can plays a crucial role through personalized medicine [3].
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Unfortunately, multichannel data analysis is far from trivial, and comes with several chal-
lenges, due to their intrinsic heterogeneity, the possible high dimensionality of some channels,
and the potential correlations between channels, each of one being a specific piece of a same
puzzle. Finally, the effective integration of such multichannel data should be able to preserve
each channel-specific information and highlight the cross-channels one.

Variational Autoencoders (VAEs) have gained significant attention for their ability to learn
complex data distributions in an unsupervised manner [4]. VAEs are Bayesian generative models,
consisting of an encoder, whose role is to project the input data into a lower-dimensional latent
space, and the decoder which reconstructs the original data from its latent representation.
Latent variables are sampled from their estimated posterior distributions. The VAE inference
process is efficiently carried out using amortized inference [5], where the posterior moments are
parameterized with neural networks. The flexibility of VAEs makes them particularly suitable
for dealing with different types of data, hence they appear as good candidates to perform
multichannel analysis. Causal learning is a very active and evolving area of research that
aims to identify causal relationships between observations, going beyond simple statistical
association, and ultimately improving interpretability, explainability and deployability. Classical
methods to discover the underlined causal structure from a set of observations, are well suited
to deal with relatively low-dimensional data. More recently, attempts to couple causal discovery
and machine learning techniques to cope with higher dimensional and complex datasets, have
shown promising results. Nevertheless, scaling up to multichannel data still appears as an
extremely challenging task.

Our aim is to design a method, called Multi-Channel Causal Variational Autoencoder
(MC?VAE), for the joint analysis of multichannel data, able to identify meaningful causal relation-
ships between each modality, enhancing our comprehension of the overall picture each channel
is contributing to. To do so, MC2VAE will rely on VAEs, which ensure the definition of a latent
projection for each channel, and causal discovery techniques to identify the causal relationships
between channels through their lower-dimensional representations: this knowledge will be
valuable for helping the VAEs to reconstruct the data.

The rest of the paper is organised as follows. In Section 2, we summarize the state-of-the-art
on multichannel data analysis, with a specific focus on VAEs, and causal disentanglement
learning. In Section 3, we mathematically derive our method, MC2VAE, and its optimisation
strategy. Section 4 shows some results on synthetically generated data, showing the relevance
of identifying relationships across channels to reconstruct the original data. Finally, Section 5
concludes the paper and propose some future research directions.

2. Related works

2.1. Multi-channel Representation Learning

The goal of disentangled representation learning is to disentangle the observed variables by
projecting them into hidden lower-dimensional independent features, which correspond to
distinct generative factors able to describe the data in a more compact manner [6, 7]. Classical
models to solve this task includes Recurrent Neural Networks (RNNs) [8], Generative Adversarial
Networks (GANs) [9], Deep Reinforcement Learning (DRL) [10], and VAEs [11].



In the multichannel context, VAEs have already been successfully deployed. For instance,
Antelmi et al. [12] proposed a sparse VAE that jointly learns latent relationships across multiple
channels, under the assumption that the latent space is shared across all channels. On the other
side, in [13] the authors study the spatio-temporal dynamics of disease evolution through a
multichannel VAE, where each channel is projected separately in its latent space, and a latent
neural dynamical system describes the time evolution of the latent variables. A multichannel
variational autoencoder (MVAE) based on conditional VAE (CVAE) [14] has also been proposed,
and applied to analyze time signals, while a generalized multichannel conditional variational au-
toencoder [15] has been used for multichannel audio source separation under underdetermined
conditions.

In [16], Bayesian Networks in conjunction with deep learning techniques (sparse autoen-
coders) are used to incorporate arbitrary multi-scale, multi-modal data without making specific
distribution assumptions. A conditional generative modeling (CGM) approach for unsupervised
disentangled learning based on variational autoencoder (VAE) was also proposed [17]. CGM
employs a multimodal or categorical conditional prior distribution in the latent space to learn
global uncertainty in the data. Finally, to enforce multimodal coherence, Wesego et al. [18]
proposed to learn the correlation among the latent variables of unimodal VAEs using score-based
models.

