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Abstract. The brain structures are key indicators to represent the com-
plexity of many cognitive functions, e.g., visual pathways and memory
circuits. Inspired by the topology of the mouse brain provided by the
Allen Brain Institute, whereby 213 brain regions are linked as a mesoscale
connectome, we propose a mouse-brain topology improved evolutionary
neural network (MT-ENN). The MT-ENN model incorporates parts of
biologically plausible brain structures after hierarchical clustering, and
then is tuned by the evolutionary learning algorithm. Two benchmark
Open-AI Mujoco tasks were used to test the performance of the proposed
algorithm, and the experimental results showed that the proposed MT-
ENN was not only sparser (containing only 61% of all connections), but
also performed better than other algorithms, including the ENN using a
random network, standard long-short-term memory (LSTM), and multi-
layer perception (MLP). We think the biologically plausible structures
might contribute more to the further development of artificial neural
networks.

Keywords: Evolutionary neural network · Reinforcement learning · Mouse-
brain topology.

1 Introduction

The mammalian brain has been studied deeply in the past decades. The brain
structures are key indicators for representing the learned knowledge from mil-
lions of years of evolution in different animals. Like many genetic evolutionary
algorithms in machine learning, the biological brain is the best evolutionary out-
come in a natural organism. However, it is still an open question whether new
network structures copied from natural brains could contribute to the develop-
ment of artificial neural networks, whereby the design of structures is usually
considered more important than neuronal types. At present, the whole mouse
brain has been widely examined, which contains around 213 brain regions, and
the sparseness of the entire brain is about 36% [5]. Many types of research have
been given on the topology of the mouse brain, and one of the most important
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motivations is copying it to the conventional artificial neural networks (ANNs)
for higher performance, or more energy efficiency [6].

Inspired by the biological networks and evolutionary algorithms, we propose a
mouse-brain topology improved evolutionary neural network (MT-ENN), which
incorporates biologically plausible brain structures and an evolutionary learning
algorithm for efficient learning on two benchmark reinforcement learning (RL)
tasks. The dynamic neurons contain 1st-order dynamics of membrane potentials
supported by some additional key dynamic parameters. Then these neurons are
connected by the copied topology from the biological brain and tuned by a global
evolutionary algorithm. The two open-AI gym tasks, e.g., MountainCar-v2 and
Half-cheetah-v2, are selected to verify the proposed MT-ENN. In addition, we
also made a three-dimensional (3D) visual reconstruction of the entire network
topology after network learning, which is convenient for identifying the con-
nectome of different brain regions and might inspire back to the neuroscience
researchers and answer the question that why some topology or brain regions
are important for reinforcement learning.

2 Related works

A new continuous-time differential learning was proposed for RL tasks containing
continuous dynamics [1]. Then, a hybrid learning framework was proposed by
extending this new learning rule with a multi-scale dynamic coding [9]. The
topology-focused algorithm was proposed by using a sub-network to replace a
previous global network and achieved comparable performance, named as the
lottery ticket hypothesis. A biological network using C.elegans topology was
proposed to achieve higher performance than algorithms using random networks
[3], which showed the efficiency of the biological topology.

These algorithms all performed well on RL tasks. However, they seldom use
complicated network topology. One of the main motivations of this paper is that
the further incorporation of network topologies, especially from smarter animals
than C.elegans, will strengthen intelligent algorithms on cognitive functions to
handle RL tasks. In addition, we think reducing the size of fully connected
networks for better interpretability is at least as important as performance, which
will also be further discussed in the following sections.

3 Methods

3.1 The Allen Mouse Brain Atlas

The Allen Institute for Brain Science has provided the public with the whole
mouse brain atlas, containing neuronal types and network topology from some
standard mouse brains. The network topology contains the directional mapping
of 213 brain regions, which are further visualized by Houdini software for a better
understanding. The overall connectome of the mouse brain is shown in Fig. 1A,
where the 213× 213 matrix is the connectomes between 213 brain regions. The
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connectome is sparse, indicating that the bottom-up and top-down connections
are hierarchical and highly related to cognitive functions.

Fig. 1. The generation procedure of brain-inspired topology. (A) The mesoscale con-
nectome of the Allen mouse brain atlas [5]. (B) An example of clustered topology from
213 brain regions. (C,D) The hierarchically clustered brain regions. The 213 mouse
brain regions are split into 71 clusters at a cutting height of 0.8 (C) and the partition
density (D). (E) The connectedness of different communities (clusters). (F) Schematic
diagram of the connection of 46 brain regions in the 3D brain. (G) Schematic diagram
of the connection of 46 brain regions in 2D visualization.

