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Abstract. Whole-heart segmentation aims to delineate substructures of the
heart, which plays an important role in the diagnosis and treatment of
cardiovascular diseases. However, segmenting each substructure quickly and
accurately is arduous due to traditional manual segmentation being extremely
slow, the cost is high and the segmentation accuracy depends on experts' level.
Inspired by deep learning, we propose a weakly supervised CNN method to
effectively segment the substructure from CT cardiac images. First, we utilize
the deformable image registration technology to generate pseudo masks with
high confidence for whole heart datasets, which can provide rich feature
information to distinguish foreground and background. Meanwhile, the ground
truth is used to cut patches containing more heart substructures so that the
network can obtain more information about heart substructures. Then, we
developed a novel loss function based on the weighted cross-entropy to enforce
CNN to pay more attention to the tricky voxels nearby the boundary of cardiac
substructures during the training stage. The proposed method was evaluated on
MICCAI2017 whole heart CT datasets, and the overall segmentation score of
91.30%.
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1 Introduction

The whole heart segmentation is essential for the diagnosis of heart disease. However,
the efficiency is limited due to both the annotation of experts and the subjective
judgments of doctors. Meanwhile, the segmentation results can only be annotated by
doctors and experts, which makes medical images available for research much less
than other image datasets. In recent years, deep learning has achieved great success in
computer vision and artificial intelligence, which enables the auto segmentation of the
substructure of the heart from Computed Tomography (CT) [3]. U-net [9] and Fully
Convolutional Network [7] have greatly improved medical image segmentation in
terms of accuracy and execution speed, but there exist gradient vanishing and gradient
explosion problems when the depth of the network increases. To tackle this problem,
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Lee et al. [10] added depth supervision mechanism into the network, effectively
alleviate the problem caused by gradient. Yang et al. [1] applied a deep supervision
mechanism to the whole heart segmentation, through integrating DICE loss and cross-
entropy loss into the network, they obtained excellent segmentation results. Based on
this work, Ye et al. [5] replaced the weighted cross-entropy loss function with the
Focal loss function, which makes the model focus on the indistinguishable boundary
and improves the Dice accuracy.
For medical images, they contain more background voxels than foreground voxels.

Thus, it suffers from the problem of high misclassification. To overcome these
limitations, some segmentation frameworks [6] [8] are put forward in recent years.
These frameworks, known as cascade networks, are divided into two steps: (1) the
first step is to locate the target and simplify the task; (2) the second step is
segmentation. Among these frameworks, Payer et al. [8] performed this method on
whole heart images and won first place in the MICCAI2017 Whole Heart
Segmentation Challenge. However, these frameworks have the disadvantage of
excessive or redundant use of parameters, such as repeated extraction of underlying
features. Oktay et al. [11] proposed the plug-play Attention Gates (AGS) model,
which makes the network automatically focus on relevant areas through training,
effectively overcoming the shortcomings of CNNs to some extent. Wu et al. [4] have
proposed a WSL (Weakly supervised learning)-based method for brain lesion
segmentation. Through weak supervision learning, the network can automatically
select the relevant region to suppress the irrelevant image information.
In this paper, we proposed a novel 3D CNN combining WSL learning for cardiac

segmentation. We firstly used deformable image registration (DIR) [2] technology to
generate pseudo masks of all the CT images for producing weakly supervised
information. Then, we utilized that weakly supervised information to guide a novel
3D U-net learning. Furthermore, we developed a novel loss function based on the
weighted cross-entropy to enforce CNN to pay more attention to the tricky voxels
nearby the boundary of cardiac substructures during the training stage.
The main contributions of this paper are as follows:
(1) We applied traditional medical image registration technology to generate weak-

ly supervised information as the prior knowledge for guiding deep network learning,
which not only helps distinguish background and foreground organs but also can be as
a data augmentation way avoiding overfitting problems.
(2) We developed an improved weighted cross-entropy loss for enforcing the deep

network to pay attention to the missegmented voxels and alleviate the class imbal-
ance problem.

