
HAL Id: hal-04666422
https://hal.science/hal-04666422v1

Submitted on 1 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

YOLO-Head: An Input Adaptive Neural Network
Preprocessor

Biao Hou, Shenxuan Zhou, Xiaoyu Chen, Heng Jiang, Hao Wang

To cite this version:
Biao Hou, Shenxuan Zhou, Xiaoyu Chen, Heng Jiang, Hao Wang. YOLO-Head: An Input Adaptive
Neural Network Preprocessor. 5th International Conference on Intelligence Science (ICIS), Oct 2022,
Xi’an, China. pp.344-351, �10.1007/978-3-031-14903-0_37�. �hal-04666422�

https://hal.science/hal-04666422v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

YOLO-Head:An Input Adaptive Neural Network
Preprocessor

Biao Hou, Shenxuan Zhou, Xiaoyu Chen, Heng Jiang, and Hao Wang

Xidian University, Xi’an 710071, China
sxzhou@stu.xidian.edu.cn

Abstract. Over the past decade, object detectors have demonstrated
remarkable performance in various applications, such as traffic monitor-
ing, customer tracking, and surveillance. Although advanced lightweight
models have been proved to have ultra real-time speed on GPU, in edge-
based video analytics system, edge servers are usually embedded devices
with NPU which support general neural network operators. When we
implemented deep learning models on embedded devices, images usu-
ally need to be preprocessed to the network input size. This leads to
the common target detectors not being end-to-end. Image preprocessing
is not the key problem of real-time inferencing on devices with high-
performance CPU, but the same algorithm will bring noticeable delay on
embedded devices. To overcome this, we designed YOLO-Head, a module
that can handle the input of arbitrarily size according to general neural
network operators. Experiment results show that YOLO-Head achieves
significant (60.89%) speed improvement when 1080p image zooms to 640
x 640. Furthermore, YOLOv5-S detector with adaptive head can effec-
tively solve the delay problem due to the image resize. The frame rate
improves to 35.2 FPS, approximately 6 times faster than the convectional
method in video stream processing on RK3588.

Keywords: Video analytics, Deep neural networks, Object detection

1 Introduction

Video cameras are pervasive in today’s society, with cities and organizations
steadily increasing the size and reach of their deployments.[1] Key to video
stream processing applications has been recent advances in deep learning which
has obtained high accuracy in multiple scenes for object detection and recog-
nition. In a typical real-time video analytics pipeline[2], a camera streams live
video to cloud servers, which immediately run object detection models (e.g.,
YOLO[3]) to answer user queries about that video. Cloud-based video analytics
requires a lot of computing resources and network resources. The end-to-end
frame rate needs to be more than 30fps for real-time video streams in that case
the network delay of information transmission can not be ignored.

Therefore, a large number of embedded devices on the edge side are added
in edge-based video analytics paradigm[7]. They are deployed near mobile de-
vices, with small network delay. These devices are equipped with NPU instead

2 B. Hou et al.

of GPU, which execute neural operators quite efficiently as well. On the neural
network arithmetic unit, most general neural network computing modules have
been implemented, but special types of algorithms are difficult to implement
such as image resize. On the other side, it is usually necessary for preprocessor
to adjust the data size from image input to neural network[4]. It is mush slower
than neural network computing modules.

Image scaling is usually accomplished by interpolations. In digital signal pro-
cessing, it can be defined as the convolution of the continuous impulse response of
a discrete image signal with a two-dimensional reconstructed filter. Continuous
images can be reconstructed with appropriate window functions, e.g., rectangular
windows(nearest neighbor interpolation), triangular functions(linear interpola-
tion)[9]. The algorithm based on region mainly uses mean filter, which replaces
the original pixel value with the average of all the pixels in the template(area
interpolation). Although different scale algorithms employ different strategies,
their speeds on ARM-based processors can not meet the real-time requirements
as shown in figure 2.