3.2 The clustered hierarchical circuits

The connectivity matrix of the mouse brain atlas was then clustered into sub-
clusters for easier analysis. It is a general challenge to find a proper clustering
algorithm that could filter out trivial branches but leave out the key functional
topology. A special hierarchical clustering method, i.e., Tanimoto coefficient al-
gorithm, is selected for this clustering. The algorithm could generate multiple
clusters given a directional topology. The detailed procedure of the clustering
algorithm could be concluded as the following equations:
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S(eik, ejk) =
ai · aj

| ai |2 + | aj |2 −ai · aj
, (1)

We divide 213 regions of the mouse brain into 71 clusters at a cutting height
of 0.8 (relative value designed by experience) based on the links or connections
between each two brain regions in both directions as well as weights or intensities
of projections (Fig. 1C,D).

3.3 The neuron model

Here, we briefly describe the neuron and synapse model to design neural circuit
dynamics [2] by using the following equation.

V̇i(t) = [IL +
∑

IC(t)]/Cm

IL(t) = ωL[EL − Vpost(t)]
IC(t) = ωC [EC − Vpost(t)]g(t)
g(t) = 1/[1 + exp(−σ(Vpre(t)− µ))]

, (2)

where Cm is the membrane capacitance of the neuron, IC and IL are the input
currents of the chemical channel and leakage channel, respectively. EC and EL

are the corresponding reversal potentials. Vpost(t) and Vpre(t) are the membrane
potentials of post-synapses and pre-synapses, respectively. g(t) is the membrane
conductance, defining whether a synapse is excitatory or inhibitory by EC . ωC

and ωL stand for the conductances of the chemical channel and leakage channel.
These equations show that the algorithms have a strong ability to model the
time series reaching any time step.

3.4 Coping the biological circuits to artificial ones

According to the definition of these 213 brain regions in the Allen mouse brain
atlas, we reorganized them into sensation, hidden, and motor brain regions,
according to structural projection and physiological function. We also annotate
the biological functions of the brain regions at each level of the communities of
interest, which makes it possible to compare the hierarchical composition and
functional circuitry of the community or groups of interest with the combination
of the atlas.

Hence, some different types of topology are selected for the next-step simu-
lation, including the whole 213 brain regions (directly copied from the biological
atlas) and some other sub-brain topology (selected from 31, 46, and 49 brain
regions based on the hierarchical clustering), which will be further discussed in
the experimental sections.

3.5 The network learning

In this paper, a simple search-based algorithm is selected for network reinforce-
ment learning [3], whereby the agent learns to make decisions after observing the
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current state in an environment and then receives a timely or delayed reward.
A fitness function is designed to collect these rewards and guide the direction
of the random search. At the beginning of learning, the agent makes random
decisions for exploration, and a good decision for a lower fitness function will be
kept by saving the current parameters and focusing more on the exploitation.
The search-based algorithm ARS can train a network by repeating two training
strategies until convergence. First, Vn values are obtained by calculating θ with
fitness function f . Then the adaptive search algorithm calculates E(Rθ) by the
average value of the worst K samples among the Vn values.

In addition, two benchmark Mujoco RL tasks are used to test the perfor-
mance of the proposed algorithm. One important motivation is that the RL
tasks are more related to the biological agent’s learning procedure, which makes
decisions after observation by maximizing its predicted rewards.

4 Experiments

4.1 The clustered brain regions

The 213 brain regions were clustered into multiple graphs, and parts of criti-
cal brain regions shared by different communities were recorded in Fig. 1B. It
represents a sparse connection between different brain regions, congruent to the
biological brain.

The community-61, community-65, and community-71 in 71 clusters were se-
lected for subsequent experiments, given the cutting height of 0.8. It is impressive
that the number of nodes in the largest connectedness in all clusters is less than
60 (Fig. 1E), indicating the network is very sparse. The community-61 contains
46 brain region nodes, which is called Circuit-46 (which means the clustering
containing 46 brain regions). Similar to it, we give the names of community-
65 and community-71 as Circuit-49 and Circuit-31, respectively. These circuits
obtained after clustering will be used for the next-step RL experiments.

4.2 The network topology from biological mouse brain

The Circuit-46 is visualized in a standard 3D mouse brain common coordinate
framework (CCF) from the Allen Brain Institute (Fig. 1F), where each point
represents a brain region, and each link represents excitatory (blue ones) or
inhibitory (red ones) connections between different regions (the total is 819 con-
nections). We set 657 excitatory, and 162 inhibitory connections for Circuit-46,
inspired by the biological discovery [8]. The connectivity strength lower than
0.05 was omitted and only left for those larger than the threshold for the ease of
visualization (i.e., only 207 excitatory connections and 60 inhibitory connections
were left after filtering).

