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Abstract. For deception jamming countermeasures of multistatic radar systems, 

existing intelligent anti-jamming methods require sufficient training samples 

and a large amount of labelled data, but it is difficult to obtain abundant labelled 

radar echo data in realistic operational environments. A deception jamming dis-

crimination method based on semi-supervised learning with generative adver-

sarial networks is proposed to specifically handle the situation of inadequate la-

belled samples. In this way, a small amount of labelled data and a large amount 

of unlabelled data obtained from radar stations, together with pseudo-labelled 

data generated by the generator are used to train the discriminator to improve 

the performance of jamming discrimination and the robustness of the discrimi-

nation network by exploiting the game between the generator and the discrimi-

nator. Simulation results show that, the proposed method can achieve the same 

performance using less than 10% of the labelled data of existing algorithms. It 

reduces data requirements and enhances operational capabilities, which is better 

suited to real-world battlefield environments. 

Keywords: Multistatic radar systems, semi-supervised learning, anti-jamming 

method, signal processing. 

1 Introduction 

The electromagnetic environment of modern warfare is becoming more and more 

complex [1]-[2]. The information collected by the multistatic radar system is shared 

and fused in the fusion centre, which pushes for better identification and suppression 

of the interference and greatly improve the system's systematic capability [3]-[4].  

Existing intelligent anti-jamming methods have exploited deep neural networks to 

multistatic radar jamming countermeasures, Liu proposed an anti-jamming method 

based on convolutional neural network, which effectively reduces the impact of noise 

and pulse number. At the same time, the influence of radar distribution on jamming 

discrimination under non-ideal conditions is mitigated [5]. Luo proposed a semi-

supervised deception jamming discrimination method based on convolutional deep 

belief network, which lowers data requirements and enhances operational capability 

[6]. All these methods use various deep neural networks to address the technical bot-
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tlenecks of the traditional echo signal processing process, such as insufficient feature 

extraction, single discrimination method, and information loss in the conversion pro-

cess, in order to achieve effective discrimination of false targets.  

However, the existing methods have common flaws that they all rely highly on big 

data volume and the performance is poor under non-ideal conditions. However, in the 

reality, it is difficult to collect the labelled data of the target and the interference dis-

crimination cannot perform well when the SNR or sampling volume is low. To ad-

dress the above issues, this paper focuses on constructing an end-to-end generative 

adversarial network and introduces a semi-supervised neural network training model 

from the perspective of learning the feature representation of the true distribution of 

the echo data. In this paper, a small amount of labelled data, a large amount of unla-

belled data, and a large amount of pseudo-labelled data generated by the generator are 

used to train the discriminator. We borrow the idea from min-max game to help dis-

criminate between the generator and the discriminator, the advantage of which is bet-

ter performance of deceptive interference discrimination and robustness of the dis-

crimination network, as well as less dependence of the network on the amount of data 

and improved effectiveness of small sample interference discrimination. 

2 Signal Model 

2.1 The Construction of A Multistatic Radar System Model 

A multistatic radar system is composed with M  transmitters and N  receivers, and 

the transmitting signals of each transmitter are orthogonal to each other, as shown in 

Fig.1. Supposing that the transmitting signal of the m-th transmitting station is 

( ),mS t q , 1, ,m M=  , where t denotes the fast time domain, 0 t T   ( T stands for 

the length of time for a pulse repetition interval (PRI)), while q denotes the slow time 

domain, 1,2,  ,q Q=  ( Q equals the quantity of pulse repetition interval). Owing to 

the orthogonality of transmit signal, the target signal of a total of MN transmit-receive 

channel can be obtained by a matched filter set consisting of each transmit signal, 

where the channel consisting of the m-th transmitter to the n-th receiver ( 1, ,n N=  ) 

is labelled as Channel-mn, the target echo signal of which is defined as ( ),mnr t q . 
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Fig. 1. Target detection channels of the multistatic radar system 
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Before the joint process of echo signals from each radar station in a multistatic radar, 

time and phase should be synchronized. The method of time synchronization is based 

on the unified time with reference to the multistatic radar, while phase synchroniza-

tion is based on grid search to capture the target echoes from different radar stations 

in the same spatial resolution cell (SRC) for correlation identification. 

