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Abstract. Single image super-resolution (SISR) has achieved great progress based
on convolutional neural networks (CNNs) such as generative adversarial network
(GAN). However, most deep learning architectures cannot utilize the hierarchical
features in original low-resolution images, which may result in the loss of image
details. To recover visually high-quality high-resolution images, we propose a
novel Multi-recursive residual dense Attention Generative Adversarial Network
(MAGAN). Our MAGAN enjoys the ability to learn more texture details and
overcome the weakness of conventional GAN-based models, which easily gener-
ate redundant information. In particular, we design a new multi-recursive residual
dense network as a module in our generator to take advantage of the information
from hierarchical features. We also introduce a multi-attention mechanism to our
MAGAN to capture more informative features. Moreover, we present a new con-
volutional block in our discriminator by utilizing switchable normalization and
spectral normalization to stabilize the training and accelerate convergence. Exper-
imental results on benchmark datasets indicate that MAGAN yields finer texture
details and does not produce redundant information in comparison with existing
methods.

Keywords: Image super-resolution · Generative adversarial networks · Multi-
recursive residual dense network · Attention mechanism.

1 Introduction

Single image super-resolution (SR) is a fundamental low-level vision task in computer
vision, which aims to recover a high-resolution (HR) image from a single low-resolution
(LR) one via SR methods. SR is also a research hotspot in computer vision, and recently
attracts increasing attention in image restoration applications. Especially, SR has been
popular in various applications [1] such as medical imaging, image generation, securi-
ty, and surveillance systems. In fact, SR is an ill-posed inverse problem because there
are a large number of solutions for restoration from LR images to HR images. To deal
with this issue, a great number of SR methods have been proposed, and they mainly
can be categorized as the methods based on reconstruction [2], interpolation [3], and
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145086 from BSD100
Perceptual Index

Fig. 1. Comparison of experimental results (i.e., Perceptual Index, PI) of the existing
methods and our MAGAN method for image SR tasks with a scale factor of 4×. Note
that a lower value of PI indicates better perceptual recovery quality.

learning [4,5,6], respectively. Since the pioneering work, SRCNN [7], was proposed,
many deep learning based methods such as convolutional deep neural networks (C-
NNs) have brought about great progress in SR tasks. A variety of architectures and
training approaches have continually enhanced the performance of SR in terms of some
evaluation metrics.

Deep learning based SR algorithms generally fall into the following two classes: one
is based on CNNs by utilizing classical L1- or L2-norm regularization at pixel level as
a minimization loss function term, which can usually lead to higher PSNR performance
but may over-smooth since it lacks high-frequency details. Some typical methods in-
clude EDSR [8], SRResNet [9], RDN [10], and [11,12]. The second category is the per-
ceptual loss based approaches such as SRGAN [13], EnhanceNet [14], ESRGAN [15],
and NatSR [16], which aim to make the SR result better accordant with human percep-
tion. In these methods, the generative adversarial network (GAN) [17] was introduced
for SISR tasks. By using the alternating training between the discriminator and gener-
ator, GAN encourages the networks to tend to output results, which are visually more
like real images. And they utilized perceptual loss as in [18] to optimize the SR model
at a feature level. In [19], the semantic prior knowledge in images is further included
to enhance the details of reconstructed texture. With these techniques, the perceptual
loss based methods significantly improve the visual quality of the restored SR images,
compared with those of the PSNR-oriented methods. However, the objective evaluation
is still not satisfied to some extent, and the visual quality can be further improved.

To restore high-resolution images with more detailed textures, this paper proposes
a novel Multi-recursive residual dense Attention GAN (MAGAN) for image SR tasks.
The comparison of the experimental results of existing methods and MAGAN is demon-
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strated in Fig. 1. It is clear that our MAGAN generates finer texture details and more
realistic visual effects than other methods. We first construct a novel deep GAN, which
also includes one discriminator and one generator, as shown in Fig. 2. We also design a
new multi-recursive residual dense network (MRDN) for our generator to fully use hier-
archical features from the original low-resolution image. Moreover, unlike the conven-
tional GAN-based SR networks, as shown in Table 1, we present a new multi-attention
mechanism for our discriminator to further discriminate refined features. Moreover, we
present a new convolutional attention block, which consists of convolutional blocks
(CBs) and an attention module, i.e., the convolutional block attention module (CBAM).
To stabilize training and accelerate convergence, our CBs adopt spectral normalization
and switchable normalization. In particular, our CBAM can capture more features by
using both channel attention and spatial attention sub-modules. With such an architec-
ture, the discriminator can learn to determine whether the restored image is more actual
than the other, and the generator helps to restore more realistic texture details. To the
best of our knowledge, it is the first GAN-based network that designs a multi-recursive
structure and introduces a multi-attention mechanism to the discriminator.

