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Abstract. Recently, deep learning has achieved considerable results in
hyperspectral image (HSI) classification. However, when training image
classification models, existing deep networks require sufficient samples,
which is expensive and inefficient in practical tasks. In this article, a novel
Combining Spatial-spectral Features for Hyperspectral Image Few-shot
Classification (CSFF) framework is proposed, attempting to accomplish
the fine-grained classification with only a few labeled samples and train it
with meta-learning ideas. Specifically, firstly, the spatial attention (SPA)
and spectral query (SPQ) modules are introduced to overcome the con-
straint of the convolution kernel and consider the information between
long-distance location (non-local) samples to reduce the uncertainty of
classes. Secondly, the framework is trained by episodes to learn a metric
space, and the task-based few-shot learning (FSL) strategy allows the
model to continuously enhance the learning capability. In addition, the
designed network not only discovers transferable knowledge in the source
domain (SD) but also extracts the discriminative embedding features of
the target domain (TD) classes. The proposed method can obtain satis-
factory results with a small number of labeled samples. Extensive exper-
imental results on public datasets demonstrate the versatility of CSFF
over other state-of-the-art methods.

Keywords: Hyperspectral Image Classification · Spatial-spectral · Few-
shot Learning · Domain Adaption · Meta Learning.

1 Introduction

Hyperspectral image (HSI) contains rich spatial-spectral information and pro-
vides the possibility of accurate classification of complex features. As a result,
it has been widely used in environmental monitoring and military defense, etc.
Currently, it urgently requires accurate classification of HSI with the develop-
ment toward big data, which demands sufficient labeled samples [8]. However, it
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is extremely difficult to obtain thousands of labeled samples without great hu-
man and material resources. In earlier years, Melgai et al. [13] used the support
vector machine (SVM ) to explore an optimal hyperplane for classification, which
slightly alleviated the "hughes" phenomenon. It only calculated the spectral in-
formation of HSI without considering spatial features. Chen et al. [2] designed a
deep network to extract deep invariant features. Moreover, some strategies, such
as L2 regularization and dropout were investigated to avoid overfitting during
training. In contrast, humans can combine empirical knowledge and thus quickly
complete new classification tasks with only a few samples.

In recent years, FSL has become popular because of its ability to perform
new classification tasks with only a few labeled samples. For example, Chen et
al. [1] introduced classifier baselines and FSL baselines and proposed to pre-
train the classification model through a meta-learning paradigm. Lately, Gao et
al. [3] designed a relation network (RN-FSC) to classify HSI, which fine-tuned
the SD training model by using a few shot datasets of the TD. A deep fea-
ture extraction FSL method (DFSL) with an attached classifier was proposed
in [11]. Moreover, Li et al. [10] designed a supervised deep cross-domain FSL
network (DCFSL), which adopted residual 3D-CNN networks to extract local
information and ignored the significance of non-local spatial features. Although
the above FSL-based networks utilized convolution kernels to extract spatial-
spectral features, the information is rarely obtained from long-distance location
samples [5]. Secondly, due to the frequent occurrence of spectral shifts, Various
discrepancies in data distribution may occur between SD and TD [15]. There-
fore, it is necessary to consider the non-local relationships between samples to
reduce the negative effects of domain shifts.

To overcome the above two limitations, a Combining Spatial-spectral Fea-
tures for Hyperspectral Image Few-shot Classification (CSFF) framework is pro-
posed, which is based on the mechanism of combining domain adaptation and
FSL. Firstly, the episodic learning pattern of FSL is implemented on the SD and
TD, which is to build a meta-task (i.e., support set and query set). Then, the
spatial-spectral information is extracted by SPA and SPQ units. Moreover, the
similarity between the support set S and query set Q is calculated using a metric
function. Finally, a domain adaptation strategy is adopted to overcome domain
shifts and achieve the accurate classification of HSI. The main contributions of
this paper can be summarized as follows.

