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Abstract. With the vast existence of multi-objective optimization prob-
lems to the scientific research and engineering applications, Many-objective
Evolutionary Algorithms (MaOEAs) demand to systematically perpet-
uate population diversity and convergence distributions in the objective
space with high dimensionality. To fulfill the balance in the relation-
ship between convergence, distributions, and diversity, this paper pro-
poses a directed search many-objective optimization algorithm embodied
with kernel clustering strategy (DSMOA-KCS) in decision space where
some mechanisms such as adaptive environmental selection which effi-
ciently assimilates design for control of diversity and convergence in the
distribution of the solutions in the decision scopes. DSMOA-KCS is a
stochastic, multi-start algorithm using clustering to increase efficiency.
DSMOA-KCS finds the starting point in the regions of interest. Then, it
improves them by the directed search method. DSMOA-KCS is compared
with several existing state-of-the-art algorithms (NSGA-III, RSEA, and
MOEADPas) on many-objective problems with 5 to 30 objective func-
tions using the Inverted Generational Distance (IGD) performance met-
ric. DSMOA-KCS evaluation results illustrate that it is competitive and
promising, performing better with some problems. Then, even distribu-
tion, convergence, and diversity are maintained.

Keywords: Many-objective Optimization · Kernel Cluster · Diversity
and convergence · Evolutionary algorithm.

1 Introduction

Evolutionary Many-objective optimization has become a popular and influential
research field in recent years. Its application to real-world problems has signif-
icantly been shown. That is to say, many practical problems can be defined as
Many objective problems (MaOPs), such as time series learning [4] and engineer-
ing design [3]. Moreover, many optimization problems refer to multi-objective
setbacks with more than three objectives.

Minimize f(x) = (f1(x), f2(x), · · · , fM (x))T

Subject to x ∈ Ω
(1)
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where x = (x1, x2, . . . , xn)
T is the n-dimensional decision vector in the deci-

sion space Ω,M > 3 the number of objectives, and f(x) is the M-dimensional
objective vector. While solving MaOPs with many Objective Evolutionary Al-
gorithms, there is an incomparability of solutions that is caused due to the pro-
portion of non-dominated solutions increasing significantly [7], [2]. This makes
optimization using only the dominance relationship infeasible and challenging to
maintain population diversity in a high-dimensional objective space.

Researchers presented many solutions, most of which fall into three cate-
gories. First, Pareto dominance-based MaOEAs use modified Pareto mechanisms
to identify non-dominated solutions. 2-dominance and fuzzy dominance modify
dominance definitions to sustain selection pressure. Divergent distance computa-
tions improve Pareto-based MaOEAs [9]. Zhang et al. used a knee-point-based
selection approach [11]. Li et al. suggested a shift-based density estimation tech-
nique for many-objective optimization [8]. Indicator-based MaOEAs evaluate
solutions and steer search processes. IGD is a popular indicator. Hyper Volume
(HV) and R2 are also noteworthy. Decomposition-based MaOEAs decompose a
MOP into SOPs or simple MOPs to be solved collectively. Certain MOEAs, such
as RVEA [1] and MOEA/D [10], decompose a MOP into SOPs. NSGA-III [5],
and SPEA, based on reference direction [6], decompose a MOP into multiple
simpler MOPs by subdividing the objective space.

2 The Proposed Method

The DSMOA-KCS evolutionary process is restarted when the best solution is
reached; if not after a specific number of generations, it is denoted by parameters.
Each evolution of DSMOA-KCS starts from a different initial population. Fig.1
shows how the number of leading chromosomes r changes over time.

Fig. 1: Flowchart of the proposed DSMOA-KCS
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Fig.1’s I parameter indicates the number of generations in which the best
solutions are found and improved. Current and provided computing times are
t and T . Every evolution involves chromosomal transmission. g indicates the
number of chromosomes. Population size (p), crossover rate (c), mutation (m),
elite count 1 (g), elite count 2 (r), and adaptive restarting condition (s) are me-
thodically tweaked to improve directed sampling search outcomes. The crossover
rate (c) is improved using local directed search, mutation, and environmental se-
lection. A mating pool P

′
is formed by selecting the union P (Population size)

and CSA (Corner Solution Archive) in algorithm 2. It specifies the convergence
of solutions by randomly selecting two solutions from P ′ each time results are
needed.