The main contributions are summarized as follows:

– We propose a new deep GAN-based network (called MAGAN) to recover visually
high-quality high-resolution images, which has a novel multi-recursive structure.

– We present the efficiency of the multi-recursive residual dense network, which
function as the generator of our MAGAN, by extracting the hierarchical features
from original LR images. We also introduce a multi-attention mechanism into our
discriminator to extract more refined features.

– Finally, we design the new convolutional blocks for our discriminator, which ap-
plies both switchable normalization and spectral normalization to the proposed
convolutional blocks. They can help to stabilize the training of the proposed net-
work. Many experimental results show that MAGAN yields finer texture details
than state-of-the-art methods.

2 Background

Generative adversarial network (GAN), which was proposed by [17], consists of a gen-
erator and a discriminator and has wide applications in a variety of areas, such as image
generation, image to image translation, image completion, and image SR. Especially,
SRGAN [13] was proposed for image SR, where both a discriminator and a generator
were defined. One can optimize between them to solve the adversarial min-max prob-
lem in an alternating manner. The purpose of the generator is to yield a realistic image
and try its best to fool the discriminator. In contrast, the discriminator aims to differen-
tiate between the ground truth and the super-resolved images. Thus, the discriminator
and the generator come into a game. With an alternating training way, the real images
and the fake ones can finally follow a similar distribution statistically. [14] proposed
the EnhanceNet, which also applied a GAN and introduced an additional local texture
matching loss. Thus, EnhanceNet can reduce visually unpleasant artifacts. In the [15],
the authors presented a perceptual loss that was posed on features before activation,
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Fig. 2. The architecture of our MAGAN with its generator (top) and discriminator (bot-
tom).

and relativistic GAN [20] was used in this work. As it is known, in GANs, the gener-
al discriminator can judge whether the input image is real and natural. In relativistic
GAN [20], the discriminator attempts to calculate a probability indicating that a real
image is relatively more realistic than a fake one.

The perceptual loss has been proposed by [18] and aims to make the SR result bet-
ter accordant with human perception. Note that the perceptual loss can be computed by
using high-level features extracted from pre-trained networks (e.g., VGG16 and VG-
G19) for the tasks of style transfer and SR. Previously, the perceptual loss function was
defined on the activation layers of a deep pre-trained network, where the distance be-
tween two activated features requires to be minimized. Moreover, [21,22] proposed the
contextual loss, which is based on natural image statistics and is used in training ob-
jective function. The algorithms in [21,22] can achieve better visual performance and
perceptual image quality, but they are unable to yield superior results in terms of some
objective evaluation criteria. There are other deep neural networks for image SR, for a
more comprehensive review of those techniques, please refer to [1,23].

3 Proposed Methods

In this section, we design MAGAN, which mainly includes a new generator and a new
discriminator, as shown in Fig. 2. Our MAGAN is expected to improve the overall
perceptual quality for image SR tasks. The goal of SISR is to recover a SR image ISR

from a low-resolution input image ILR. Note that IHR denotes the high-resolution
counterpart of a low-resolution image ILR.

3.1 Our Multi-recursive Residual Dense Network in the Generator

In our MAGAN, we design a new multi-recursive residual dense network (MRDN) as
the main module for the generator, as shown in Fig. 3. Our MRDN module combines
the proposed multi-recursive residual network and dense connections. Considering the
common observation that more network layers and connections can usually enhance
real-world performance, our MRDN module is designed as deeper and more complex
network. More specifically, as shown in Fig. 3, our MRDN module has a deep residual
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Table 1. Comparison of the architectures in these GAN-based methods. Here, Conv
denotes convolution, BN is batch normalization, SpectN is spectral normalization, and
SwitN is switchable normalization.

Methods Generator Discriminator

SRGAN [13] Residual Conv, BN
EnhanceNet [14] Residual Conv
ESRGAN [15] Residual dense Conv, BN
NatSR [16] Residual dense Conv, Maxpool

MAGAN (ours) Residual dense, Learnable, Conv, Multi-attention,
Multi-recursive SpectN & SwitN

learning structure, where residual structures are used in different layers. To expand the
capacity of learning features, we use the dense block as the basic structure in our multi-
recursive residual network, which mainly includes the multiple convolutional layers and
the LeakyReLU activation function.
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Fig. 3. The architecture of our proposed multi-recursive residual dense network (MRD-
N) used for the generator of MAGAN, where β is a learnable residual scaling parameter
for each block, and ⊕ denotes element-wise addition.