Assuming that the target is equipped with a self-defense jammer, the received sig-

nal at each receiver ( ),nr t q  is the superposition of the real target signal ( ),mS t q , the 

jamming signal ( ),mJ t q  and the noise signal ( ),mN t q : 

 ( ) ( ) ( ) ( ) ( )
1 1

, , , , ,
M M

n mn m m m

m m

r t q r t q S t q J t q N t q
= =

= = + +     (1) 

Assuming that the real target obeys Swerlling-II undulation, assume 
q

n  is the 

complex amplitude of the real target echo in the q-th PRI of the n-th receiver station, 

where 
q

n  is a Gaussian distribution random variable with mean 0 and variance 
2

n .

 For jamming signal, complex amplitudes in different pulse repetition intervals obey 

the same distribution and are independent of each other. Determined by the modula-

tion method of the jammer, path attenuation and other factors, assume 
q

n  is the com-

plex amplitude of the false target captured by the n-th receiver. The noise signal is 

mutually independent complex Gaussian white signal ( ) ( )2, 0,n nkN t q CN  , 

where
2

nk  denotes the variance of n-th echo’s noise power.  

2.2 Generation of Echo Data 

After pulse compression of the echo by each receiver, considering the amount of 

sample data obtained by a single sampling of one PRI is too low to accurately de-

scribe the target characteristics, the slow time domain is detected to get multiple con-

secutive PRIs in the corresponding distance unit of the target, and use them as the 

signal vector of each radar station. 

For unknown target echo, the sample data of real target is a complex Gaussian 

random vector with complex amplitudes component independent of each other, 
T

1 2, , , , ,n q Q

n n n n    =  ξ , where ( )20,n

k Q QCN  ξ I  and  
T

denotes matrix 

transposition operation. The sample data of the active false target is an unknown ran-

dom vector 
T

1 2, , , , ,n q Q

n n n n    =  ξ , which is related to the amplitude modula-

tion parameters of the interfering signal. With the noise existing, what can be obtained 

from the received signal is slow time complex envelope sequences mixed with noise 

sequence, where ( )20,n

nk Q QCN  N I  is noise signal sequence. 

Finally, the slow time complex envelope sequences detected by receivers are sent 

into the multi-hidden layer network model to obtain the fusion centre’s multidimen-

sional and essential feature differences among different receivers for discrimination 

between true and false targets.  
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3 The Discrimination Network Based on SGAN 

The training process of existing intelligent jamming adversarial methods relies on a 

large amount of labelled data. However, in real battlefield environments, the labelled 

data available for network training is limited. Therefore, this paper considers the con-

struction of a semi-supervised generative adversarial network for jamming discrimi-

nation to improve battlefield operational performance. 

In this paper, a SGAN model is constructed to obtain the multidimensional fea-

tures of the received signals thus completing the discrimination of false targets. In 

semi-supervised GAN, we propagate data positively from the input layer to the output 

layer, and adjust the network structure parameters according to the error between the 

output and the input by a certain cost function, so that the output signal gradually 

approaches the label signal.  

The input data of SGAN is made up with a combination of labelled real echoes 

and unlabelled generated data. For true target echoes, the data from different radar 

stations are linked horizontally after pre-processing (slow time complex envelope 

sampling) to build a data block and use it as a labelled input. The number of receiving 

stations N is set to be 4. Considering each input data block consists of N*Q complex 

amplitude data, to facilitate the training of the network under different PRI conditions, 

the data block is then repeatedly expanded to a 40*40 data block, which is sent for 

supervised training. 

