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Abstract. Existing hyperspectral image (HSI) classification methods generally 
use the information in the neighborhood of the samples but seldom utilize the 
regional homogeneity of the ground objects. We propose a two-branch neural 
network based on superpixel segmentation and auxiliary samples (TBN-SPAS) 
for HSI classification. TBN-SPAS uses superpixel segmentation to find samples 
within the superpixel, which have high spatial correlation with the sample to be 
classified. Then TBN-SPAS further selects samples from the samples within the 
superpixel as auxiliary samples, which have high spectral similarities with the 
sample to be classified. Finally, the neighborhood patch of the preprocessed HSI 
and the corresponding sorted auxiliary samples are input into a two-branch neural 
network for feature extraction and classification. TBN-SPAS achieves signifi-
cantly better classification results compared with several state-of-the-art meth-
ods. 

Keywords: Hyperspectral image classification, Superpixel segmentation, Two-
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1 Introduction 

Hyperspectral images (HSIs) have rich spatial and spectral information and can be used 
for the detection or identification of ground objects, so they have been widely used in 
military target identification, geological resource detection, agricultural crop monitor-
ing, archaeological relics restoration and other fields [1][2]. 

In recent years, deep learning techniques have been applied to HSI classification, 
such as stacked autoencoders [3], deep belief networks [4], and convolutional neural 
networks (CNNs) [5][6], etc., among which CNN-based HSI classification methods 
have been the most widely used. The CNN-based methods use the neighborhood block 
of the samples as input, and perform feature extraction through two-dimensional (2D) 
convolution and three-dimensional (3D) convolution. They can extract spatial features, 
spectral features or combined spatial-spectral features from the neighborhood patch, 
which greatly improves the classification accuracy of HSIs. 

Hamida et al. [7] studied the classification effects of different 3D convolutional net-
works on hyperspectral images, and designed a network consisting of 4 layers of 3D 
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convolution and 1 fully connected layer (3DCNN) for feature extraction. The model 
achieved high classification accuracy. Zhong et al. [8] proposed the spectral-spatial re-
sidual network (SSRN). Referring to the residual structure, they designed a spatial fea-
ture extraction module and a spectral feature extraction module with multiple 3D con-
volutional layers, which also achieved high classification accuracy. Roy et al. [9] pro-
posed the hybrid spectral convolutional neural network (HybridSN), which first ex-
tracted spatial spectral features to obtain feature maps by using multiple 3D convolu-
tional layers, and then extracted spatial features from the obtained feature maps by us-
ing 2D convolutional layers, reducing the complexity of the model. 

The above methods achieved good classification results, however, they made more 
use of the spectral features of HSIs and extract spatial-spectral joint features from the 
neighborhood patch of the input samples for classification. In reality, the distribution 
of ground objects is spatially continuous. Especially in HSI images with high spatial 
resolution, ground objects tend to be distributed in a large area with irregular shapes, 
the size of which generally exceeds the range of neighborhood patch. When the classi-
fier uses the neighborhood patch as the input, it can only obtain the information within 
the neighborhood, and the distribution information of the objects beyond the neighbor-
hood is not used. Therefore, some researchers proposed HSI classification methods that 
utilized a wider range of spatial information, such as introducing a wider range of spa-
tial information through superpixel segmentation. 

Superpixel segmentation is a commonly used unsupervised image segmentation 
method that divides adjacent pixels in an image into multiple disjoint regions, called 
superpixels [10]. Pixels belonging to the same superpixel in an image often have similar 
features such as texture, brightness, and color [11]. The purpose of superpixel segmen-
tation is to achieve the following two effects: each superpixel contains only one class 
of objects; the set of superpixel boundaries is a superset of the object boundaries [12]. 