Inspired by ReZero [24], we introduce a learnable parameter β into our MRDN
module for modulating the non-trivial transformation of its each layer. Here, Fi,j is
defined as the output of the i-th cell in the j-th level of our MRDN module, where
i = 2, 3, ...,M , and j = 1, 2, ..., N . Let (i, j) represent the i-th cell in the j-th level
of our multi-recursive residual dense network, and F(i−1),j is the output of the (i−1)-
th cell in the j-th level. The multi-recursive residual dense block can be expressed as
follows:

Fi,j = F(i−1),j + β ×Hi,j(F(i−1),j), (1)

where β is a learnable residual scaling parameter.Hi,j() is the output of the i-th residual
dense (RD) block in j-th level. And we set β = 0 at the beginning of training, i.e.,
initializing each layer to perform the identity operation.

In our GAN generator, the basic block is the proposed multi-recursive residual dense
network, where most calculation operators were carried out in the feature space of low-
resolution images. Our MAGAN with MRDN is shown in Fig. 2. Besides the residual
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learning within MRDN, we also utilize global residual learning to obtain the feature-
maps before up-sampling between the convolutional layers. Then the up-sampling lay-
ers can up-scale ILR to attain an initial ISR. Followed by two layers of convolutional
operations, the generator outputs ISR.

Moreover, as shown in Table 1, the MRDN module in the generator of our MAGAN
is different from those of ESRGAN [15] and NatSR [16]. Though these three methods
all use residual dense networks, our MRDN has a recursive structure that can learn
multiple levels of the features.
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Fig. 4. The structure of the proposed convolutional attention (CA) block includes a sub-
module of our convolutional blocks in the green dotted boxes and a convolutional block
attention sub-module CBAM.

3.2 Our CA Network in the Discriminator

To further improve the performance of the discriminator in common GANs, we propose
a new CA block, as shown in Fig. 4, which includes a sub-module of convolutional
blocks and an attention sub-module. The details of them are given below.

Our attention sub-module aims to capture the fine structures of the images, and
we employ the Convolutional Block Attention Module (CBAM), as shown in Fig. 4.
The CBAM is a general attention module for feed-forward CNNs, which was proposed
in [25] and is widely used in classification and recognition tasks. It consists of both
one channel attention sub-module and one spatial attention sub-module. As illustrat-
ed in the red dotted box, CBAM utilizes both channel (top) and spatial-wise (bottom)
attention. Here, the channel attention sub-module uses both mean-pooling (also called
average-pooling) and max-pooling operations with a network with one shared layer
(called FC), which is the multi-layer perceptron with a hidden layer. The spatial atten-
tion sub-module is composed of mean-pooling, max-pooling, concatenation, and convo-
lutional operations. Note that⊗ and⊕ denote element-wise multiplication and addition
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operations, c© is the concatenation operation, and 7×7 is a convolution operation with
a filter size of 7×7.

Suppose that the intermediate feature map is Fimi ∈ RC×H×W as input, CBAM
sequentially infers the attention map AC ∈ RC×1×1 and the attention map AS ∈
R1×H×W , along the two dimensions, channel and spatial. The outputs of the channel
attention and spatial attention sub-modules are formulated as follows:

Fimt =AC(Fimi)⊗ Fimi,

Fimo =AS(Fimt)⊗ Fimt,
(2)

where ⊗ is element-wise multiplication operation, and Fimo denotes a final refined
output. As shown in Fig. 4, our CBAM is a relatively lightweight module, and it is
integrated into our attention convolutional module with negligible overheads, which is
also end-to-end trainable.

Empirically, we find that adding the attention module to the discriminator of our
MAGAN can attain more finer texture, while if the attention module is also added to
the generator, this may cause severe texture blending. Since the attention module adopts
pooling layers, it easily results in loss of location information. Therefore, we only apply
the CBAM to the discriminator of MAGAN to improve SR performance. Thanks to
the powerful ability to capture detailed information, relatively shallow neural networks
(e.g., a multi-layer perceptron with one hidden layer) also have the ability to recover
fine texture details.