2 Method

2.1 Pseudo Masks

The inputs of the network consist of two parts: one is the original CT image, while
another is the pseudo masks that format the one-hot after the background is removed.
For the generated pseudo masks, relevant image regions can be automatically
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selected. Although pseudo masks are not able to segment accurately, they can provide
relevant positional features of background and foreground for the region, and
effectively extract heart substructure from background. This paper utilized DIR
(deformable image registration)[2] technology to generate pseudo masks for medical
images. Set �� �=1

� as N training samples, �� �=1

�
as M test samples. There are

two training methods, called Model_N-1 and Model_1, as shown in Fig. 2. For a
certain training sample �� , the other N-1 training samples are respectively used as
atlas to generate pseudo masks for �� . In the Model_N-1, we concatenate �� with its
N-1 pseudo masks respectively and put them into deep network for training. In the
Model_1, the N-1 pseudo masks of �� are firstly majority voting to get a final pseudo
mask, then we concatenate it with �� and put them into deep network for training.
Thus, similarly, there are two ways to generate test results, called IND and MV, as
shown in Fig. 2. IND model is that each training sample is used as atlas to
respectively generate pseudo mask for test sample ��. At testing stage, we concatenate
each of N pseudo masks with �� and pass through the deep network. Then we can
obtain N segmentation results for test sample �� . Finally, we use majority voting
method to generate the final segmentation result. MV model is that N pseudo masks
of �� are majority voting to obtain a final pseudo mask, the it is concatenated with ��
and put into the deep network for generating a segmentation result.

Fig. 1. The framework of the proposed Deep U-net network. In input layer, we concatenated
the generated pseudo masks with the cropped patches and placed them into the network for
training. The details of pseudo masks generation and patch cropping will be introduced in
Section 2.1 and 3.2.
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Fig. 2. Two training methods (left) of pseudo masks, two test methods (left) of pseudo masks.

2.2 Deep U-Net Network

In order to better train the deep network, we adopt the method of deep supervision,
which increases the output path in different network layers and shortened the
backpropagation path of gradient flow. In this paper, three deep supervised branches
are introduced in the decoding stage. The output of each branch is the same as that of
the main branch, in Fig. 1, out1, out2, and out3 are the three deep supervised
branches, and the final total loss is the sum of the losses of each branch and the main
branch.

2.3 Improved Weighted Cross-Entropy Loss

The commonly used weighted cross-entropy loss does not perform well for voxels
that are difficult to segment. In this paper, we added predicted false negative (FN) and
true positive (TP) voxels losses into the weighted cross-entropy to formula the total
loss. As shown in Equation (1).

�������� �, �, � =− �
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Where ����
� is 0 or 1, where 1 indicates that the current voxel belongs to class c but is

predicted to be of another class. ����
� is 0 or 1, where 1 indicates that the current voxel

is predicted to be class c, but is actually something else. ��
� (0.005 < ��

� < 0.995) is
the probability that the current voxel is class c, and the range is limited to prevent the
excessive loss, which is not conducive to network convergence. �� is the weight
coefficient of class c, which can be used to alleviate class imbalance.

MDSC (Multi-Class Dice Similarity Coefficient) based loss function to balance the
training for multiple classes[1]. This loss can be defined as:
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Where N is the number of voxels; ��
� is a binary value, where 1 indicates the voxels

belong to class c, 0 stands for other categories; ��
� (0 < ��

� < 1) denotes the
probability that the current voxels belong to class c.

After and are added into the network, the new loss function can be defined as
follows:

����_� �, � = 100������ + ��������� (3)

Where d and w are the weights of different branches, x represents the output of the
deep supervised branch, the final loss function, called the Improved Weighted Cross-
Entropy (IWCE), is:

������ = ����_1 0.2,0.3 + ����_2 0.4,0.6 + ����_3 0.8,0.9 + ����_4 1.0,1.0 (4)



5

3 Experimental And Results

3.1 Datasets and Implementation Details

We evaluated our approach with the MICCAI2017 whole-heart CT datasets, which
contains 20 publicly available CT data [1]. We randomly selected 10 samples as
training samples and the rest as test sets. These data were collected in the actual
clinical environment, which was variable and contained some images of poor quality,
so the robustness of the algorithm in this paper remains to be verified. Each sample is
stacked with multiple 2D images of 512 ∗ 512 size. All training data were normalized
to zero mean and unit variance. Adam is used to optimize network parameters, the
number of iterations was 35,000 epochs [5], the batch size was 2, and the initial
learning rate was 0.001.