+ +

image size
network size

down sampling padding

channel

concat
 padding w padding h

CPU

network size

NPU or GPU

1

1

2

object detector

YOLO-HEAD

Conv
sampling

Padw
Padh

Fig. 1. In the popular target detection framework, it is usually necessary to use the
interpolation algorithm in the CPU to scale the input image to the network input,
as shown in way 1. In embedded devices, the relevant algorithms for scaling are quite
time-consuming. We propose an adaptive head to complete data preprocessing making
data flow always on NPU or GPU as shown in way 2.

One of the existing methods is to do two-dimensional image operation by de-
signing special integrated circuits, while it is complicated and difficult to imple-
ment for ordinary developers[5, 8]. From the perspective of software, we propose
an algorithm instead of resize, which can be widely used in embedded develop-
ment boards with NPU. We propose the adaptive head module solving the delay
of its preprocessing, which is the key point to promote the efficiency of detector.
Our contributions can be summarized as follows:

YOLO-Head:An Input Adaptive Neural Network Preprocessor 3

• Convolution sampling unit We use convolution as adaptive down sam-
pling unit, which has very excellent performance on NPU. With the comple-
ment unit composed of concat operation, arbitrarily scale can be completed.
When the 1080p image is scaled to 640x640, the image preprocessing time
is decreased to 60.89% by YOLO-Head.

• Target Detector General Component YOLO-Head can be added to
most target detectors to form an input adaptive model. Experiments on
YOLOv5-S show that our proposed method improves video stream process-
ing speed by approximately six times.

800 960 1120 1280 1440 1600 1760 1920
2

4

8

16

32

64

 Linear cortex A72
 Area cortex A72
 Linear i5
 Area i5
 Linear rga
 YOLO-Head(Ours)

In
fe

re
nc

e
tim

e
(m

s)

Image size (pixel)

Fig. 2. Zoom the picture from image size to 640x640 pixels. The proposed YOLO-Head
outperforms a range of state-of-the-art algorithms.

2 Method

2.1 YOLO-Head

Generally speaking, in the real-time video analytics pipelines, the image size in
the video stream is fixed depends on cameras. With the development of photo-
electric imaging, image size is generally more than 1080x1920 pixels. Due to the
computing resources of devices, the input of deep learning network can not be as
large as the video size. Therefore, it is necessary to resize the image to the net-
work before inference. Figure 2 illustrates that the time required for this resize
operation on personal computer (i5-6300HQ CPU) is less than 8ms. On high-
performance processors resize algorithm is less affected by the origin size, but
it will bring serious delay on embedded device. In particular, in some divisible
sizes, different resize algorithms will be equivalent to certain algorithm.

According to the documentation of opencv[6], it is most precise to shrink the
image using area interpolation, while in the case of magnifying cubic interpola-
tion works best. Cubicis replaced by a slightly inferior linear algorithm because

4 B. Hou et al.

of its slow speed. In this paper, if there is no additional explanation, the resizing
algorithm based on area interpolation is discussed.

The overall structure of YOLO-Head is shown in Figure 1. It is equivalent
to area interpolation and is designed to replace resize operation. Common op-
erators such as conv(convolution) or pooling(averagepooling) can be used when
down sampling data. Figure 3 is a convolution sampling operator to double the
down sampling. Average pooling works the same as convolution sampling oper-
ator. Conv is selected as the down sampling unit in YOLO-Head, which is more
efficient on RK3588. The lower sampling coefficient is:

scale = min

(
netw
imgw

,
neth
imgh

)
(1)

1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1/9

Fig. 3. Conv operator accomplish down sampling.

Resize

Top-left alignment

Padh

Padw

Fig. 4. Resize by aligning the upper left corner when imgw is not a multiple of netw(or
imgh is not a multiple of neth).

In order to further reduce the computation of the model, the top-left edge
alignment is adopted to handle the case where 1scale is not an integer, which
has little impact on post-processing and is shown in Figure 4. A compensation
module is added to YOLO-Head to solve the problem of misalignment. The
compensation values for height and width is{

padh = neth − imgh
scale

padw = netw − imgw
scale

(2)

After adding the adaptive head in front of the detector, the procedure of
resizing the image to the network size will be omitted. Arbitrary images can be

YOLO-Head:An Input Adaptive Neural Network Preprocessor 5

directly transmitted to the network. In addition, the implementation of resize
algorithm on embedded devices may have slight differences, which may reduce
the accuracy of model. The improved detector maintains the consistency of the
algorithm on the inferencing side and training side.