Moreover, the proposed convolutional block is a basic one to construct the discrim-
inator of our MAGAN. The detailed structure of our convolutional block is shown in
the green dashed box in Fig. 4. Compared with the traditional convolutional structure,
which uses batch normalization, our convolutional block is with both switchable nor-
malization [26] and spectral normalization [27].

It is well known that normalization can stabilize the training in each iteration, im-
prove SR performance and reduce computational cost in different PSNR-oriented tasks.
However, the computational cost is greatly increased in many experiments, since it
enhances the training time of each iteration. Thus, we borrow the idea of switchable
normalization and spectral normalization to reduce the computational cost. Unlike the
conventional GAN and SRGAN whose normalization is in its generator, we utilize the
two types of normalization in our discriminator to stabilize and accelerate the training.

As GANs, our discriminator is also trained to discriminate whether real high-resolution
images are more realistic than generated SR samples. Our discriminator contains sev-
eral convolution layers, which have an increasing number of filters, starting from 64
filters in the first layer and then increasing by a factor of 2. Here strided convolutions
are used to reduce the size and computation of each layer, and it doubles the number
of map features. The resulting feature maps were followed by two dense layers and a
sigmoid function to calculate the probability of image classification: HR or SR.

As it is indicated in the study [26], the performance of the network degrades when
the batch size is one for most normalization, such as batch normalization. While the
switchable normalization is not sensitive to the batch size. And it does not weaken
the performance for small batch sizes compared with other normalizations. Moreover,
the spectral normalization can constrain the Lipschitz constant of our discriminator by
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restricting the spectral norm of each layer. Compared with other normalization tech-
niques, spectral normalization does not need an additional hyper-parameter tuning.

It is well-known that the conditioning of a generator in various GANs is an impor-
tant factor affecting the real-world performance of GANs [28]. Therefore, the generator
in GANs can benefit from spectral normalization. In fact, we also find empirically that
spectral normalization in both our generator and discriminator can make our MAGAN
possible to use fewer discriminator iterations to update per generator, which significant-
ly reduces the computational cost during training. With a comprehensive trade-off, we
apply normalization in the discriminator of our MAGAN to stabilize and accelerate the
training.

3.3 Loss Functions

Similar to other GAN-based networks, we alternately optimize the generator and dis-
criminator of the proposed MAGAN until our model converges. First, the adversarial
loss function of our generator is

Lad =− EIHR [1− log(D(IHR, ISR))]− EISR [log(D(ISR, IHR))], (3)

where D(IHR, ISR) = φ(H(IHR) − EISR [H(ISR)]), EISR [·] denotes average com-
putation in the mini-batch for all fake images, H(·) is the output of discriminator, and
φ denotes a sigmoid function.

The total loss function of the generator of our MAGAN is formulated as follows:

L = Lp + γ1Lad + γ2L1, (4)

where Lp denotes the perceptual loss used in [29], L1 = ‖ISR − IHR‖1 represents the
content loss, γ1 and γ2 are two parameters to balance these loss function terms.

For our discriminator, its loss function can be formulated as follows:

LD =− EIHR [log(D(IHR, ISR))]− EISR [1− log(D(ISR, IHR))]. (5)

Ground Truth MRDNNon_MRDN
Fig. 5. The image SR visual results of our MAGAN without (middle, Non _ MRDN)
and with (right) MRDN on the Baboon image.

4 Experiments and Analysis

In this section, we conduct many experiments for image SR tasks to verify the effec-
tiveness of our MAGAN method.
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4.1 Implementation Details

In all the experiments, the scaling factor is ×4 for the SR. In addition, we can down-
sample all the HR images to obtain LR images following [14,15], and the mini-batch
size is set to 16. It is known that a larger receptive field can obtain more informative
features from the image, and as in the work [15], we set the size of cropped high-
resolution patches to 128×128.

Our training process of MAGAN includes the following two steps: pre-training and
fine-tuning. The first step is pre-training, i.e., we train our model with the L1-norm reg-
ularized term. Specifically, an initial learning rate is set to 2×10−4. And the pre-trained
model was used as initialization to the generator for fine-tuning of our MAGAN. The
generator is trained by using the weighted sum of the loss function from the generator
and the perceptual loss with γ1=5×10−3 and γ2=10−2. The learning rate here is 10−4.
Moreover, the discriminator is trained, where the LeakyReLU activation function [30]
is used. We adopt eight convolutional layers with an increasing number of 3× 3 filters.
The size of the resulted feature maps is 512. We use the optimization algorithm, ADAM,
to train our MAGAN. In addition, the generator and discriminator are alternately up-
dated until they converge. Here, in the generator, we set M = 4 and N = 3. That is
the basic recursive residual connection, which consists of 3 dense blocks, and we use
3 layers of recursive RD blocks considering the computational cost and effectiveness.
Our MAGAN is implemented with the Pytorch framework (version 1.0) on a GPU with
NVIDIA Titan Xp (12GB memory).