Jiang et al. [13] proposed a superpixel-based principal component analysis (PCA) 
method (SuperPCA) for HSI classification. This method first performed superpixel seg-
mentation on the first principal component of the HSI at different scales, and applied 
PCA method to samples inside the obtained superpixels to reduce the data dimension. 
Then the classifier was trained on the data of each scale, and the final classification 
result was obtained through decision fusion. This method achieved high classification 
accuracy even with limited samples. However, the utilization of neither the superpixel 
segmentation results nor the regional homogeneity of the ground objects was sufficient. 
Samples belonging to the same superpixel have higher distribution consistency in space 
and are more likely to belong to the same class. This fact can provide more auxiliary 
information for HSI classification. Therefore, we propose a two-branch neural network 
based on superpixel segmentation and auxiliary samples (TBN-SPAS) for HSI classi-
fication. TBN-SPAS makes full use of superpixel segmentation and spectral similarities 
to obtain the auxiliary samples that have high spatial correlation and spectral similari-
ties with the sample to be classified, and then uses a two-branch neural network for 
feature extraction and classification. Experimental results on two HSI datasets demon-
strate that TBN-SPAS achieves better classification results compared with several state-
of-the-art methods. 
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2 Proposed method 

2.1 Selection of auxiliary samples 

We first reduce the dimension of the HSI by PCA, and obtain the first principal com-
ponent (FPC) of the HSI. Suppose xi is the sample to be classified. We perform the 
entropy rate superpixel segmentation (ERS) [12] on the FPC, and find samples around 
xi within the obtained superpixels, which can ensure that these samples have high spa-
tial correlation with xi. Since the spatial distribution of ground objects in the HSI may 
be large, the obtained superpixels may contain many samples. To ensure the computa-
tional efficiency and avoid introducing too much redundant information, we further 
select some samples within the superpixel as the final auxiliary samples by measuring 
the spectral similarities between these samples and xi. 

We use the cosine distance to measure the spectral similarities of the samples. For 
other samples in the superpixel where xi is located, we sort them in ascending order 
according to the cosine distances between their spectral vectors and the spectral vector 
of xi, and select a certain number (denoted as m) of samples at the top of the ranking 
list as auxiliary samples, which will be introduced into the process of classification. 

2.2 The structure of TBN-SPAS 

We design a two-branch neural network called TBN-SPAS. The main branch takes the 
preprocessed neighborhood patch of xi as input. The input of the auxiliary branch is the 
2D data composed of m sorted auxiliary samples. The sorted auxiliary samples have 
sequential features that can be learned by the network. 

 

Fig. 1. The structure of the two-branch neural network based on superpixel segmentation and 
auxiliary samples (TBN-SPAS) 

The structure of TBN-SPAS is shown in Fig. 1. The main branch includes three cas-
caded 3D convolutional layers and one 2D convolutional layer, namely Conv3D_1, 
Conv3D_2, Conv3D_3 and Conv2D_1. The auxiliary branch includes three 2D convo-
lutional layers and one fully connected layer, namely Conv2D_2, Conv2D_3, 
Conv2D_4 and FC_1. Three fully connected layers (FC_2, FC_3, and FC_4) are used 
to perform feature fusion on the outputs of the main branch and the auxiliary branch. 
The network layers Conv3D_1, Conv3D_2, Conv3D_3, Conv2D_1, Conv2D_2, 
Conv2D_3, Conv2D_4 and FC_1 are all followed by a BatchNorm layer and a rectified 
linear unit (ReLU) activation layer. The network layers FC_2 and FC_3 are followed 
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by a ReLU activation layer and a Dropout layer with a dropout rate of 0.4. The network 
layer FC_4 is followed by a Softmax function to map the network output to a vector of 
the probability that the sample xi belongs to each class. In the main branch, t represents 
the length of the flattened output of Conv2D_1. The number of output neurons of FC_1 
in the auxiliary branch is set to t. The hyper-parameters in the network are shown in 
Fig. 1. 

3 Implementation process of TBN-MERS 

The overall process of the TBN-SPAS method is as follows. 
An HSI is denoted as  w h bX  and the corresponding label map is denoted as 

w hY , where w h、  are the width and height of the HSI, respectively, and b is the 
number of spectral bands of the HSI. The value of each position ijy  in the label map Y  

is among the set{0,1,2,..., }c  , in which c represents the total number of object classes. 

PCA is applied to X to extract the FPC 1
w h

pcaX , and the values of 1pcaX  are 

scaled to the interval [0,255] . Then ERS is applied to 1pcaX  to obtain the corresponding 

2D segmentation map 1pcaS . 

We standardize the data of each band of X, and denote the preprocessed HSI as X . 