1) Unlike most existing deep networks, the proposed CSFF is learning a metric
space through the episodic and task-based learning strategy, which can obtain
promising HSI classifications with only a few labeled samples.

2) The SPA and the SPQ modules introduced through transformers are designed
to overcome the constraint of the convolution kernel, consider the relationship
between long-distance location samples, and enable the network to better
extract high-level features to reduce the uncertainty of the class.

3) Rather than focusing on a specific classification task, the proposed approach
is to learn a deep nonlinear and transferable metric space, where the similarity
metric is implemented by comparison. Meanwhile, to reduce the distribution
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Fig. 1. Framework of the proposed CSFF, including feature extraction, few-shot learn-
ing and domain alignment.

difference between the SD and TD, we adopt a domain adaptation strategy
to achieve distribution alignment of the data, which can help improve the
generalization power of the model.

The remaining of the paper is arranged as follows. Section 2 introduces relevant
concepts of the proposed approach CSFF. Experimental results and analyses
are presented in Section 3. Finally, Section 4 draws comprehensive conclusions
of this work.

2 Proposed Approach

The framework of the proposed CSFF is shown in Fig. 1, which contains three
parts, i.e., feature extraction, few-shot learning, and domain alignment. During
feature extraction, SPA and SPQ blocks are designed to overcome the limita-
tions of fixed convolution kernel size. Also, an inter-domain discriminator (IDD)
is used to alleviate the problem of domain shift caused by different sensors. As-
suming that Cs, Ct represent the number of categories of Xs ∈ Rds and Xt ∈ Rdt ,
which denote ds and dt dimensional features from SD and TD. Note that TD is
separated into training data Tf with a few labeled samples and testing data Tt
with unlabeled samples.

2.1 Feature Extraction

Generally, HSI usually requires pre-processing with high dimensions. The map-
ping layers, Ms (•) and Mt (•) are used to map SD and TD to the same di-
mension dmap (dmap is set to 100 in this work). The transformer block fnet (•),
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including SPA and SPQ blocks, is employed to extract the spatial-spectral fea-
tures of the HSI.

Most neural networks extract features from the local space but ignore the
significance of the relationship between non-local space samples [7]. However,
the purpose of the spatial attention mechanism is to explore the interactions
between samples at different positions. Motivated by [4, 6, 14], we design the
transformer’s SPA blocks to calculate query, key, and value tensors as follows.

Q = F (X ,Wq) ∈ Rc
′
×h×w (1)

K = F (X ,Wk) ∈ Rc
′
×h×w (2)

V = F (X ,Wv) ∈ Rc×h×w (3)

where: Wq, Wk, Wv denote the training parameters of the query, key, and value
tensor, respectively, c, h, w are the channel size, height, and width of the input
features X , respectively, F (•) denotes the 2D convolution operation. Thus, the
output of the SPA block can be calculated as follows:

SPAout = V · softmax
(
QT ·K

)
∈ Rc×h×w (4)

Where SPAout is the output of each position on the feature map. Now, the
SPA module establishes the interactions between samples at different locations
but ignores the abundant spectral information of HSI. Consequently, we design
another SPQ block to extract spectral features and take masks to fuse the spa-
tial information. Specifically, the kernel and output of the SPQ block can be
formulated as follows:

Ψ = softmax (H (X ,WΨ )) ∈ Rhw×k (5)

SPQ = ΨT ·X T = (X ·Ψ)
T ∈ Rk×c (6)

SPQout = SPQT ·ΨT = (Ψ · SPQ)
T ∈ Rc×h×w (7)

where H (•) denotes 3D convolution operation to produce a tensor of size k×h×
w. Finally, we use the generated mask WΨ to integrate it with the SPAout of the
input X , generating a spectral query kernel SPQ of size k × c. So far, the SPQ
block has established correlations between spatial locations and corresponding
spectral features.