3.2 Patch Selection

Due to the particularity of heart medical images, and the 7 substructures voxels in
whole heart CT image account for less. When the random cropped size is 96, the
background occupied more than half of the training data, which is not conducive to
the better learning prospects of the network. To tackle this problem, we adopted an
effective cropped method, which utilized ground truth to crop the patches with less
background. For the randomly cropped patches, we calculated the proportion � of the
background voxels in the whole patch. If the background proportion � is less than �
(�=0.5), this patch will be called the available patch and sent into the network for
training, otherwise, the patch will be re-cropped.

3.3 Experimental Results

We took deeply-Supervised U-net [1] as the baseline network, Multi-Depth Fusion [5]
is an improvement of the baseline network and Dice score as performance evaluation.
In order to the efficiency of the proposed method in this paper, we conducted a series
of ablation experiments.

The experimental results of cardiac substructure, pulmonary artery (PUA),
ascending aorta (ASA), right ventricular blood chamber (RVBC), right atrial blood
chamber (RABC), left ventricular blood chamber (LVBC), left atrial blood chamber
(LABC), and myocardium of the left ventricle (MLV) were shown in Table 1. Except
for the PUA (Dice score about 82%~86%), we can see that all the methods achieved
relatively accurate substructures’ segmentation for the whole heart. The reason could
be that the shape and appearance of the PUA always has greater variability.

Compared with the baseline method, the proposed the four methods with the
pseudo masks can produce better segmentation results in almost substructures of the
whole heart. And all the proposed four methods have comparable performance with
the advanced Multi-Depth Fusion method. Although, these regions of MLV (has the
epi-cardial surface and the endocardial surface of the left ventricular) and RABC have
much larger variation in terms of shapes and heterogeneous intensity of the myocar-
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dium and the blood. All the proposed methods outperform the two compared meth-
ods on the MLV and RABC. Particularly, “MV+Model_1” achieves the best results
on MLV, RVBC, ASA, and PUA.

Table 1. Segmentation accuracy (%) of the state-of-the-art segmentation methods and the
proposed four methods. “IND + Model_N-1” indicated that it used Model_N-1 at training stage
and IND model at testing stage; “ IND+Model_1” indicated that it used Model_1 at training
stage and IND model at testing stage; “MV+Model_N-1” indicated that it used Model_N-1 at
training stage and MV model at testing stage; “MV+Model_1” indicated that it used Model_1
at training stage and MV model at testing stage. The Bold Font in the proposed four methods
means it outperform the Baseline and Multi-Depth Fusion methods. The values with underline
mean that they are the best results in the six methods.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean
Baseline 87.6 90.5 92.1 86.0 88.6 94.8 82.6 88.93
Multi-Depth Fusion 88.9 91.6 94.4 87.8 89.5 96.7 86.2 90.73
IND+Model_N-1 89.9 90.7 94.2 89.6 89.4 93.0 87.0 90.56
IND+Model_1 90.2 90.8 94.4 89.6 89.8 94.0 85.7 90.68
MV+Model_N-1 89.5 91.1 94.2 90.0 89.9 96.5 86.3 91.14
MV+Model_1 89.8 91.3 94.1 89.9 90.0 96.9 86.9 91.30

3.4 Ablation Experiments

We verify the effectiveness of the proposed IWCE LOSS, patch selection, and pseudo
mask modules in the proposed model. We used the best model “MV+Model_1” as the
basic model “Model”. Then, we ablate or replace each proposed module, respectively.
Other experimental conditions are the same as the Table 1.