Each sample ix  consists of two parts of data: (1) the neighborhood patch A  p p b

ip  

taken from X , where p  is the length or width of the neighborhood patch, and b  is the 

number of bands of the hyperspectral image; (2) 2D data B m b
ip composed of auxil-

iary samples extracted from superpixels, where m is the number of auxiliary samples. 
We randomly select a certain number of samples from each class to form the training 

set, and draw an equal number of samples from the remaining samples of each class to 
form the validation set. The remaining samples are used as the test set. 

We feed the two parts A
ip  and B

ip  of each sample ix  into the two branches of TBN-

SPAS, and train the network. The model is tested on the verification set every epoch. 
When the classification accuracy of the model on the validation set no longer rises, the 
training is completed. The best model on the validation set is used to predict the classes 
of the samples in test set. 

The network is trained with the cross-entropy loss function: 

 
1

log( )
N c

ij ij
i j

L y p
N

    (1) 

where N  is the number of training samples, c  is the number of classes, and ijp  is the 

probability predicted by the model that the sample ix  belongs to the class j . If sample 

ix  belongs to the class j , the value of ijy  is 1; otherwise, it is 0. 
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4 Experiment and Analysis 

4.1 Experimental settings 

To explore the role of auxiliary branch in TBN-SPAS and verify the performance of 
the proposed TBN-SPAS, we design the following experiments: (1) verification of the 
role of auxiliary branch; (2) comparison with other existing methods. The comparison 
methods used include: 3DCNN [7], SSRN [8], HybridSN [9] and SuperPCA [13]. In-
dian Pines (IP) and Pavia University (PU) datasets [9] are used for the experiments. 
Overall classification accuracy (OA), Average classification accuracy (AA) and Kappa 
coefficient (Kappa) [9] are used to measure the performance of these methods. 

In TBN-SPAS, the number of target superpixels in ERS is set to 800,   (a parameter 

in ERS) is set to 0.5, and the number of auxiliary samples m is set to 8. We randomly 
select 50 samples from each class (10 samples for the class with less than 50 samples) 
to form the training set. We randomly select the same number of samples for each da-
taset as the validation set, and the remaining samples as the test set. The batch size in 
the experiment is set to 32. We use the Stochastic Gradient Descent (SGD) optimizer, 
and set the learning rate to 0.0005. In 3DCNN, SSRN, HybridSN, and TBN-SPAS, the 
patch size of input samples is set to 25×25. The experimental parameters and SuperPCA 
are consistent with those described in the original paper. All experimental data in this 
paper are the average of five runs of each method on the RTX TITAN. 

4.2 The role of auxiliary branch 

We design comparative experiments to verify the effect of auxiliary branch. The com-
parative experiments include: (1) a single-branch network without auxiliary branches 
(marked as SBN-XAB), where only the main branch and the classification part in TBN-
SPAS are used to form a model and the auxiliary branch is deleted; (2) a two-branch 
model with the main and the auxiliary branches, that is, TBN-SPAS. The other hyper-
parameters in the comparative experiments are the same. Table 1 shows the classifica-
tion results of the comparative experiments.  

Table 1. Results of SBN-XAB and TBN-SPAS 

Dataset Metrics SBN-XAB TBN-SPAS 

IP 

OA (%) 93.77 96.56 

AA (%) 97.01 98.34 

Kappa (×100) 92.88 96.05 

PU 

OA (%) 95.54 98.96 

AA (%) 95.21 99.21 

Kappa (×100) 94.09 98.63 

It can be seen in Table 1 that on the IP dataset, compared with the classification 
results of SBN-XAB, TBN-SPAS achieves an OA with 96.56% that is increased by 
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2.79%, an AA with 98.34% that is increased by 1.33%, and a Kappa with 0.9605 that 
is increased by 0.0317. On the PU dataset, compared with the classification results of 
SBN-XAB, TBN-SPAS achieves the values of OA, AA and Kappa with 98.96%, 
99.21% and 0.9863, which are increased by 3.42%, 4.00%, and 0.0454, respectively. 
Such significant improvement demonstrates that the information of auxiliary samples 
is very effective in improving the HSI classification effect. 

4.3 Comparison with existing methods 

We compare TBN-SPAS with four existing methods: 3DCNN [7], SSRN [8], Hy-
bridSN [9] and SuperPCA [13]. 

The experimental results and analysis of the five different methods on the IP and PU 
dataset are as follows. In the following tables, the best values are marked in bold. The 
numbers in parentheses are the standard deviations. 

