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Gaussian Balanced Sampling for End-to-End pedestrian
detector

Yang Yang1, Jun Li1, Biao Hou1[0000−0002−1996−186X], Bo Ren1, Xiaoming Jiang1,
Jinkai Cheng1, and Licheng Jiao1[0000−0003−3354−9617]

Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi, China

Abstract. Recently, NMS-free detector has become a research hotspot to elimi-
nate negative influences, while NMS-based detector mis-suppress objects in crowd
scene. However, NMS-free may face the problem of sample imbalance that af-
fects convergence. In this paper, Gaussian distribution is adopted to fit the dis-
tribution of the targets so that samples can be chosen according to it. And we
propose Gaussian Balance Sampling strategy to balance positive and negative
samples actively. Besides, a simple loss function, PDLoss, is proposed to elim-
inate duplicated matches on the label assignment procedure and increase train-
ing speed. In addition, by a novel Non-target Response Suppression method, the
designed network can focus more on hard samples and improve model perfor-
mance. With these techniques, the model achieved a competitive performance on
the CrowdHuman dataset.

Keywords: Gaussian Balanced Sampling · End-to-end · NMS-free · Pedestrian
Detection · PDLoss.

1 Introduction

In the one-to-one NMS-free network, each target has only one positive sample. These
positive samples need to be the most representative points for targets as Wang explored
in [14]. In addition, too many negative samples will make the model difficult to focus on
positive samples because negative samples will contribute more to gradient backpropa-
gation. Therefore, it is necessary to select an appropriate number of negative samples.
For the selection of negative samples, OneNet[12] and DeFCN[14] directly select all
the points as negative except the positive ones. Most of the areas that belong to the
background will bring too many easy negative samples.

Another noteworthy problem is that when two targets are highly overlapped, they
could match the same sample point simultaneously. However, the sample points can
only keep one target generally. For the one-to-one assignment model, the situation gets
worse due to the other target getting discarded straightly because each target has only
one positive sample. Some works like DeFCN[14], adopt Hungarian matching to elim-
inate duplicated matching. But the some of the positive samples may be non-optimal
and the matching algorithm cost lots of time.

To solve these problems, we propose a sample selection method and duplicated
matching elimination strategy. And our method has achieved excellent performance on
the CrowdHuman[10] dataset.
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Fig. 1: The mapping of the extracted features onto the original image. The mapping is
somewhat smooth. The response value is larger near the target and smaller far away.

2 Approach

2.1 Gaussian Negative Sampling

We found in previous work that in the inference results of the one-to-one matching
model, the confidence score is centered on the positive sample point with the highest
score, and approximately decays with a Gaussian distribution. Therefore, we assume
that the representative strength of the target feature also conforms to this distribution.
The feature response of targets gets high in the keypoint and gradually decreases to the
outward. Therefore, a two-dimensional Gaussian model is employed to represent the
distribution of features:
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where x, y are the coordinate positions. For simplicity, we regard x and y as inde-
pendent of each other. Then the formula can be simplified to:
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The mean values µ1, µ2 of Gaussian distribution are the coordinates of positive
sample points xp, yp. And the variance values σ1, σ2 of Gaussian distribution are set as
half the length h and half the width w of the bounding box. We fit the distribution for
each target and stack them. Thus, the response of features on the original input image I
can be described.

We introduce an additional factor to normalize the values of gaussian distribution
for different density of targets.So we set λ to 1/N i

o. N i
o is the number of boxes that are

overlapped with the box i.
Since the response graph with all targets is obtained, the positive samples can be

chosen as positions with high distribution response. For the selection of negative sam-
ples, samples can be directly selected as the area with the response larger than a certain
threshold.
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(a) (b) (c) (d)

Fig. 2: The matching result of positive sample points and the final detection.

2.2 PD Loss

In the process of label assignment, there is a case that two different targets match
the same sample point simultaneously. Each sample point can only match one tar-
get, so repeated matching will lead to lose one of the targets. After our verification,
in OneNet[12], it actually has the circumstance that two targets match the same sample
at the same time, and one of them is discarded directly. This possibility may be rela-
tively small since we only select one positive sample and there are more other samples
to choose from, we have no reason to discard it. When the target becomes denser and
denser, this risk will further expand, and we cannot ignore it at this time. In addition,
we find that the overlapping of sample points will also lead to confusion when learning
target features, which will affect the convergence speed.