2.2. Causal Disentangled Representation Learning

Causal discovery [19, 20] is a branch of causal research that aims to unveil causal relationships
between observed variables. Unlike correlation, which seeks to identify statistical associations
between variables, causal links are defined as intrinsically asymmetric relationships, whose
cause-and-effect directions are typically represented through causal graphs. Causal discovery
has proven in being relevant in diverse research fields, including medicine [21], biology [22],
physics [23], and economics [24]. It is a powerful tool, whose aim is try to understand the
underlying mechanisms driving observed phenomena, when prior expert knowledge is not
already fully established, enhancing decision-making processes. Indeed, causal discovery is a
necessary preliminary step to perform causal inference, the basis for conterfactual reasoning.
Nevertheless, classical approaches for causal discovery (e.g. [25, 26, 27, 28]) strongly suffer from
the curse of dimensionality, and are not well adapted to deal with complex and high dimensional
datasets.

Causal Disentangled Representation Learning (CDRL) [29] is an emerging field of research
that seeks to solve this bottleneck by relying on the ability of machine and deep learning methods
for feature extraction. Unlike conventional representation learning, which may merge multiple
causal factors into a single representation, causal disentanglement strives to separate these
factors enhancing the comprehension of the data generation process. Through the identification
and separation of latent factors that contribute to the generation of the observed variables,
CDRL enables a more comprehensive understanding of the underlying causal mechanisms
governing complex data distributions. Moreover, causal disentanglement can facilitate the
simulation of the effects of altering specific causal factors in a controlled manner, thus allowing
for counterfactual reasoning.

In this context, CausalVAE [30] addresses the issue of learning causal disentanglement in



observational data. Considering external information about data named concepts or labels, the
authors propose a VAE that includes a Causal Layer to learn a causal graph in the latent factors
that mirrors the causal relationships between the considered concepts. The model shows good
results on both synthetic and benchmark datasets. However, by leveraging the a priori known
graph on the concepts of interest, they enforce the dimension of the latent space and the causal
structure therein. An extension of CausalVAE has been later proposed by Komandouri et al. [31]
to relax the linear assumption of causal relationships.

CausalGan [32], is designed to perform causal inference on images, but requires a prior
causal graph. Another approach [33] incorporates dependent latent factors instead of assuming
independent latent factors. For disentanglement, the authors utilize the principle of independence
mechanism or modularity and design a layer with non-structured nodes that represents outputs
of mutually independent causal mechanisms. These mechanisms contribute collectively to the
final predictions, achieving disentanglement.

Finally, causalPIMA [34] has been recently proposed for causal representation learning,
integrating multiple modalities and physics-based constraints. Each modality is encoded into
its proper latent space and unimodal embeddings are joined through a product of experts. The
latent space is then clustered by a Gaussian mixture prior. Notably, the algorithm permits also
the integration of known physics constraints during the decoding stage.

Despite the significant achievements reached, we noticed that the already existing methods
require to inject additional knowledge to drive the causal discovery in the latent space. In
addition, with the exception of [34], the challenging multichannel scenario has still to be
addressed.

To deal with both multichannel data and the need of recovering their causal relationships,
accounting for the realistic unavailability of an established causal pattern across channels,
we propose Multi-Channel Causal Variational Autoencoder, MC2VAE. Our approach aims to
uncover a causal graph between channels’ latent variables in a fully unsupervised manner, i.e.
without requiring any additional information beyond the data itself. In this way, we aim to
obtain an interpretable and richer representation of such complex data.

3. Proposed method

The overall architecture of MC?VAE is summarized in Figure 1. First, we jointly train the
encoder of each channel to obtain the corresponding latent variable, which is supposed being
one-dimensional to enforce the discovery of causal relationships between channels. Next, the
latent variables undergo a Latent Causal Layer where a causal discovery step is performed to
find the causal graph. Finally, the decoder considers the resulting transformed causal latent
variables to reconstruct the original data.

In this section, we will detail the mathematical formulation of our model. We denote by
X = (X;)i=1,...,~ the dataset of observed variables, where [V is the total number of subjects, and
X = (X]")m=1,...,m is the dataset of the ith subject, consisting of observations from a total of
M channels, x}". Clearly, each x"* will lie in a specific d,,-dimensional space. The latent vector

for subject i following the encoding operation will be denoted by z; := (2]")m=1,.. M € RM,

2
where each z{" corresponds to the latent representation of x;". After passing through the causal



layer, we will denote the transformed latent variables as z;: they will be feed to the decoder.
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Figure 1: Workflow of MC2VAE. Each channel m is encoded to a one-dimensional latent variable 2™
through its channel-specific encoder. The latent variables z = (2""),,,=1, . am pass into the Latent Causal
Layer, where the linear structural causal model (Eq. (3)) is learned. The decoder takes the transformed
causal variables z¢ = (2%™),,=1,... am to reconstruct the observations for each channel, through a
channel-specific decoding.