2.1 Directed search sampling and guiding solutions

Firstly this paper takes into consideration unconstrained Many objective prob-
lems.

Min F (x)

x ∈ Rn (2)

where F is defined as the vector of objective functions F : Rn → Rk, F (x) =
(f1(x), . . . , fk(x))

T , and each objective fi : Rn → R is smooth. The optimality
of MaOEAs is defined by the dominance of a vector y ∈ Rn dominated by vector
x ∈ Rn(x ≺ y) with respect to MaOP if fi(x) < fi(y) or else y is dominated by
x. Point x ∈ Rk is a Pareto point if there exists no y ∈ Rn that dominates x. The
set of all Pareto optimal solutions is symbolized by P . The F (p) is the Pareto
front. Using the Jacobian of F at point x is illustrated by

J(x) =

▽fi (x)
T

...
▽fk (x)

T

 ∈ Rk×n (3)

where ▽fi(x) symbolizes the gradient of the objective fi. If the MaOEAs are
differentiable then this necessitates condition for Pareto optimality of uncon-
strained MaOPs. Assumption point x0 ∈ Rn with rank (j(x0)) = k is given and
vector d ∈ Rk showing the desired search direction in objective space. Then the
search direction v ∈ Rn in the decision space is sought such that for y0 := x0+hv,
where h ∈ R+ is the step size that represents the movement from x0 in the di-
rection v and as shown in equation 4 below with y0 representing the movement
from x0 in direction of V :

lim
h↘0

fi (y0)− fi (x0)

h
= {▽fi (x0) , v} = di, i = 1, · · · , k, if∥v∥ = 1 (4)

In this research paper |.| represents the 2-norm. F in equation 4 is stated as
matrix vector notations as

J(x0)v = d (5)
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Solving linear equations yields the search direction v. Considering the number
of decision variables is substantially higher than the number of objectives for
a particular MaOP, n >> k is uncertain, implying the solution is not unique;
hence, the algorithm chooses

v+ := J(x0)
+d (6)

where J(x0)
+ ∈ Rk×n symbolizes the pseudo inverse of J(x0) with candidate so-

lution of x0 obtaining a new solution by x1 = x0+hv where v ∈ Rn is the vector
satisfying equation 5. v+ is the solution of equation 5 with the nominal Euclidean
norm. With h, progress in direction d is expected to be significant in the objec-
tive space. Guiding solutions are aimed to help MaOEAs accelerate convergence.
DSMOA-KCS divides search space using w

′
. Identify the solutions closest to the

ideal point of the objective space, then draw a line from the lower upper bound
points to the solution in the choice space. DSMOA-KCS ends with a calculation.
Encoding, crossover, mutation, and evaluation are not included because they are
problem-dependent. As directed search sampling implies, this study selects elite
individuals, elite count 1 (g) and elite count 2 (r), to integrate and strengthen
the exploration and exploitation capabilities of the suggested algorithm to as-
sess individual quality. DSMOA-KCS generates possible solutions by sampling a
problem space. Local searches from good sample points can provide local optima.
Points lead to unknown, potentially better local optima. Algorithm 1 shows the
algorithm’s highest level of abstraction after we have examined its inspiration
and ideas.
Algorithm 1: Framework of proposed DSMOA-KCS

Input: F : Rn → R.
a, b ∈ Rn: bottom, and upper bounds

1 return Value opt ∈ Rn: global minimum candidate
2 i← 1, N ← 126, λ← 0.5, opt←∞
3 new, unclustered, reduced, clustered ← {}
4 while stopping criteria is false do
5 new ← new ∪ generate N sample from [a, b] distributed uniformly
6 merged ← sort clustered ∪ new by ascending order regarding F
7 last ← i ·N · λ
8 reduced ← select [0, . . . , last] element from merged
9 x∗ ← select [0] element from reduced

10 opt← minimum of {opt, x∗}
11 clustered, unclustered ← cluster reduced
12 new ← {}
13 while size of unclustered > 0 do
14 x← pop from unclustered
15 x∗ ← local search over F from x within [a, b]
16 opt← minimum of {opt, x∗}
17 cluster x∗

18 if x∗ is not clustered then
19 create cluster from {x∗, x}
20 end
21 end
22 i← i + 1

23 end
24 return opt.