2.2 Source and Target Few-shot Learning

FSL is executed simultaneously in source and target classes in each episode.
Taking SD as an example, SD is divided into support set Ss and query set
Qs, where Ss is the training set. Then, the features fSs

and fQs
are extracted

by network fnet. In each episode, FSL calculates the similarity between fQs
and

each class prototype and minimizes the predicted loss. The predicted probability
of the query sample is performed as follows:

P ( ŷ|xi) = softmax (−E (xi,x
ci
s )) (8)
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where E (•) denotes an Euclidean distance function, xci
s is the ci-th class pro-

totype of fSs
, ci ∈ Cs. The FSL loss of a query sample in SD is calculated by

cross-entropy loss.

LS (P ( ŷ|xi) , yi) = −
Cs∑

Qs,i=1

yi logP ( ŷ|xi) (9)

Equivalently, the loss LT of the TD is formulated in the same way as above.

2.3 Domain Alignment

Given the effect of domain shift on classification performance in FSL episodic
training, domain alignment is one of the effective measures. Inspired by [12], we
design an IDD block to analyze and adjust the data distributions Ps (x) and
Pt (x) of the SD and TD. In particular, we denote h = (f, g) to represent the
joint distribution of the feature f = F (x) and the classifier prediction g =
G (x). Following this, we formulate the domain alignment network as a minimax
optimization problem with a loss error term:

Ld ← E (D,G) =−Exs
i∼Ps(x) log [D (fs

i , g
s
i )]

−Ext
j∼Pt(x) log

[
1−D

(
f t
j , g

t
j

)] (10)

where D (•, •) and 1−D (•, •) denote the probability that IDD predicts SD and
TD samples x, E (D,G) can be considered as the loss metric of the IDD block,
which is minimized over IDD but maximized over F (x) and G (x). By combining
h = (f, g), we condition IDD on g with the multilinear map as follows.

T⊗ (f, g) = f ⊗ g ∈ Rdf×dg (11)

where (f ⊗ g) defined as the outer product of multiple df and dg dimensions
random vectors. However, with the increasing number of training iterations, the
dimension df × dg of the multilinear map will become too high to be embedded
the deep framework without causing parameter explosion. Luckily, according to
the theoretical proof in [12], the dimension d of the randomized multilinear map(
T⊙ (f, g)) is much smaller than df × dg. In other words, T⊙ is an approximate
calculation of T⊗, where ⊙ is element-wise produc. If the dimension of T⊗ is too
large, we will adopt another strategy T⊙. Finally, the total objective function
loss (together with Eq: 9) is shown as following,

Loss = LS + LT + Ld (12)

In this paper, we utilize multi-layer perceptrons in the IDD block. Furthermore,
Tf is regarded as the support set and Tt as the query set in the testing stage.
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Table 1. Classification results(%) on the UP data set with different methods (5
labeled samples from TD).

Class Samples Classification algorithms
SVM 3D-CNN DFSL+NN DFSL+SVM RN-FSC DCFSL CSFF

Asphalt 6631 60.00 73.22 73.27 75.33 73.98 83.53 92.68±4.11
Meadows 18549 49.21 73.25 78.20 86.03 88.80 86.20 84.55±9.93
Gravel 2099 57.19 32.53 51.94 51.33 52.07 67.72 71.60±9.83
Trees 3064 79.49 86.30 85.95 90.91 90.64 94.26 91.28±2.72
Sheets 1345 90.74 95.35 99.37 97.64 98.94 98.85 99.58±0.43

Bare soil 5029 62.93 38.16 61.70 55.62 51.70 70.88 72.00±13.18
Bitumen 1330 80.96 43.82 69.75 71.09 71.86 79.92 82.61±9.81
Bricks 3682 62.55 49.24 53.34 55.46 58.62 65.92 85.66±3.57
Shadow 947 99.71 94.22 97.13 91.74 98.90 98.60 93.08±5.91

OA 59.60 62.50 73.44 76.84 77.89 82.39 84.88±3.33
AA 71.42 65.12 74.52 75.02 76.17 82.88 85.89±2.10

Kappa 50.77 52.67 65.77 69.61 70.83 77.06 80.40±3.88

3 Experimental Results

To prove the validity of the proposed framework CSFF, two publicly available
HSI data sets were collected. The details of the two data sets are listed as follow-
ing. Several state-of-the-art classification methods are adopted for comparison
algorithms, SVM, 3D-CNN [9], DFSL+NN [11], DFSL+SVM [11], relation net-
work (RN-FSC) [3], and DCFSL [10].