3.1. Latent structural causal model

MC?VAE hypothesizes the existence of a structural causal model (SCM) relating the channel-
specific latent variables. A SCM is typically defined by a triplet M = {z° f,,z} where
z¢ = {zc’m}mzlv,_’ M are the causally related variables, £, are functionals, parameterized
by v = (Ym)m=1,...m, which describe in a deterministic manner the nature of the causal
¢l ,20M and z = (2™)m=1,....m are the associated (independent)

P

relationships between 2
noise variables. We can write:

z¢ = £,(ATz°) + 2, (1)

where A is an adjacency matrix, strictly upper triangular up to some permutations, which
describes the directed acyclic graph (DAG) structure of z%!, ..., 2™ The superscript T
denotes the matrix transpose.

In this work we restrict ourselves to the assumptions of linear relationships among the latent
variables, and a normal prior for the noise terms. Therefore, the latent SCM writes:

z¢=Alz¢ +z=(1— Al) 2,2 ~ N(0,]), (2)



where I denotes the identity matrix, and A is the adjacency matrix A weighted by the
parameter : the 75 term of A, provides the strength of the causal linear relationships of z;
(the parent variable) to z; (the children).
Following the SCM in (2), we get the Markov factorization of the joint distribution of the
latent variables:

M
p(%{|zi; ©som) = ] p(2"[Paj", 2i;Oscm),i € {1,..., N}, (3)

m=1

where Pa" represent the set of parents of z; in the latent causal graph and Ogc = (4, )
are the parameters of the structural causal model, to be learned.

3.2. Multichannel Causal Variational Auto-encoder

In this section, we state the probabilistic formulation of our proposed inference and generative
model. The encoder and decoder functions are parameterized by © := (6,,)mm=1,...m and
® := (¢,,)m=1,....m respectively. We assume a prior distribution p(z) = H%zl N(0,1) over
the latent space. In order to optimise the parameters of MC?VAE, we would like to maximize
the marginal log likelihood:

N
L(X;2,0,05cm) = » log[p(Xi;®,Os0m)]
=1

N
— Y log [ [ ol Ol Oscr(an i
=1

where

M
p(Xilzg; @) == [ px"127™; bpn)- (4)

m=1

We apply variational Bayes and introduce a tractable posterior ¢(z| X; ©) to approximate the
true posterior p(z|X):

M M
q(zi‘Xi; 9) = H Q(zmxznﬁm) = H N(MEL(XT,@m,l),UELQ (X;;nvem,2>)a (5)

m=1 m=1
where i of are channel-specific functions depending on x7* and on the 2D-parameter 6,,.

This leads us to the following lower bound:

ﬁ(X; ,0, @SCM) > Ez~q(z|X;@) {10g [p(X’ZC; (I))}} + IEz~q(z\X;®) {log [p(ZﬂZi; GSCM)}}
—Dku (¢(2|X;©)]|p(2)) := €, (6)

where Dk, denotes the Kullback-Leibler divergence.
The following result can be demonstrated:



Theorem 1. Given the assumptions in Equations (3),(5),(4), the lower bound £ defined in Equation
(6) is:

N M m c,m
€= _12{2 [dm log (2moD) (2™, 6m,2) ) + ™ = o (2 G

2 : 0—722 (zc,m7 ¢m 2)
z:lE2 m=1 ) (7)
mog
where
I; = det(B)+tr (B7'S¥(X;,0)) + (0" (X, 9))T B 1u®(X;,0), (8)
and

-1
- Bi=(1-AT)" (1 AD),
« uE(X;,0) is the concatenation of all i (X", 0m 1),

Proof. For the sake of clarity, we denote E, ;| x;0) by simply E,, and we will drop the index
¢ in what follows. The first term in Equation (6) gives (thanks to assumption (4)):

M
E, {log [p(X |25 ®)]} = > E,{log[p(x™(z°"; ¢,,,)]}
m=1

1 & 2
= -3 Z (dm log <27TO'T]?L (2™, ¢m,2))
m=1

|x™ — B (zem, ¢m,1>u2>

0-7]”?7,2 (zc,m’ ¢m,2)

+ )

The Kullback-Leibler divergence term can be factorised thanks to assumption (5), then
analytically derived (it is the classical Dxki, between univariate Gaussians):

M
1
Dy (9(2lX;:0)llp(@) = [052<x;”,em,2>—log<a§<xr,em,2>
m=1
(X On) — 1] : (10)

Let us focus on the second term of Equation (6).