Table 2. Experimental results of different methods on IP dataset 

Metrics 3DCNN SSRN HybridSN SuperPCA TBN-SPAS 

OA (%) 
82.16 
(1.47) 

88.38 
(1.58) 

93.77 
(1.22) 

95.06 
(1.24) 

96.56 
(0.58) 

AA (%) 
84.47 
(1.58) 

75.06 
(1.07) 

97.01 
(0.55) 

96.70 
(1.00) 

98.34 
(0.26) 

Kappa 
(×100) 

79.72 
(1.65) 

86.73 
(1.79) 

92.88 
(1.38) 

94.32 
(1.42) 

96.05 
(0.67) 

 

(a) (b) (c) (d) (e) (f) 

Fig. 2. The ground-truth label map of IP and the classification result maps of different methods 
(a) Ground-truth (b) 3DCNN (c) SSRN (d) HybridSN (e) SuperPCA (f) TBN-SPAS 

(1) Results and analyses of IP: Table 2 shows the three metrics of the five methods 
on IP. From Table 2, it can be seen that TBN-SPAS achieves an OA of 96.56%, which 
is increased by 14.40%, 8.18%, 2.79%, 1.50% over 3DCNN, SSRN, HybridSN and 
SuperPCA, respectively. TBN-SPAS achieves an AA of 98.34%, which is increased by 
13.87%, 23.28%, 1.33%, 1.64% over 3DCNN, SSRN, HybridSN and SuperPCA, re-
spectively. A higher AA indicates that TBN-SPAS is good at classifying difficult clas-
ses on IP datasets, and also indicates that TBN-SPAS has better generalization. TBN-
SPAS also achieves the best results in terms of Kappa. The standard deviation of each 
metric is low, indicating that TBN-SPAS has better robustness on the IP dataset. Fig. 2 
shows the ground-truth label map of IP and the classification results of different meth-
ods, demonstrating the effectiveness of TBN-SPAS. 
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(2) Results and analyses of PU: Table 3 shows the OA, AA, and Kappa of the five 
different methods on PU. From Table 3, it can be seen that TBN-SPAS achieves an OA 
of 98.96%, an AA of 99.21% and a Kappa of 98.63%. Compared with other comparison 
methods, TBN-SPAS has achieved a great improvement of more than 3% in OA and 
AA, which shows that the introduction of auxiliary samples and the use of two branch 
network are effective. Fig. 3 shows the ground-truth label map of PU and the classifi-
cation results of different methods, which also demonstrates the effectiveness of TBN-
SPAS. 

Table 3. Experimental results of different methods on PU dataset 

Metrics 3DCNN SSRN HybridSN SuperPCA TBN-SPAS 

OA (%) 
88.38 
(0.99) 

95.08 
(1.27) 

95.54 
(0.71) 

93.24 
(0.67) 

98.96 
(0.73) 

AA (%) 
85.32 
(0.94) 

91.51 
(1.00) 

95.21 
(0.70) 

94.42 
(0.37) 

99.21 
(0.18) 

Kappa 
(×100) 

84.69 
(1.25) 

93.47 
(1.66) 

94.09 
(0.94) 

91.10 
(0.85) 

98.63 
(0.96) 

 

(a) (b) (c) (d) (e) (f) 

Fig. 3. The ground-truth label map of PU and the classification result maps of different meth-
ods (a) Ground-truth (b) 3DCNN (c) SSRN (d) HybridSN (e) SuperPCA (f) TBN-SPAS 

5 Conclusions 

We design a two-branch neural network based on superpixel segmentation and auxil-
iary samples (TBN-SPAS) for HSI classification. TBN-SPAS obtains the auxiliary 
samples that have high spatial correlation and spectral similarities with the sample to 
be classified by fully utilizing superpixel segmentation and spectral similarities, which 
are sorted and then input together with the neighborhood patch of the preprocessed HSI 
into a two-branch neural network for further feature extraction and classification. Ex-
perimental results demonstrate that TBN-SPAS achieves significantly better classifica-
tion results compared with several state-of-the-art methods, indicating that the idea of 
selecting auxiliary samples through superpixel segmentation and spectral similarities is 
effective. In the future, we will study more effective way of making use of superpixel 
segmentation. 
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