Table 2 shows the experimental results. We can see that the segmentation results of
six substructures become worse after the model without using the Patch Selection
module. It proved that the Patch Selection module can select meaningful image patch
conducive to the better learning prospects of the network. The third row is the best
model using traditional Cross-Entropy loss without using the proposed IWCE loss.
We can see that the segmentation results of the almost substructures are slightly worse
than the best model. It proved that the proposed loss function takes the class
imbalance problem into account and perform well for the voxels, like PUA, that are
difficult to segment. The forth row is the model without using pseudo mask
information for training, we can see that it achieved comparable performance on five
substructures except ASA (reduce ~1%) and PUA (reduce ~3%). One reason is that
the pseudo masks generated by simple DIR have lower quality which introduced very
limit information for guiding deep network learning on some substructures that are
easy to segment. Other reason is that the pseudo masks can provide some useful
information, such as location information, for the PUA segmentation.
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Table 2. Ablation experiment for the effect of the modules in the proposed MV+model_1
model. “PS” refers to Patch Selection modules; “IWCE” refers to the proposed mixing loss;
“pseudo mask ” refers to the proposed pseudo mask label modules. “↓ ” or “↑ ” denote the
increase or decrease of the Dice score (%) compared with the values of “ MV+Model_1 ”
method.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean
MV+Model_1 89.8 91.3 94.1 89.9 90.0 96.9 86.9 91.30
Model without PS 89.2↓ 90.9↓ 92.5↓ 89.9 90.2↑ 96.5↓ 86.4↓ 90.90↓
Model without
IWCE

89.5↓ 91.0↓ 94.1 89.6↓ 89.1↓ 96.2↓ 85.6↓ 90.82↓

Model without
pseudo mask

90.2↑ 90.6↓ 94.1 89.7↓ 90.1↑ 95.9↓ 83.9↓ 90.75↓

Table 3. Generality of the proposed modules. “Baseline” method is the deeply-Supervised U-
net [1]; “Baseline PS” is the combination of the baseline method and Patch selection module;
“Baseline IWCE” refers to the baseline method whose lose function is replaced for the IWCE
loss function; “Baseline Pseudo mask” refers to the baseline method integrates the pseudo mask
information during training stage. “↓” or “↑” denote the increase or decrease of the Dice score
compared with the values of “Baseline” method.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean
Baseline 87.6 90.5 92.1 86.0 88.6 94.8 82.6 88.93
Baseline PS 89.91↑ 90.14↓ 94.08↑ 89.39↑ 89.98↑ 94.68↓ 84.69↑ 90.41↑
Baseline IWCE 88.70↑ 89.89↓ 93.66↑ 88.86↑ 89.99↑ 96.57↑ 85.74↑ 90.49↑
Baseline Pseudo
mask

89.29↑ 90.48↓ 93.16↑ 89.71↑ 89.64↑ 96.57↑ 86.63↑ 90.78↑

3.5 Generality Experiments

In order to analysis and discuss the generality of the proposed modules including the
Patch Selection, IWCE loss, and pseudo masks, we use the deeply-Supervised U-net
[1] as the baseline segmentation network and combine it with the proposed modules
respectively. Table 3 shows the experimental results. We can see that the baseline
method with each proposed module has a positive effective on most substructures
except LABC. Especially, the performance of the baseline with pseudo mask method
has significant improvement on PUA. It further proved that the pseudo masks can
provide certain prior information which is useful for the hard to segment problem.

4 Conclusion

In this paper, a weakly supervised segmentation method based on CNN is proposed
for whole-heart segmentation. We first generate pseudo masks using traditional
deformable image registration methods, then perform them on whole-heart data for
training. The information provided by pseudo masks is used to distinguish foreground
and background. In order to obtain better experimental results, we improved the
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weighted cross-entropy loss function and mined the training samples to solve the
problems of fuzzy boundary and class imbalance. We performed validation on the
MICCAI 2017 whole-heart CT dataset, and the results demonstrate that our method
can effectively improve the accuracy of heart segmentation.
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