DeFCN[14] utilizes Hungarian algorithm[5] to eliminate duplication, but its training
convergence speed is too slow, which greatly increases the cost. Therefore, we hope to
find a more elegant and effiecnt method. Inspired by Repulsion loss[15], we design a
loss function to prevent duplication, called PDLoss:

Lp = λp

n∑
i

n∑
j

ˆdist (3)

where ˆdist is the inverse distance between match points:

ˆdist =
1

k
× Sigmoid(µ− |xi − xj |)

|xi − xj |+ ϵ

|xi−xj |
(4)

where |xi − xj | represents the pixel distance between two matching points . k is
a constant set to 0.5. When two targets overlap, the distance is 0, so we need to limit
them to 1/k to prevent overflow. Without duplicated matching, the loss still exists in a
certain range µ. This will make the distance between the close matching sample points
as far as possible so as to obtain more discriminative features.ϵ set to prevent formulas
from causing calculation errors if the denominator is 0. With a simple loss function, we
achieve Hungarian matching with almost no increase in training time. At the same time,
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the samples of different targets are kept as far away as possible to avoid false detection
caused by the similarity of close-range features.

2.3 Non-target Response Suppression

The non-target response suppression mainly includes two parts, one is about the loss
function in training, the other is about the score weighting in inference. In front, we
select the sample points according to the Gaussian distribution. Among these sample
points, the one near the center is more representative. The negative samples close to
the positive sample points are difficult to distinguish and should receive more attention;
while the samples that are far away maybe belong to the background and relatively
easy to distinguish, so we can pay less attention to them. Therefore, we use Gaussian
distribution matrix to weigh the loss of each sample point:

Lw = f̂(xs)Lreg, xs ∈ S (5)

where S is all the selected samples. This method is very similar to the attention
mechanism.

3 Experiments

Our experiments are implemented by PyTorch on a server with 8 NVIDIA Tesla V100
and 32G memory. Given that NMS-free’s approach is more competitive in dense sce-
narios, we perform experiments on crowd scene benchmarks to verify the generality of
our methods. We trained every model for 30K iterations on Detectron2[16] with 2 im-
ages per GPU, which is consistent with the experimental setting of the baseline. For the
model, we use ResNet50[4] as our backbone and the initialized weights are pre-trained
on ImageNet[2]. The learning rate is initially set to 0.01 and then decreased by 10 at the
20K and 25K iterations. We use SGD to optimize all the models with a weight decay of
0.0001 and a momentum of 0.9.

3.1 Performance on CrowdHuman dataset

Because the NMS-free network is more competitive in dense scenarios, we verify our
model on the CrowdHuman[10] dataset. Under the same experimental conditions and
ImageNet[2] pre-trained backbone, we compare the performance of our method with
the other two NMS-free networks and the traditional methods on the dataset. All the
models are trained with the same setting: batch size of 16.

From the table??, we can see that our model can achieve a higher recall than the
traditional models. In addition, our method is superior to other one-to-one networks
due to its excellent sampling ratio. To be mentioned, OneNet only experiments on the
COCO dataset in its paper and this result is obtained by our transfer training on the
CrowdHuman dataset. In our experiment, the batch size of OneNet is set to 16, which
is different from its reported 64 batch size. The worse performance of OneNet may be
caused by this.
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Table 1: The Performance of different model on CrowdHuman dataset.
Method AP mMR Recall

RetinaNet[6] 81.7 57.6 88.6
Faster RCNN[8] 84.95 50.49 90.24

Adaptive NMS[7] 84.71 49.73 91.27
PS-RCNN[3] 86.05 - 93.77

FCOS[13] 86.1 55.2 94.3
ATSS[17] 87.1 50.1 94.0
IterDet[9] 88.1 42.2 95.8

CrowdDet[1] 90.3 49.4 -
OneNet[12] 22.7 - -

DeFCN-POTO[14] 88.7 52.0 96.6
Ours 89.3 50.3 97.3

3.2 Ablation Study

Selection of Sampling Threshold. Because we modeled the distribution of features
with Gaussian distribution, we can judge the intensity of features according to the Gaus-
sian response value. In Table ??, the region with Gaussian response value υ > δh has
strong characteristics, which are hard samples. The areas with response value υ below
δl are mainly the background areas because they are outside the box and have low re-
sponse value. According to our experiment, we also tried to select segmented samples.
The area with δh of 0.6 and the area with υ < δl are selected. In this way, our sam-
ples include not only a certain number of hard samples but also a certain number of
easy samples (background). When δl = 0, the segmented sampling degenerates into the
whole sampling.

We find it necessary to provide a certain number of easy samples for the model
because only learning to distinguish the hard samples will lead to unexpected false
detection in the easily divided samples. For the segmented sampling method, although
its performance is lower than that of the whole sampling method. But we found that it
can achieve the highest accuracy in earlier iterations.

Selection of Gaussian radius. Different Gaussian radius can construct different dis-
tributions. Therefore, we explored which radius is the best. As shown in Table ??, the
radius of Gaussian distribution should be as small as possible, but not less than half of
the length and width. Because the distribution value is concentrated on the target due to
a small Gaussian radius, so it is unable to sample some parts of the background. And
for a large radius, it pays too much attention to the background. In this case, we can
solve this problem by changing the sampling threshold.