Proposition 2. Under the latent SCM assumption given by Equation (2) we have:

E, {log [p(z{|zi; Oscm)]} = —% (M log(27) + det (B) + tr (B_IEE(Xi, 0))

+ (HE(X% 0))T B_luE(Xiv 0)) :



Proof. Thanks to assumption (2):

E, {log [p(z§|zi; Oscm)]} = —% (M log(2m) + det (B) + E, (zTBlz)>.

The solution follows using assumption (5).

The proof of theorem 1 follows by putting together Equations (9), (10) and (11). O

3.3. Acyclicity penalisation

We shall recall that our objective is to learn a directed acyclic graph relating the channel-specific
latent variables. The acyclicity is encoded in the causal unweighted adjacency matrix A, which
we expect to be strictly upper triangular. To enforce this requirement, we add a penalisation
term to the loss function given in Equation (7), inspired by Zheng et al. [35], where they show
the following result:

Theorem 3. Let A € RM*M pe the unweighted adjacency matrix of a directed graph. For any
a > 0, the graph is acyclic if and only if

Ho(A) :==tr [(I+ado AHM] — M =0, (11)

We use Theorem 3 with a = ¢/M for ¢ big enough, and finally get our objective function to
be optimized:

min (=€ + Ha(A)). (12)

3.4. MC?VAE algorithm

We have implemented MC2?VAE using Python 3.10.9 and Pytorch 2.2.1. Algorithm 1 briefly
outlines the steps performed at each training epoch. Our learning algorithm is efficiently carried
out through minibatch stochastic gradient descent using the Adam optimizer [36]. The code
used to run MC2VAE (and to generate the synthetic datasets illustrated in Section 4) is made
publicly available on https://gitlab.inria.fr/ibalelli/mc2vae.

4. Experimental results

We perform experiments on synthetically generated data, to challenge our method to 1) recover
the ground truth causal graph and 2) correctly reconstruct all channels. In order to assess
the relevance of accounting for the latent causal relationships we perform an ablation study
and compare MC?VAE with a simplified multichannel architecture, where the causal layer has
been switched off. For each experiment and both models, encoders and decoders consist of a
single linear layer. We performed 500 epochs with an initial learning rate of 1e~2, which allows
to reach convergence for both models and all synthetic data-sets. The choice of privileging
synthetic data-sets here is motivated by the need of a ground truth latent graph to compare
with, which is not commonly known in most real worlds multichannel applications.



Algorithm 1 MC?VAE
Require: Multimodal data (X, )m=1

ey

M ¢ (Eq. (11)); E (epochs); batch size; optimiser hyper-
parameters
fore=1,...,F do
form=1,...,M do
Sample 2™ ~ q(z™|x™) (reparameterization trick)
end for
z < concat(z™)m=1,...,
Compute z¢ = (I — A,j;)_lz (Latent Causal Layer)
Compute E, {log [p(X 2" ®)]} (Eq. (9)
Compute E, {log [p(z{|z;; ©scm)] } (Eq. (11))
Compute Dkr, (¢(z|X; ©)||p(z)) (Eq. (10))
Compute & (Eq. (7))
Compute H./p(A) (Eq. (11))
Return Lossyceyag(X; ®,0,0s0m) = —& + He/nr(A)
Backpropagate
end for

We consider three different synthetically generated data (D1, D2 and D3, see Table 1), which
differs by the number of channels and channel dimensions. Data-sets D1 and D2 have been both
generated from a 3-dimensional latent space which follows the causal graph given in Figure
2, top panel, where the arrows indicate a linear transformation of the child variable from its
parent, as prescribed by Equation (2). Data-set D3 consists of 5 channels of varying dimensions,
generated from a 5-dimensional latent space which follows the causal graph in Figure 2, bottom
panel. For all tests, a total of N = 2000 subjects was generated, using linear operators. Finally,
centered Gaussian noises with random standard deviations was added to each channel.

c,1 > c,2
z7 AR ZU,Q —_— ZC’5

Figure 2: Ground truth latent causal graphs used to generate data-sets D1 and D2 (left graph) and D3
(right graph).