2.2 Pipeline

Base detector. The classic YOLOv5-S is selected as our default object detec-
tor. It inherits and carries forward YOLO series with several tricks, e.g., adaptive
anchor, strong data argumentations, advanced network structure and outstand-
ing loss function. Considering the handware implementation of NPU operator,
we have modified the large step maxpooling operator, slice operator and acti-
vation function in Focus module. Max pooling layers with small steps in series
instead of large steps are used because Max pooling with large steps on NPU
takes a long time. The slice operator is also poorly implemented on some RKNN
devices. We replaced it by a conv with a special weight distribution. The above
two optimization strategies speed up without changing the runtime results. Since
the convolution, Relu and BN layers can be combined on NPU devices, but spe-
cial activation functions such as Silu are not supported, all activation functions
are replaced with Relu. In addition, the data post-processing part of the model
has serious quantification accuracy problems and has to be removed from the
YOLO model.

Adaptive head. During the translational deployment of the target detector,
the input adaptive network designed by the input parameters of the task will
added in front of the YOLO detector. Deployment details of YOLO-Head is
depicted in Algorithm 1. Experiments show that the concat operator used in the
adaptive head often runs on the CPU, which greatly increases the time consumed.
Therefore, the specific deployment scheme is to use a simplified YOLO-Head
which has no concat operations after image compensated to an integer multiple
of the network input. Our strategy will not affect the results of YOLO-Head.

Train & Inference. The dataset, which is taken with the same camera, has
the same picture size. According to equation 1 and 2, our adaptive head is
constructed and added to the YOLO detector. Since the weight data of adaptive
network is constant, it will not affect the training results. In inferencing, our
improved YOLOv5-S model can complete end-to-end feature extraction only
by inputting source image. The real-time target prediction frames are obtained
when data decoding and NMS are performed after feature results are transmitted
to CPU.

6 B. Hou et al.

Algorithm 1 Adaptive head deployment process
Input: A bitmap Im of size Imgw × Imgh
Output: A bitmap Imresize of size Netw ×Neth

// Calculate Construction parameters scale and (padh, padw)
1: Update scale based on Equation (1)
2: Update padh and padw based on Equation (2)

// scaling in the original ratio
3: for c in output_channels do
4: sample_unit = Conv2d(input_c=1,output_c=1,kernal=scale)
5: Imresize[c] = sample_unit(Im[c])

// two-dimensional padding
6: tmph = Imgh

scale
, tmpw = Imgw

scale

7: if padw! = 0 then
8: padding = zeros1×3×tmph×padw

9: concat(Imresize, padding)
10: if padh! = 0 then
11: padding = zeros1×3×Netw×padw

12: concat(Imresize, padding)

3 Experiments

3.1 Settings

Datasets. The experiment was carried out on our own infrared autopilot dataset
including diverse urban outdoor scenes in Xi’an city. It has high frame rate(30
FPS) and high resolution(1080x1920 pixels) sensor data. The dataset is divided
into two parts: training set and verification set. The verification set has 5 videos,
with a total of 42378 frames.

Implementation details. If not specified, we use YOLOv5-S as our default
detector. The network input is 640x640 pixels while the picture size in the video
stream is 1080x1920 pixels. We trained on 4x3090ti GPUs and got weight file.
Because only RKNN model can be loaded on RK3588, we convert the weight file
into RKNN model through onnx transition. In inferencing evaluation, we run on
a single NPU of RK3588, including data post-processing and NMS time.

3.2 Evaluation for YOLO-Head

According to the deployment strategy of YOLO-Head in Algorithm 1, only the
image size of an integer multiple of the network input size needs to be calculated
during evaluation. The image of 1280x1280 pixels uses our input adaptive module
resize to 640x640, which takes an average of 2.6ms, while the image of 1920x1920
pixels takes 4.9ms. 1920x1920 images use area interpolation on cortex A72 needs
29.1ms. The run time improvement comes from making full use of the parallel
computing power of NPU and reduce the operation of CPU. Our method shows
strong competitiveness on the embedded platform and solves the problem that
the image preprocessing is time-consuming in the mobile terminal.