Source domain: the Chikusei data contains 19 classes and has 128 bands in
the spectral range from 363 nm to 1018 nm. It has 2517×2335 pixels and a
spatial resolution of 2.5m. Target domain: the University of Pavia data(UP) has
9 classes and 103 spectral bands in the spectral range from 430 nm to 860nm.
The size of the image is 610×340 pixels with a spatial resolution is 1.3m per
pixel.

3.1 Experimental Setting and Performance

In CSFF, 9×9 neighborhoods are selected as the spatial size of the input data.
The learning rate is set to 0.001 and the number of training iterations is 10000
with being trained via Adam optimizer. For each meta-task of C-way K-shot in
episodic training, C is set to the same number of classes as in TD. K for SD FSL
and TD FSL is set to 1 in FSL-based experiments. In addition, the number of
the query samples in Q is set to 19 to evaluate the learned classifier. Note that
SVM and 3D-CNN only utilize the few-shot data set from the TD can to train a
classifier. Furthermore, 5 labeled samples are randomly selected from each class
of TD for FSL, and the data Tf is augmented by adding random Gaussian noise
to the current known samples.

Table 1 reports the performance of all methods with overall accuracy (OA%),
average accuracy (AA%), and kappa coefficients (Kappa%) in TD. Compared
with SVM and 3D-CNN [9], several other FSL-based methods, including the
proposed CSFF, provide over 9% improvement in both OA and AA. It indicates
that FSL methods trained with meta-learning ideas in SD can better address the
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problem of few labeled samples in TD. Compared with DFSL+NN(SVM)[11]
and RN-FSC[3] methods (without domain adaptation), DCFSL[10] and CSFF
increased Kappa by 6.23% to 14.63%, which demonstrates that domain adapta-
tion is essential. Furthermore, compared with the DCFSL [10] that only focuses
on local features, the classification accuracy of CSFF is slightly lower than that
of DCFSL for a few classes (i.e., Meadows, Trees and Shadow), which may be
explained by the fact that the experimental UP HSI was taken during a period
of lush green vegetation, in which some of the trees and pasture are similar in
visual color. At the same time, some trees, shadows, and meadows overlap each
other in the spatial distribution. Both of them can trigger serious spectral con-
fusion. However, due to the transformer block can integrate non-local sample
information, CSFF performs significantly better than DCFSL on non-vegetation
classes. In particular, spectral shifts are significantly mitigated in some classes
to enhance the classification performance, such as the 3-th class (Gravel), 6-th
class (Bare soil), and 8-th class (Bricks) in the UP.

4 Conclusions

In this article, Combining Spatial-spectral Features for Hyperspectral Image
Few-shot Classification (CSFF) has been proposed to address the issues of HSI
classification with only a few labeled samples. It attempts to overcome the ge-
ometric constraints of the convolution kernel and reduce the negative effect of
domain shift on FSL. Specifically, the spatial attention and spectral query mod-
ules are designed to extract and aggregate information from non-local samples in
SD and TD. In addition, the framework is trained by episodes to learn a metric
space, and a conditional domain adaptation strategy is utilized to achieve domain
distribution alignment. The experimental results demonstrate that the proposed
method has presented significant improvements over the state-of-the-art mod-
els. In the future, we will consider integrating local and non-local information
(e.g., topological structure) and designing a multi-constrained domain distri-
bution discrepancy metric to further reduce the data distribution differences.
Meanwhile, a deep combined domain adaptation network will be constructed to
achieve accurate classification of cross-domain hyperspectral images with a few
labeled instances.
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