4.2 Experimental Data

In the experiments, the images from the DIV2K dataset [31] are utilized for training
our network, and this dataset mainly contains 800 RGB high-quality (2K resolution)
images training for image restoration. Our MAGAN method was trained in the RGB
channels, and the training dataset is augmented by using the widely used techniques,
such as random flips. Some popular benchmark datasets including Set14 [32], BSD100
[33] and Urban100 [34] were used to evaluate the SR performance of our MAGAN and
existing state-of-the-art (SOTA) methods. Note that the former two benchmark datasets
consist of natural RGB images, and the Urban100 dataset contains RGB images about
building structures.

4.3 Ablation Studies

In order to study the contributions of some components (e.g., MRDN, CBAM and pre-
training) in our MAGAN, we conduct the following ablation studies.

MRDN The MRDN structure is used to extract more detailed features for our network.
We compare the results of MAGAN with and without MRDN, as shown in Fig. 5.
Note that MAGAN without MRDN uses the residual-in-residual dense block (RRDB)
proposed in [15] as the generator, as the RRDB structure is similar to our MRDN. The
result shows that texture features become more complete and natural by using MRDN,
and no obvious cracks appear at the corners of the eyes. This is because the multi-
recursive residual learning structure can better retain the information of original images.
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CBAM In the experiment, we add the attention module (i.e., CBAM) to the generator
and discriminator of MAGAN, respectively. In Fig. 6 (center), we can clearly observe
that CBAM is used in the generator, there is more sharper and conspicuous feather edges
than that CBAM is used in the discriminator (right), but its generated images are unreal.
It is probably because the generator does not has more constraints on the images when it
is with the CBAM module as the discriminator is not subjected to the attention module
and can not determine whether the generated image is fake. The CBAM module is used
in the discriminator, which enhances the discriminative ability of the discriminator and
can improve the quality of the generated images.

Pre-training It can be seen clearly from Fig. 7 (right) that the restored image of our
pre-trained network is better than that of our network without pre-training in terms of
detail texture discrimination. With a large number of experiments, we find that pre-
training is helpful for the performance of most GAN-based models, especially in the
case that the model is more complex.

Attention_GNon_Attention Attention_D
Fig. 6. Visual results of our MAGAN without (left, Non _ Attention) and with CBAM
applied in our generator (middle, Attention _ G) or discriminator (right, Attention _ D)
on the Baboon image.

Ground Truth PreNon_Pre
Fig. 7. Visual results of our MAGAN without (middle, Non_Pre) and with (right, Pre)
the use of pre-training on the Baboon image.

4.4 Experimental Results

The image SR results of our MAGAN are compared with both of the PSNR-oriented
algorithms such as SRResNet [7], RDN [10], and GAN-based methods which are En-
hanceNet [14] and ESRGAN [15]. The quantitative results of the SR images recovered
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Table 2. Average perceptual index results of SR images with scaling factor ×4 on the
three benchmark data sets. Note that the best results are shown in bold and the second-
best results in italics.

Methods SRResNet [7] RDN [10] EnhanceNet [14] SRGAN [13] ESRGAN [15] NatSR [16] MAGAN (ours)

Set14 4.96 5.25 3.01 3.09 2.93 3.11 2.89
Urban100 5.15 5.05 3.47 3.70 3.77 3.65 3.59
BSD100 5.34 5.24 2.92 2.55 2.48 2.78 2.43

by these methods are reported in Table 2. We adopt the Perceptual Index (PI) [29] as
a measurement metric for comparison. PI is a relatively effective indicator of visual
quality than the others. It can be seen from the table that our MAGAN has gained a
relatively lower average perceptual index 2.89 than the popular PSNR-oriented meth-
ods and the other GAN-based methods on Set14. The PIs of SRResNet and the RDN
are much larger than GAN-based methods. It is because these methods are not trained
with perceptual index. All the results show that our MAGAN usually outperforms other
methods in terms of perceptual index, especially on the Set14 and BSD100 datasets.