In addition, the sensory, hidden, and motor brain regions are visualized in
a 2D figure, including 8 sensory areas (red inverted triangles), 36 hidden areas
(blue circles), and 2 motor areas (yellow triangles), as shown that in Fig. 1G.
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4.3 Results with Circuit-46 and random networks

We conducted an experiment where random connections were given to a MT-
ENN with the same number of neurons and synapses as those in the Circuit-46.
The synapses’ initial polarity was set randomly (excitatory or inhibitory). Only
feedforward connections were given from sensory to hidden neurons, same as
those in the hidden to motor neurons. The random circuits were then trained
on RL tasks whose performances are reported in Fig. 2A,D. We observed that
the performance of MT-ENN using mouse brain topology was higher than that
using random connections, and the performance would be more significant for a
simple (e.g., MountainCar-v2) instead of hard (e.g., Half-cheetah-v2) tasks. This
result on two benchmark RL tasks demonstrates the usefulness of the biological
structures.

Fig. 2. Performance of different algorithms on reinforcement learning tasks. (A,D) Per-
formance of the MT-ENN using Circuit-46 and random structures on the MountainCar-
v2 and Half-cheetah-v2 tasks, respectively. (B,E) Same to those in (A,D) but for the
MT-ENNs using Circuit-31, Circuit-46, and Circuit-49. (C,F) Same to those in (A,D)
but for the MT-ENNs using Circuit-46, random connections, MLP, and LSTM.

4.4 Result comparison with different algorithms

We conducted a series of experiments to test the influence of the number of
brain regions, including MT-ENNs using Circuit-31, Circuit-46, and Circuit-49,
respectively. As shown in Fig. 2B,E, the MT-ENN using Circuit-46 is better than
those using the other two structures. This result confirmed our hypothesis that
Circuit-46 could be a winning ticket, containing better performance and lower
sparsity. Hence, we selected Circuit-46 as MT-ENN’s main biological structure
basis for the subsequent experiments.
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We further tested the performance of our MT-ENN with other SOTA algo-
rithms, including long short-term memory (LSTM) and multi-layer perception
(MLP). We keep the comparisons fair by using the same number of neurons,
linear mapping functions, and learning algorithms. Other key parameters were
also kept learnable. We chose the same number of cells (neurons) for the LSTM
and MLP networks, equal to the size of the MT-ENN. The LSTM and MLP
networks are fully connected, and the MT-ENN achieves 61% network sparsity.
The result is shown in Table 1 and Fig. 2C,F.

As shown in Table 1, for the MountainCar-v2 task, our MT-ENN reached the
score (mean reward) of 99.14, higher than other algorithms tuned with backprop-
agation. Given a more complex task, e.g., the Half-cheetah-v2 task, our MT-ENN
reached a much higher performance (2,468 scores) than the state-of-the-art MLP
(1,601 scores) and LSTM (1,009 scores). These results showed the efficiency of
the biologically plausible brain circuits.

Table 1. The performance comparisons of the proposed MT-ENN with other SOTA
algorithms on MountainCar-v2 and Half-cheetah-v2 tasks.

Tasks Architectures Learning rules Performance Sparsity

MountainCar-v2

LSTM [4] BPTT 98.98±0.59 0%
MLP [7] PPO 95.5±1.5 0%
Random Search 49.59±49.59 61%

MT-ENN (Ours) Search 99.14±0.12 61%

Half-cheetah-v2

LTSM [4] BPTT 1009.51±641.95 0%
MLP [7] PPO 1601.05±506.50 0%
Random Search 1917.40±819.39 61%

MT-ENN (Ours) Search 2468.18±962.36 61%

5 Discussion

Selectively copying biological structures into artificial neural networks is a short-
cut for efficiently designing neural networks. In this paper, 213 mouse brain re-
gions were clustered and analyzed to generate some sub-graph topology for the
network design of MT-ENN. The 3D morphology helps us learn more about the
neuron types [11], sparseness, and connectome of different brain regions during
analysis. The comparisons of different sub-graph topologies will be extended for
further discussion [10]. Combined with the biological understandings, these clus-
tered results will help us select more topology that satisfies biological plausibility
and efficiency. The experimental results have verified our hypothesis that mouse
brain topology can improve evolutionary neural networks for efficient RL. In this
paper, the brain region structure obtained by the joint action of mouse brain
clustering and biological trust is better than the commonly used LSTM and
MLP in RL tasks. In addition, the mouse brain structure also showed advan-
tages in terms of sparsity. In the future, more biologically credible principles can
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be borrowed from biological networks and applied to neural networks to achieve
better integration of neuroscience and artificial intelligence and promote each
other.
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