We consider 500 epochs for all the tests, which allows to reach convergence of the algorithm.



Table 1
Number of channels and their respective dimension per generated data-set.

Data-sets # of channels # of features/channel

D1 3 [10,5,7]
D2 3 [20, 15, 30]
D3 5 [20,15, 30, 10, 5]

In Figure 3, we show the results for data-sets D1, D2 and D3, comparing the full MC2VAE
architecture (in red) with the one where the causal layer has been removed (in blue), meaning that
each channel results in being fully independent from the others. One can see that considering
this causal learning step within the VAE algorithm significantly improves the reconstruction
of the data. When the causal learning step is removed, precious information coming for the
interrelationships between channels is completely lost, highly affecting the reconstruction
ability of the autoencoders, which in some case reach very scarce results. This occurs for
almost all the channels regardless of the number of considered features, and is enhanced when
increasing the number of channels and ground truth causal relationships across them.

D1, Channel 1, Feature 1 D2, Channel 1, Feature 1 D3, Channel 1, Feature 1
e
® Non causal ,’

® Causal ‘*/. 0
%o
o

75 @ Non causal
50 ©® Causal

6

® Non causal
4 @ Causal
2
0

Predicted data
Predicted data

7’
-4 7 6 - 0 .
-4 =2 0 2 4 -4 =2 0 2 4 -4 =2 0 2 4
True data True data True data

Figure 3: From left to right: results for data-set D1, D2 and D3, respectively. For each data-set
the first feature for the first channel is shown (similar results have been obtained for the remaining
channels/features). The black dashed line corresponds to the diagonal.

In Table 2 we report some results concerning the comparison between the causal graphs
discovered by our model for each data-set, and the ground truth ones from Figure 2. Our
method can detect almost all the edges present in the ground truth graph in all considered
data-sets. The number of missing arrows in the discovered graphs varies between 20% and
30% of total existing arrows. Interestingly, we observe an improvement in arrows detection
when the number of channels is increased, and the causal graph is complexified. These very
promising results highlight the ability of our model to correctly perform causal disentanglement
form multichannel data, and discover the hidden causal relationships between the considered
channels, enhancing both channel-specific and cross-channels information extraction.

To better show and quantify the reconstruction error, we computed the MSE between original
and reconstructed data. In Figure 4, we show the MSE values for each channel (on the left)
and each feature (on the right). Using causality, the average MSE per channel decreases by
approximately 88% compared to the VAE trained without causality. Similar results are obtained



Table 2
Number of correctly identified edges and edge directions using MC2VAE for all synthetic data-sets.

Metric D1 D2 D3
Total edges number 3 3 10
# detected edges 3 2 10
# missing edges 1 1 2
# incorrect edges 1 0 2
# inverted arrows 0 0 3
for the features.
60 Model Model
I Causal 140 WM Causal
I Non causal I Non causal
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Figure 4: MSE values for each channel (on the left) and each feature (on the right) computed after
training MC2VAE five times over the same data-set D1. We highlight in pink the features of channel 1,
in green features of channel 2 and in yellow features of channel 3.

5. Conclusions and future directions

In this paper, we present a novel model for causal learning from multichannel data. Our method
leverage variational autoencoders to obtain a compact representation of each channel, but
conversely to classical VAE structures, it integrates a causal discovery layer to unveil the
underlying hidden causal relationships across channels. Our approach showed promising
results when applied to synthetically generated data-sets. MC2VAE displays an improved
reconstruction ability thanks to the learned causal latent structure. In addition, MC?VAE is
able to detect almost all the causal relationships relating the channels. Application on real
data-sets specifically from (but not restricted to) the healthcare domain is one of our short-term
major interests. Beside new applications, this work opens to several exciting perspectives and
extensions, including, among others, the possibility of modeling interventions on the latent
graph, hence expand to the causal inference domain. This will open up a new perspective to get
actionable information on multichannel systems.
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