The image SR results of a selected region of the image_089 from the Urban 100
dataset are shown in Fig. 8 (a). It can be seen that our MAGAN achieves the best visual
result and its perceptual index are the lowest, i.e., 2.64. Compared with the traditional
deep learning algorithms, SRResNet and RDN, which are optimized with classic L1- or
L2-norm regularization, the GAN-based methods with perceptual loss can restore more
detailed textures and gain a lower perceptual index. Moreover, our MAGAN yields
much better results than the GAN-based methods such as EnhanceNet and ESRGAN.
The result of EnhanceNet appears mixed textures and that of the ESRGAN represents
blurry. The reason is probably that our MAGAN learns more detailed features with
the proposed techniques: MRDN and CBAM, and therefore it generates perceptually
superior results.

Furthermore, the image SR results of a selected region of the image_099 from the
Urban 100 dataset are shown in Fig. 8 (b). All the results also indicate that our MAGAN
achieves the best visual result and its perceptual index is 3.65. The original image has
many grids as details. The images recovered by SRResNet and RDN, which are PSNR-
oriented models, are blurred. Although the perceptual index of EnhanceNet is the lowest
for this image, the visual result is inferior to those of MAGAN and ESRGAN. Since
this image is a selected small region from image_099, the local result is probably not
good. That may also result from the weakness of the metric of the perceptual index,
which measures the global result of a recovered image but not locally. As indicated by
the result of ESRGAN, for this image with fine texture details, the GAN based model
easily generates redundant and nonexistent information resulting in a sharper effect
so that the resulting images are different from the real images. On the contrary, our
MAGAN performs well without generating redundant information.

Moreover, we present more representative results of all the methods for image SR
tasks, as shown in Fig. 9. As there is no standard and effective metric for perceptual
quality evaluation, we show the three common measurements: PSNR, SSIM, and PI
(perceptual index). It is clear that our MAGAN usually recovers better images than the
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(a) Image_089 (b) Image_099

Fig. 8. Comparison of the image SR results of SRResNet [7], RDN [10], En-
hanceNet [14], ESRGAN [15] and MAGAN (ours). Among them, (a) and (b) are the
SR results of Image_089 and Image_099, respectively.

other methods in terms of PI, and is much better than the perceptual-driven methods
including EnhanceNet [14] and ESRGAN [15] in terms of PSNR, SSIM and PI.

It can be observed from these experimental results that our MAGAN method con-
sistently outperforms other approaches in terms of both details and sharpness. For ex-
ample, MAGAN produces better restored images (e.g., sharper, more natural baboon’s
whiskers and fur) than the PSNR-oriented methods (e.g., SRResNet), which tend to pro-
duce blurry results, and the GAN-based approaches, whose textures contain unpleasing
noise and are unnatural. MAGAN can be capable of generating more detailed struc-
tures in buildings (see image_089), while other methods (including EnhanceNet and
ESRGAN) either fail to add undesired textures or produce enough details. Moreover,
existing GAN-based methods usually introduce unpleasant artifacts in their results. For
instance, ESRGAN produces superfluous whiskers that do not exist as shown by the
image baboon. Our MAGAN method can get rid of artifacts and also produces natural
restored results.

5 Conclusion and Further Work

In this paper, we proposed MAGAN that performs consistently better in terms of per-
ceptual quality than existing image SR methods. We also designed a novel architecture
of a multi-level residual dense network for the generator in our MAGAN. Moreover, we
introduced a multi-attention mechanism to our MAGAN by the CBAM, which can cap-
ture more detailed textures. In addition, we also improved our discriminator to stabilize
the training by utilizing a new convolutional block, which applies both switchable nor-
malization and spectral normalization. Experimental results confirmed the effectiveness
of our MAGAN, and indicated the advantage of the proposed method: 1) MAGAN can
restore visually high-quality images compared with existing state-of-the-art methods.
2) It can retain sharpness and yield fine textures for images as it utilizes the hierarchical
features. 3) It does not generate unpleasant artifacts. In the future, more techniques such
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300091 from BSD100
PSNR/SSIM/PI

78004 from BSD100
PSNR/SSIM/PI

Fig. 9. Image SR qualitative results of SRResNet [7], RDN [10], EnhanceNet [14], ES-
RGAN [15], and MAGAN (ours) for a scale factor of 4×.

as the improved perceptual loss [35] and deformable convolution [36] will be investi-
gated to generate more realistic images, and we will also apply the proposed network
for video SR tasks [37,38,39].
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