The SGAN network uses a large amount of unsupervised data generated by the 

generator to enhance the discriminator's performance, in order to meet the output 

dimension matching the real echoes of a 40*40 block of data. Deconvolution is an 

inverse process of convolution (conv), thus scaling up the input dimension, where the 

input data of the generator is 5*5 noisy data passing through 3 inverse convolution 

layers, as is shown in Table I and Fig. 2. The output dimension is a simulated target 

echo signal of 40*40. The generator generates echo data that is highly similar to the 

real data and uses the unlabelled data to assist in the training of the discriminator. At 

the same time, the discriminator improves the imitation capability of the generator, 

which in turn improves the SGAN echo discrimination performance.  
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Fig. 2. Jamming Discrimination Network based on SGAN in Fusion Center 
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Table 1. The structure of SGAN 

Generator 

Type Number Filter Step 

Conv 1 256 3*3 2 

Conv 2 128 3*3 2 

Conv 3 64 3*3 2 

Discriminator 

Type Number Filter Step 

Deconv 1 64 4*4 2 

Deconv 2 128 4*4 2 

Deconv 3 256 4*4 2 

fc 1 Number 6400 

fc 2 Number 2 

C_Model Activation Function softmax 

D_Model Activation Function sigmoid 

 

For the discriminator, two output layers are included, one for the unsupervised task 

and the other for the supervised task. They share the same feature extraction layer. 

The feature extraction layers constructed in this paper are 3 convolutional layers, the 

output of each convolutional layer containing a pooling operation with a step size of 

2. The results of the convolutional part are passed into two fully connected layers and 

all outputs are normalized by batch processing. Ultimately, after 5 layers of opera-

tions, multidimensional essential features are extracted from the constructed block of 

data for echo discrimination. There are always two output predictions for each input 

data. One is a real/generated prediction, constructed as a C_model together with a 

feature extraction layer to predict whether the input data is true or false. A sigmoid 

activation function is used in the output layer and optimized using a binary cross en-

tropy loss function. An output for supervised category prediction is constructed to-

gether with a feature extraction layer as D_model to predict the category of a given 

model. A softmax activation function is used in the output layer as well using the 

categorical cross entropy loss function for optimization. Although C_model and 

D_model have different output layers, they share all the feature extraction layers. This 

means that updates to one of the networks will affect both models[7]-[8]. 

During training, the discriminator is trained on the network parameters by the un-

labelled data generated by the generator together with the labelled data captured by 

the radar. The echo data are all simulated, set to a target noise ratio TNR range of -3 

to 18 dB (TNR for real targets is the signal noise ratio SNR and TNR for fake targets 

is the interference noise ratio JNR) and PRI range of 4 to 24. Each TNR and PRI gen-

erates a large amount of training data for each of the target and interference respec-

tively according to the same other parameters. 10% of the data is used for C_model 

network training, and the remaining 90% of the unlabelled data is used for D_model 

network training along with the pseudo-echo data generated by generators. 

During testing, each TNR and PRI generates 1000 sets of training samples for each 

of the target and interference respectively according to the same other parameters. 

The test samples are fed into the trained SGAN model using a multi-dimensional 

essential feature vector for interference discrimination. 
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4 Simulation 

4.1 Simulation Analysis 

All methods are tested on the same computer, Intel(R) Xeon(R) Gold 5218 CPU @ 

2.30GHz 64-core, GeForce RTX 2080 TI. In contrast with the experiments in the 

references, the results and analysis are as follows. 

Table 2. Discrimination probability of different algorithms 

Methods 
Traditional 

method 
DNN CNN CDBN SGAN 

Discrimination 
probability 

75.4% 98.9% 99.2% 91.3% 99.1% 

 

When PRI is set to be 12 and SNR is set to be 6, the simulation result is listed in Ta-

ble II. The jamming discrimination effect based on SGAN with 10% labelled date, it 

is significantly better than the discrimination method using only single feature of 

manually extracted (the Traditional method [9]), indicating that SGAN network can 

extract the multi-dimensional essential features of signal data and jointly apply to the 

discrimination of real and false targets. Meanwhile, compared to DNNs [10] and 

CNNs [5] using 20,000 labelled data for training, SGAN's interference discrimination 

accuracy remains essentially the same, but with a 90% reduction in the number of 

labels required. Meanwhile, in contrast to semi-supervised CDBN’s [6] 91.3% dis-

crimination accuracy with the same labelled data, the SGAN interference discrimina-

tion algorithm’s discrimination performance improves a lot.  

