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Abstract. Deep learning technology has been widely used in SAR ship
detection tasks. However, complex sea level backgrounds, such as sea
clutter and shorelines, greatly interfere with the accuracy of the de-
tection of ship targets. In addition, embedded devices need to deploy
multiple detection models, such as FPGA, so model size and detection
speed are also important indicators in practical applications. In order
to solve these problems, we developed a method combining traditional
detection methods with deep learning. In this paper, SAR image clut-
ter distribution model is used to suppress SAR image clutter, and then
the processed image is sent to the network for learning. Based on this
idea, we have established a superpixel composite Gamma distribution
model, which can obtain more accurate fitting results than pixel scale
Gamma distribution and suppress background clutter more effectively.
We also propose the YOLO-SX lightweight detection network, which
significantly reduces model size, detection time, calculation parameters,
and memory consumption. Its overall performance is superior to other
detection methods.

Keywords: SAR Ship Detection · Lightweight Deep Learning · Su-
perpixel Statistical Modeling · Gamma Distribution.

1 Introduction

Synthetic aperture radar (SAR) is an active sensor. Compared with optical and
in-frared sensors, SAR has the characteristics of all-weather, all-day and pene-
tration capability [1]. Due to these advantages, SAR technology has been widely
used in military and civilian fields. With the development of SAR technology,
SAR image interpretation faces many opportunities and challenges.

The field of SAR ship detection is broadly divided into two development
stages: traditional methods and deep learning methods. Before the advent of
deep learning, CFAR (Constant False Alarm Rate) algorithm was widely used
in the detection of ground and marine targets in SAR images. It is a common
adaptive algorithm for radar systems to detect target echoes in noisy, cluttered
and interfering backgrounds [2]. It detects ship targets by modeling the statis-
tical distribution of background clutter, but it is often difficult to model the
clutter in a complex background with an appro-priate probability density func-
tion [3]. Therefore, many previous researches have been devoted to the variation,
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combination, and adjustment of parameter models to meet the desired accuracy
of statistical modeling of clutter to determine detection thresholds [4]. However,
in practical applications, the processing speed of the algorithm can not meet the
requirements. Since AlexNet won the ImageNet image classi-fication challenge
in 2012, deep neural networks have shown very high accuracy and reliability in
image detection. Traditional feature extraction methods are gradually replaced
by convolutional neural networks [5].

The purpose of this paper is to combine SAR image statistical modeling with
deep learning, and propose a SAR ship detection method based on SAR image
statistical distribution and YOLOV5. Different from the traditional statistical
modeling, we establish the clutter distribution model in the superpixel domain
of the image, and send the processed image into the lightweight deep network
for learning, so as to improve the detection speed without losing accuracy and
improve the ship detection ability under complex backgrounds. In this paper,
Section 2 introduces the method based on superpixel statistical modeling, Sec-
tion 3 describes the construction of the lightweight detection network, Section 4
introduces the experiments and Section 5 is the conclusion.

2 Superpixel-Based Composite Gamma Distribution
Modeling

2.1 Superpixel

We define a block of pixels consisting of adjacent pixels with similar texture, color
and grayscale value in an image as a superpixel region [6]. Most of these regions
retain the effective information for further image processing, and generally do not
destroy the boundary information of objects in the image. Few superpixels are
used to express image features instead of a large number of pixels to reduce the
complexity of subsequent image processing. The segmentation effect as shown in
Fig. 1(a).

2.2 Composite Gamma Distribution Based on Superpixel

First, we calculate two key parameters based on the divided superpixels: 1) the
number of pixels contained in each superpixel, called the superpixel domain;
2) the average gray value of the pixels contained in each superpixel, called the
superpixel reflectivity [7].

Then we calculate the distribution law of each superpixel domain according
to Equation (1), that is, the proportion of the number of pixels in each superpixel
do-main to the number of pixels in the whole image.

P (n) =
N(n)∑S
i=1 N(i)

(1)

where n is the index of the superpixel domain, S is the number of superpixel do-
mains of this image, and N(i) denotes the number of pixels in the i-th superpixel
domain.
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Then calculate the probability density function of superpixel reflectivity as
in (2).

f(Z) =

max∑
n=min

fz|n(z | n)p(n) =
max∑

n=min

zφn−1e−z/σn

σφn
n Γ (φn)

p(n) (2)

where p(n) denotes the distribution law of the superpixel domain, φn and σn

the Gamma parameters of the superpixel reflectance, min denotes the minimum
superpixel domain, and max denotes the maximum superpixel domain.

Then calculate the threshold value T as (3).

Pfa =

∫ ∞

T

f(z)dz (3)

Where Pfa is the preset constant false alarm rate and f(z) is the probability
density function of the superpixel reflectivity.

Finally, we perform clutter suppression on the image based on the threshold
values calculated in the above steps, setting the pixel values smaller than the
threshold T to 0 and keeping the pixel values larger than the threshold T . The
result as shown in Fig. 1(b).

 

(a)
 

(b)

Fig. 1. (a) Superpixel segmentation result. (b) The result of clutter suppression.

3 Lightweight ship detection network

3.1 ShuffleNeck Module

To achieve the lightweight effect, we constructed a ShuffleNeck module (see Fig.
2) to replace the BottleNeck module in the YOLOV5 backbone network.