2.2 Environmental selection

Algorithm 2 outlines environmental selection. The reproduction by corner so-
lution Archive uses guiding solutions to speed up and balance convergence and
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variety. P and E are unioned to find non-dominated solutions. N is greater than
the stated number of non-dominated answers. Each individual of the parent
population P will execute a crossover with randomly selected guiding solutions,
generating |P | candidate solutions. A mutation is conducted on solutions to get
an intermediate offspring population, joined with a guiding solution set to form
a combined population. The environmental selection algorithm 2 uses kernel
matrix calculation.
Algorithm 2: Environmental selection process

Input: P (population), E (Expectant Population), N (population size), CSA (Corner
Solution Archive), z∗(idealpoint), znad (nadir point)

1 P ← Non-dominated P ∪ E
2 if |P | > N then
3 Normalization (CSA,Z∗, Znad)

4 Normalization (P,Z∗, Znad)
5 L←Kernel Matrix calculation (P,CSA)
6 A←Mutation/crossover operation (L,N)
7 P ← P (A)

8 end
Output: P .

Matrix L incorporates convergence and population diversity. CSA (Corner
Solution Archive) differentiates inside and outside Pareto space, finds corner
solutions of objective functions, and sorts solutions in levitating order of objec-
tive space. First, environmental selection produces offspring after union selection
with the original population. Pareto dominance, crowding distance, and normal-
ized solutions are combined. If (|P | > N), the non-dominated front is measured
as a critical front, and solutions are picked from the Corner Solution Archive
(CSA). The kernel matrix L illustrates population convergence and diversity.
Equation 7 is used to calculate Lxy.

Lxy = q(x)s(x, y)q(y) (7)

where x, y ∈ P, q(x) shows the solution x quality and S(x, y) is the similarity
between x and y defined by equation 8 below

S(x, y) = exp(−cos(x, y)) (8)

where cos(x, y) is cosine of angles between solutions x and y. The quality of q(x)
of solution x is calculated basing on its convergence, as illustrated in equations
9 and 10.

q(x) =

{
con1(x)x ∈ outside space
2∗maxp∈P (con1(P ))x ∈ inside space

(9)

con1(x) =
con(x)

maxp∈P (con(P ))
(10)

where con1 is the normalized convergence. Outside space and inside space de-

scribe the different areas of the objective space. If
√∑M

i=1 fi(x)
2 ≤ t the solution

x belongs to the inside space or otherwise to the outside space. The threshold

t is set to t = max

{√∑M
i=1 fi(x)

2|x ∈ CSA

}
. Corner Solution Archive (CSA)



6 Michael Aggrey Okoth, Ronghua Shang, Weitong Zhang, and Licheng Jiao

differentiates the outside space and inside space. This paper uses the approx-
imation method to initiate the CSA regarding the value of k, leading in two
situations. k = 1: to find the corner solutions of objective i = 1, 2, . . . ,M pro-
posed algorithm classifies the solutions in ascending order of objective value fi
so we get sorted lists and add the first ⌈ N

3M ⌉ solutions of each list into the CSA.
1 < K < M : With consideration of k = M − 1 an approximation method to
attain CSA is used. with any objective i = 1, 2, . . . ,M , solutions are sorted in
ascending criteria of

√∑M
j=1,k ̸=i(fj(x))

2 and attain M sorted lists. The initial
solutions of each list is selected in the CSA. With the above two situations,
|CSA| = ⌈ N

3M ⌉ ×M + ⌈ 2N
3M ⌉ ×M ≈ N is obtained. Calculating the Kernel ma-

trix is done after calculating the cosine of the angle between every two solutions
in the population and the quality q(x) of each solution x. Row vector q then
accommodates the qualities of all solutions, after which a quality matrix Q is
generated as the product of qT and q. Decisively, Q is multiplied with L in an
element-wise manner to revise and output L.

3 Experimental Results and Analysis

The proposed algorithm is compared to state-of-the-art algorithms NSGA-III,
RSEA, and MOEADPas on a set of benchmark problems with 5, 10, 13, and 15
objective functions.