PDLoss For our PDLoss, we evaluated its speed relative to the Hungarian match.
PDLoss can save up to a tenth of time during training. At the same time, positions
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Table 2: The influence of different sampling range thresholds in Gaussian balanced
sampling. Where 1/r is the reciprocal of radius and δb is the threshold for selecting
the background region (< δl), δh is the threshold for selecting the foreground region
(> δf ). Where “−” means 0. All the results are relative to the difference between our
optimal results in the last line.

Norm 1/r δl δh AP mMR Recall
w/o 4 - 0.9 -3.4 +6.3 -1.8
w/o 4 - 0.64 -2.2 +3.8 +0.1
w/o 4 - 0.62 -1.8 +3.0 -0.2
w/o 2 - 1.1 -3.9 +5.9 -1.5
w/o 2 - 0.7 -0.1 +0.5 -1.3
w/o 2 0.2 1.4 -1.0 +1.4 -0
w/o 2 0.1 1.4 -2.5 +4.2 -2.3
w/o 2 0.2 1.2 -0.6 +0.2 -0.6
w 2 - 0.4 -3.6 +6.4 -0.3
w 2 - 0.2 -1.7 +1.7 -0.1
w 2 - 0.1 89.3 50.3 97.3

of the matched sample points are compared. As shown in Figure 2, the simple max-
imum matching will dominate the loss of targets. Moreover, compared with Hungary
matching, PD loss makes the selected sample points far away from each other, which
helps the model better distinguish different targets. But we also need to limit it, it is easy
to make the matching sample points too biased because the feature has a large offset.
Predicting localization on biased features is no doubt unfriendly for the model. So we
add distance clips to limit the effect of loss, and the results are shown in table??. Within
a certain range, the loss function works and pushes them as far away as possible.

Table 3: The influence of Non-target Response Suppression. In this experiment, we set
δl = 0 and δh = 0.1. Where “w” and “w/o” means using with and without. All the
results are relative to the difference between our optimal results.

Dist-Clip µ AP mMR Recall
w/o - -3.9 +6.2 -0.2
w 10 -1.7 +1.7 +0.2
w 20 89.3 50.3 97.3

As shown in Figure2, (a) is the directly maximum matching method without Hun-
garian matching or our PDLoss. Compared with other methods, it has more missed
detection, although there is no duplicated matching in our example. In fact, it does
not distinguish overlapping targets sufficiently because of repetition. That’s why it
missed some targets. (b) is the method adopted Hungarian matching. The sample points
matched by some targets may be close to each other. This makes the features of the
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matching points closer, resulting in insufficient discrimination. (c) is our PDLoss method
which can make the matching points far away from each other than before, and the dis-
tance loss needs to be limited since the points are too biased shown in (d).

Non-target Response Suppression For the suppression of non-target areas, our main
purpose is using it to eliminate false detection. However, to our surprise, it played a
crucial role instead. When the non-target area suppression is removed, the AP is greatly
reduced as shown in Table 4. This is because the background is easier to distinguish than
the target. Weighted loss makes the network pay more attention to positive samples and
hard samples. This is also consistent with the consensus that more attention should be
paid to hard samples in the traditional one to many methods[11]. In addition, it should
be noted that the distribution values we use to weight need to be normalized, otherwise
gradient explosion will appear soon.

Table 4: The influence of Non-target Response Suppression(NRS). In this experiment,
we set δl = 0 and δh = 0.1. Where µl is the clipped low thresh and non-Norm means
do not normalize Gaussian distribution by density. “w” and “w/o” means using NRS or
not. All the results are relative to the difference between our optimal results.

NRS Method AP mMR Recall
µl

w Softmax -1.4 +0.5 -1.3
w non-Norm - - -

w/o
clip

- -15.2 +18.0 -0.9
w 0.5 -3.1 +4 -0.5
w 0.1 89.3 50.3 97.3

Since our sampling range δh is set to 0.1. Therefore, that we set µl to 0 means no
lower limit for weight in essence. In addition, in order to prevent the gradient explosion,
we also try to use Softmax to normalize the weight. After normalization, the original
high response area will still have a higher value than the low response area. The only
difference between them is that the loss gets smaller after doing softmax. Finally, if we
do not normalize the Gaussian distribution by density and directly multiply it on the
loss, the model will face a great risk of gradient explosion.

4 Conclusion

This paper proposes a balanced sampling method based on Gaussian prior distribution
and the Non-target Response Suppression method, which effectively solves the problem
of positive and negative sample imbalance, and makes the model pay more attention
to hard samples. At the same time, PDLoss can effectively avoid the overlapping and
dropping of target samples. Our end-to-end framework achieves excellent performance
for many of the most advanced NMS detectors and existing NMS-free detectors on the
CrowdHuman dataset.
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