It is constructed by depth separable convolution (DWConv), channel shuffle
and residual edges [8]. Firstly, the feature map is divided into two feature maps
T1 and T2 with the same number of channels (half of the original number of
channels) by a channel split operation. The first feature map T1 is passed through
1x1 convolution layer, 3x3 DWConv, and 1x1 convolution layer to obtain a deep
feature map T3 containing a part of the original feature map. Then, the second
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feature map T2 is spliced with T3 obtained by the first branch without any
operation. Finally, the channel shuffle operation is used to obtain the deep feature
maps with the same size and number of channels as the original feature maps.
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Channel 

Shuffle     

Fig. 2. The structure of ShuffleNeck module. In the figure, the orange cube represents
1x1 normal con-volution and the blue cube represents 3x3 DWConv.

3.2 Shuffle-X(SX) Module

Unlike ShuffleNet, the SX module (see Fig. 3) processes the feature maps in
two branches [9]. The first branch is a 1x1 DWConv. The second branch is a
1x1 DWConv and a ShuffleNeck module. Finally, the feature maps of the two
branches are channel stitched to obtain the final deep features.

 

 

 

 ShuffleNeck 

 

                                                    Concat    

Fig. 3. The structure of SX module. In the figure, the orange cube represents 1x1
normal convolution and the blue cube represents 1x1 DWConv.

3.3 YOLO-SX Algorithm Description

In this paper, we use the proposed SX module to replace the C3 modules in
YOLOV5. Specifically, our lightweight backbone network consists of DWConv
and SX modules, which greatly reduces the number of parameters in the network.
In the network, all four convolutional layers from P1-P4 have a step size of 2
and are used for down-sampling. The first SX module is used to quickly extract
shallow features. The second and third SX modules are used to extract medium-
scale feature maps. The last SX module is used to extract large scale features.
In addition, our method makes extensive use of channel shuffle and residual
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edges. This allows our network to retain enough shallow features for multi-scale
detection tasks. The network structure as shown in Fig. 4.
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Fig. 4. The structure of YOLO-SX network.

4 Experiment

In this section, we will discuss the experimental dataset, process and results.

4.1 Experiment Dataset and Details

The experiment uses the SSDD (SAR-Ship Detection Dataset) which is pub-
licly available and widely used for SAR ship detection algorithm performance
measure-ment. The dataset has 1160 images with 2456 ships, and the average
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number of ships per image is 2.12. The dataset has small ships with insignificant
features, ships densely parallel moored in ports, large ships, severe ships under
speckle noise and in complex background. Four polarization modes HH, HV, VV
and VH, are also included [10].

We first perform clutter suppression in the superpixel domain for all images
in the dataset, and then divide the training set, validation set and test set in the
ratio of 7:2:1. The GPU used for the experiments is a 24G GeForce GTX3090.
And the exper-imental platform is Ubuntu 16.04, using the Pytorch deep learning
framework, im-plemented in python language.

4.2 Ablation Experiment

To verify the effectiveness of the clutter suppression method in this paper, we
conducted ablation experiments using complex background and nearshore target
data in SSDD. The images processed with clutter suppression and the images
without processing are detected respectively. The results as shown in Fig. 6.
We can clearly see that the missed detection rate of the images without clutter
suppression is higher than the processed images, and the confidence level is also
relatively lower.

 

(a)
 

(b)

Fig. 5. The left side of (a) and (b) shows the ship images with complex backgrounds and
near-shore targets without clutter suppression processing, and the right side shows the
processed image. The red box is the detection result, and the yellow box is the missed
ship target.

We also conducted experiments on the tiny target data on the sea surface
to verify the effectiveness of our method, and the results as shown in Fig. 9.
Obviously, the unprocessed detection results in missed detection of small targets
with lower confidence than the images processed with clutter suppression.
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(a)

 

(b)

Fig. 6. The left side of (a) and (b) shows the image of tiny small targets on the sea
surface without clutter suppression processing, and the right side shows the processed
image. The red box is the detection result, and the yellow box is the missed ship target.

In summary, our method not only performs excellently in detecting ship
targets with complex backgrounds, but is also applicable to cross-scale detection
tasks.

4.3 Comparison Experiment

To evaluate the performance of the model, we use mAP (average accuracy), FPS
(frames per second) and model size as evaluation metrics for ship detection. mAP
is the average of the average accuracy for detecting each category. Since we have
only ship targets in our experiments, mAP is equal to the average accuracy (AP).

We compare the performance of YOLOV4-tiny, YOLOV5x, SSD, Faster R-
CNN and YOLO-SX by evaluating their performance in the above three aspects.
The results as shown in Table 1. It is obvious that SSD and Faster R-CNN, which
are two-stage detection networks, perform worse than YOLO. And although
YOLOV5x achieves the best performance in terms of mAP, our method is much
superior to YOLOV5x and other models in terms of FPS and model size.

Table 1. Comparison of different methods in mAP, FPS and model size

Model mAP FPS Model Size(MB)
YOLOV4-Tiny 93.2% 43 22.4

YOLOV5x 98.8% 37 165.2
SSD 85.4% 36 93.2

Faster R-CNN 88.7% 27 527.8
YOLOV-SX 97.1% 50 1.4

5 Conclusion

This paper introduces a traditional SAR image statistical modeling method com-
bined with deep learning. The method divides the image into several superpixel
regions composed of adjacent pixels with similar texture, color, and grayscale
values. These superpixels are then statistically modeled and clutter suppres-
sion using composite Gamma distributions. The experiments were conducted on
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SSDD, a widely accepted dataset that is superior in accuracy and speed to ex-
isting algorithms, both for small ship targets in large areas of the ocean and for
ship targets in complex settings. At the same time, a lightweight backbone was
introduced to replace the existing backbone based on YOLOV5, significantly
reducing the model’s size and number of parameters and improving detection
speed. It also facilitates the deployment of the model in embedded devices and
is suitable for real-time tasks. It is hoped that this paper can provide a solution
idea for future deep learning lightweight work and SAR image ship detection
work.
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