(a) (b) (c) (d)

(e)

Fig. 2: Pareto front distributions of optimal solutions comparisons of DTLZ1

Fig.2 shows the parallel coordinate plots and regular Pareto fronts of (a)
DSMOA-KCS, (b) MOEADPaS, (c) NSGA-III, (d) RSEA, and (e) as DTLZ1’s
True Pareto Front. The x − axis symbolizes the objective numbers, and the
y − axis represents the objective values. It can also be seen intuitively in Fig.2
that the convergence value ranges from 1-2 for the algorithms DSMOA-KCS,
RSEA, and NSGA-III with corresponding consistent values of the True Pareto
Front.
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Table 1: IGD Values obtained by MOEADPaS, NSGA-III, RSEA, and DSMOA-KCS
Problem M MOEADPaS NSGA-III RSEA DSMOA-KCS
DTLZ1 5 5.1984e+0 (7.83e+0) - 6.3430e-2 (1.63e-4) - 6.3430e-2 (1.63e-4) - 6.3395e-2 (1.28e-4)
DTLZ1 10 1.6379e+1 (1.10e+1) - 1.3664e-1 (1.28e-2) - 1.4493e-1 (2.49e-2) = 1.1553e-1 (1.62e-2)
DTLZ1 13 2.5126e+1 (6.74e+0) - 1.4782e-1 (3.77e-2) - 1.9635e-1 (4.02e-2) - 1.3470e-1 (7.78e-3)
DTLZ1 15 2.3236e+1 (1.04e+1) - 1.5283e-1 (3.52e-2) = 1.9237e-1 (2.04e-2) - 1.4904e-1 (2.87e-2)
DTLZ2 5 3.0698e-1 (9.93e-2) - 1.9489e-1 (1.94e-5) = 2.4765e-1 (1.88e-2) - 1.9489e-1 (1.69e-5)
DTLZ2 10 1.1756e+0 (1.51e-1) - 4.6852e-1 (3.22e-2) - 5.1935e-1 (2.09e-2) - 4.6908e-1 (3.10e-2)
DTLZ2 13 1.2822e+0 (1.62e-7) - 5.4978e-1 (4.02e-2) - 6.1536e-1 (2.74e-2) - 5.4591e-1 (3.56e-2)
DTLZ2 15 1.2896e+0 (6.47e-8) - 5.7042e-1 (3.26e-2) - 6.6712e-1 (2.07e-2) - 5.6608e-1 (3.43e-2)
DTLZ4 5 3.3055e-1 (5.13e-2) - 2.6457e-1 (1.08e-1) = 2.6000e-1 (2.68e-2) - 2.3413e-1 (8.92e-2)
DTLZ4 10 5.3467e-1 (1.91e-2) - 4.7282e-1 (3.63e-2) - 5.3787e-1 (1.03e-2) - 4.7219e-1 (3.58e-2)
DTLZ4 13 6.1679e-1 (1.94e-2) - 5.5299e-1 (4.00e-2) - 6.0308e-1 (1.02e-2) - 5.4235e-1 (3.75e-2)
DTLZ4 15 6.3863e-1 (1.10e-2) - 5.5156e-1 (3.51e-2) - 6.5844e-1 (1.29e-2) - 5.4496e-1 (3.70e-2)
DTLZ6 5 1.4736e+0 (6.78e-16) - 9.9562e-1 (1.03e-1) + 1.1655e+0 (6.88e-2) - 1.0009e+0 (1.38e-1)
DTLZ6 10 6.5482e+0 (1.38e+0) - 1.6124e+0 (1.93e-1) - 2.0422e+0 (1.43e-1) - 1.5907e+0 (1.87e-1)
DTLZ6 13 1.0572e+1 (9.99e-3) - 1.9119e+0 (3.98e-1) - 2.2510e+0 (1.45e-1) - 1.8563e+0 (3.96e-1)
DTLZ6 15 1.0674e+1 (2.93e-3) - 1.7980e+0 (3.46e-1) = 2.3528e+0 (1.66e-1) - 1.7410e+0 (2.30e-1)
WFG1 5 9.3854e-1 (1.16e-1) - 4.3655e-1 (3.98e-3) - 4.6716e-1 (1.08e-2) - 4.3487e-1 (3.46e-3)
WFG1 10 2.4955e+0 (1.31e-1) - 1.1086e+0 (8.50e-2) - 1.0764e+0 (3.13e-2) - 1.066e+0 (3.14e-2)
WFG1 13 2.9502e+0 (1.55e-1) - 1.6082e+0 (6.93e-2) = 1.6072e+0 (3.02e-2) - 1.5841e+0 (5.43e-2)
WFG1 15 2.7066e+0 (2.19e-1) - 1.6281e+0 (9.06e-2) - 1.6015e+0 (3.69e-2) - 1.5543e+0 (1.09e-1)
WFG2 5 1.0322e+0 (2.11e-1) - 4.7210e-1 (1.77e-3) - 4.9358e-1 (1.27e-2) - 4.7062e-1 (2.13e-3)
WFG2 10 1.4558e+1 (4.97e+0) - 1.2569e+0 (1.15e-1) - 1.1006e+0 (3.73e-2) - 1.0876e+0 (1.48e-1)
WFG2 13 2.3162e+1 (4.45e+0) - 1.7446e+0 (1.20e-1) - 1.6880e+0 (1.19e-1) - 1.59795e+0 (1.28e-2)
WFG2 15 2.4836e+1 (5.73e+0) - 1.5650e+0 (9.09e-2) = 2.0002e+0 (3.05e-1) - 1.5585e+0 (8.52e-2)
WFG6 5 1.6458e+0 (4.56e-1) - 1.1632e+0 (1.95e-3) + 1.3021e+0 (3.55e-2) - 1.1630e+0 (1.84e-3)
WFG6 10 1.5090e+1 (3.58e+0) - 4.7755e+0 (1.22e-2) - 4.9503e+0 (1.02e-1) - 4.7755e+0 (1.24e-2)
WFG6 13 2.1633e+1 (3.87e+0) - 7.6367e+0 (3.49e-1) - 7.4523e+0 (1.93e-1) + 7.7059e+0 (3.93e-1)
WFG6 15 2.6594e+1 (4.04e+0) - 8.4332e+0 (6.92e-1) - 9.3531e+0 (3.07e-1) - 8.4029e+0 (5.08e-1)
WFG7 5 1.7394e+0 (1.78e-1) - 1.1770e+0 (5.14e-4) - 1.3236e+0 (3.93e-2) - 1.16822e+0 (5.15e-4)
WFG7 10 1.8234e+1 (1.81e+0) - 4.7855e+0 (1.72e-2) - 4.9491e+0 (1.05e-1) - 4.7788e+0 (5.82e-2)
WFG7 13 2.5556e+1 (1.68e+0) - 7.2118e+0 (1.72e-1) - 7.3819e+0 (1.97e-1) - 7.2083e+0 (1.63e-1)
WFG7 15 2.9696e+1 (1.63e+0) - 8.1386e+0 (1.04e-1) + 9.4909e+0 (3.05e-1) - 8.2267e+0 (1.83e-1)
+/-/= 0/32/0 2/26/6 1/30/1 29/3/0