 

 

Fig. 3. Acc curves with different labeled data volumes 

With the same parameter settings as above, Fig. 3 demonstrates the relationship be-

tween accuracy and epoch. SGAN algorithm improves the discrimination probability 

for different ratios of labeled data rapidly, as epoch increases eventually reaching over 

an accuracy higher than 98%. These experiments demonstrate the effectiveness of the 

proposed SGAN interference discrimination network. However, the increase in la-
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belled rate leads to a faster increase in discrimination probability and ultimately a 

steadier result. A 5% label rate is less stable after multiple training rounds due to the 

small number of available labels. A label rate of 10% is able to guarantee a stable 

discrimination probability of greater than 99%, so this paper suggests using more than 

10% of labels for the training of semi-supervised GAN interference discrimination 

networks to reduce the data dependency of the intelligent algorithm while ensuring 

the discrimination performance.  

4.2 Simulation Results with Different PRI 

Other parameters consistent with section 4.1, by varying SNR and PRI, the simulation 

validates the effect of the number of pulses on the false target identification perfor-

mance. The range of TNR is set between -3dB and 18dB, and obtaining the target 

identification probability through the constructed SGAN model at different number of 

pulses, where the number of PRI Q varies from 4 to 20 with a stride of 4. 

 

 

Fig. 4. The effect of the different TNR and PRI 

 

  
                                         (a)                                                                                   (b) 

Fig. 5. The comparison of CNN, CDBN and SGAN. (a) The comparison of jamming discrimi-

nation effects between CNN and SGAN. (b) The comparison of jamming discrimination effects 

between CDBN and SGAN 
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As shown in Fig. 4, as the number of pulses PRI increases, the discrimination proba-

bility improves significantly for that the more samples used for interference discrimi-

nation in each group, the more information the deep neural network can use for refer-

ence, effectively improving the discrimination performance. When the amount of 

information satisfies the discrimination requirements, the discrimination probability 

tends to smooth out and no longer varies with PRI. 

At the same time, as the TNR increases, the discrimination probability increases 

significantly, because the increase of TNR will reduce the influence of noise on the 

echo signal. The network can more easily obtain the essential characteristics of the 

real target or active deceptive interference, thus improving the performance of dis-

crimination. Comparing with the literature [9], the above experiments demonstrate 

that the SGAN interference discrimination algorithm is able to guarantee interference 

discrimination performance under different PRI conditions. 

 

4.3 The Comparison of Different Discrimination Methods 

Compared with CNN jamming discrimination methods under the same condition, Fig. 

5(a) simulation results reveals that the algorithm in this paper with 10% labelled data 

is slightly worse than CNN at low TNR. However, when TNR is greater than 0dB, the 

discrimination probability of the two methods converges and are greater than 99% 

eventually. Also, when the proportion of labelled data is increased to 50%, the SGAN 

discrimination network can significantly outperform the fully supervised CNN dis-

crimination network. The above comparison experiments are sufficient to demonstrate 

that the SGAN network is superior to existing CNN interference discrimination algo-

rithms.  

As shown in Fig. 5(b), the algorithm is able to guarantee a significant improvement 

in discrimination performance with the same label rate compared to the same semi-

supervised CDBN interference discrimination algorithm. This experiment demon-

strates that the SGAN network is a robust interference discrimination method that 

outperforms the CDBN semi-supervised interference discrimination network in dif-

ferent environments. 

5 Conclusion 

A semi-supervised GAN method for jamming discrimination of multi-base radar sys-

tems is put forward in this paper, specifically addressing the drawbacks of insufficient 

labelled samples on  deceptive jamming discrimination network. The network uses a 

small amount of labelled data, a large amount of unlabelled data obtained from reality 

and pseudo-labelled data generated by generators to train the discriminator. The pseu-

do-labelled data reduces the dependence of the interference discrimination network on 

the amount of data, thus improving the robustness and universality of the discrimina-

tion performance under small sample conditions. Simulation results show that the 

method can achieve the same performance as CNN with 10% of the labelled data, 

much better than the performance of CDBN network with the same rate, compared 

with existing artificial intelligence interference identification methods that require 
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tens of thousands of labelled data for network training. At the same time, this method 

significantly outperforms the original CNN interference discrimination method at 

50% of the labelled data. The experiments demonstrate that this method lowers down 

data requirements, enhances the practicality of network construction, and is more 

suitable for real-world battlefield environments. 
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