YOLO-Head:An Input Adaptive Neural Network Preprocessor 7

3.3 Application in object detector

The YOLOv5 source model is struggling when inferencing on RK3588. Table
1 shows after adopting the NPU optimization strategy, the modified YOLOv5
model has a slight loss in accuracy (reduced by 4.4%), but the running time of
a single frame is reduced by 60.89%. Although the single frame operation result
is acceptable, in real-time stream processing, image preprocessing and detection
result post-processing bring serious delay.

Table 2 shows after using our adaptive input module, the FPS is increased
from the original 5.78 frame/s to 37.59, which effectively reduces the delay caused
by preprocessing. Our YOLO-Head can achieve the performance similar to that
of RGA(a CPU-independent graphics acceleration engine RGA on RK3399/3588,
with basic operations of 2D images). When there is no RGA on the general
embedded device, our method can be used to replace it equivalently on NPU.
When the error loss is allowed, YOLO-Head can be easily added before the
trained model, which eliminates the step of retraining the deep learning model.

Table 1. YOLOv5-s single frame inference results on RK3588(single core).

Model Small
stride Slice Relu YOLO-Head Inference

time(ms) AP

YOLOv5-S

165.31 87.6%
✓ ✓ 64.65 87.1%
✓ ✓ ✓ 45.18 82.4%
✓ ✓ ✓ ✓ 49.07 82.3%

Table 2. Real time video stream processing on RK3588(single core).

SYSTEM YOLO-Head RGA
(linear) FPS AP

YOLOv5-S
(NPU modify)

5.78 82.4%
✓ 37.59 81.9%

✓ 35.20 82.3%

4 Conclusion

This paper presents an adaptive head module called YOLO-Head to handle the
time-consuming problem of scaling on embedded devices. Our adaptive head is
composed of general neural network operators, which is simple, fast and accu-
rate. The idea can be widely applied to the deep learning model. Our initial
experiments are encouraging and effectively solves the time delay problem of
image preprocessing on embedded devices.

8 B. Hou et al.

5 Acknowledgements

This work was supported in part by the National Natural Science Foundation
of China under Grant 62171347, 61877066, 61771379, 62001355, 62101405; the
Foundation for Innovative Research Groups of the National Natural Science
Foundation of China under Grant 61621005; the Key Research and Develop-
ment Program in Shaanxi Province of China under Grant 2019ZDLGY03-05
and 2021ZDLGY02-08; the Science and Technology Program in Xi’an of China
under Grant XA2020-RGZNTJ-0021; 111 Project.

References

1. Li, Y., Padmanabhan, A., Zhao, P., Wang, Y., Xu, G., Ravi, N: Reducto: On-
Camera Filtering for Resource-Efficient Real-Time Video Analytics. In:Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer
communication, pp. 359-376 (2020)

2. Can 30,000 Cameras Help Solve Chicago’s Crime
Problem?,https://www.nytimes.com/2018/05/26/us/chicago-police-
surveillance.html.

3. Redmon, J., Farhadi, A: YOLO9000: Better, Faster, Stronger. In CVPR (2017)
4. Redmon, J., Farhadi, A: Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767 (2018)
5. Open source warehouse for acceleration engine RGA,https://github.com/rockchip-

linux/linux-rga. Accessed 26 June 2021
6. OpenCV: Geometric Image Transformations, https://docs.opencv.org/4.x/d9/df8/

tutorial_root.html. Accessed 10 May 2022
7. Chen, J., Ran X.: Deep learning with edge computing: A review. Proceedings of the

IEEE. 107(8): 1655-1674 (2019)
8. Wang, P., Cao Y., Ding, M., Zhang Z., Qu J.: A SoC collaborative accelerated design

method of image scaling algorithm. Journal of Beijing University of Aeronautics and
Astronautics. 45(02):333-339 (2019)

9. Huang, Y.: Research on Image Scaling Algorithms. Master,HeFei University of Tech-
nology (2010)