As shown in Fig.2, DSMOA-KCS shows a uniform and better distribution, not
forgetting diversity compared to the other algorithms regarding the DTLZ True
Pareto Front. As can be seen in Table I, IGD results show that DSMOA-KCS
attains the best IGD values of 29 out of 32 benchmark instances of DTLZ1,
DTLZ2, DTLZ4, & DTLZ6 and WFG1, 2, 6, & 7 all with 5, 10, 13, and 15
objectives, respectively. MOEADPaS attains the least results, NSGA-III on 2
and RSEA on 1. DSMOA-KCS is suitable for resolving problems that are not
time-critical but sufficiently tricky.

4 Conclusion

In order to solve the problem of equity between convergence and diversity, this
paper proposes a directed search sampling method and Environmental selection
procedures to act as guiding solutions for the execution of crossover together with
parent solutions and seconded to reproduce guiding solutions for the execution
of the offspring. While also taking into consideration the improvement of the
offspring. A modified single cluster linkage is constructed to handle multiple
MaOPs, and DSMOA-KCS is compared with recent algorithms on the WFG
and DTLZ benchmarks, with the number of objectives ranging from 5 to 15. The
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results reveal that the proposed DSMOA-KCS significantly outperforms other
algorithms in certain problem instances; however not better in all the problem
instances than other algorithms.
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