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Abstract. Remote sensing scene classification (RSSC) has become a hot
and challenging research topic in recent years due to its wide applica-
tions. Due to the development of convolutional neural networks (CNN),
the data-driven CNN-based methods have achieved expressive perfor-
mance in RSSC. However, the lack of labeled remote sensing scene im-
ages in real applications make it difficult to further improve their perfor-
mance of classification. To address this issue, we propose a novel adaptive
category-related pseudo labeling (ACPL) strategy for semi-supervised
scene classification. Specifically, ACPL flexibly adjusts thresholds for d-
ifferent classes at each time step to let pass informative unlabeled data
and their pseudo labels according to the model’s learning status. Mean-
while, our proposed ACPL dose not introduce additional parameters or
computation. We apply ACPL to FixMatch and construct our model
RSMatch. Experimental results on UCM data set have indicated that
our proposed semi-supervised method RSMatch is superior to its several
counterparts for RSSC.

Keywords: Remote sensing scene classification (RSSC) ·Adaptive category-
related pseudo labeling (ACPL) · Semi-supervised method.

1 Introduction

Remote sensing image scene classification (RSSC) plays an important role in a
wide range of applications, such as scene classification, ship detection and change
detection [1–3]. As a basic image understanding work, it has attracted increasing
attention. RSSC aims at automatically assign high-level semantic labels to local
areas of remote sensing images for achieving scene-level classification. Therefore,
the core of RSSC lies in obtaining the discriminative features of high-resolution
remote sensing scenes.

Along with the development of deep learning [10], CNNs, trained on a large
number of labeled data, show powerful feature learning ability. In RSSC commu-
nity, CNNs-based methods gradually occupy the mainstream [4–6]. However, in
? This work was funded in part by the National Natural Science Foundation of China
(No. 62171332) and the Fundamental Research Funds for the Central Universities
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real applications, it is hard and time-consuming to collect and annotate enough
samples of unseen categories for our learning system to retrain while limited
labeled samples and abundant unlabeled samples are relatively easy to obtain.
Thus, a new machine learning technology, semi-supervised learning (SSL) [11],
has been a hot research topic in the last decade. SSL algorithms provide a way
to explore the latent patterns from unlabeled examples and thus improve the
learning performance given a small number of labeled samples.

According to loss function and model design, SSL can be divided into genera-
tive methods, consistency regularization methods, graph-based methods, pseudo-
labeling methods and hybrid methods. In RS community, for generative meth-
ods, Guo et al. [7] propose SAGGAN. A gating unit, a SAG module, and an
Inception V3 branch are introduced into the discriminative network to enhance
the discriminant capability for facilitating semi-supervised classification. For
pseudo-labeling methods, Zhang et al [8] introduced the center loss into a semi-
supervised network (SSCL) by using the unlabeled samples to update centers.
For hybrid methods, a pseudo labeling combined with consistency regularization
is proposed [9] based on EfficientNet [12] (MSMatch) to achieve semi-supervised
classification.

In this paper, based on the recent work, FixMatch [13], we upgrade it by
replacing the fix threshold with an adaptive category-related strategy to obtain
pseudo labels for unlabeled samples for semi-supervised RSSC. This operation is
called ACPL, which takes the learning difficulties of different classes into account
and thus achieves promising classification performance.

The rest of this paper is organized as follows, Section 2 introduces our pro-
posed network in detail, Section 3 exhibits the experimental configurations and
results, and conclusion are summarized in Section 4.

2 Proposed Method

2.1 Preliminary knowledge

Consistency regularization is a simple but effective technique in SSL [11]. With
the introduction of pseudo labeling techniques, the consistency regularization
is converted from `-2 loss [14] to an entropy minimization process [15], which
is more suitable for the classification task. The improved consistency loss with
pseudo labeling can be formulated as:

1
µB

µB∑
i=1

1 (max (p (y |α (ui) )) > τ)H (p̂ (y |α (ui) ) , p (y |α (u1) )) , (1)

where 1 (·) is the indicator function, B is the batch size of labeled data, µ is
the ratio of unlabeled data to labeled data, α is a random data augmentation,
ui denotes a batch of unlabeled data in an iteration, p represents the output
probability of the model, H is cross-entropy, p̂ (y |α (ui) ) is the pseudo label and
τ is the pre-defined threshold, which is used to mask out noisy unlabeled data
that have low prediction confidence.
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In FixMatch[13], weak augmentation operates on unlabeled data to generate
artificial labels, which are then used as the target of strongly-augmented data.
The unsupervised loss term based on consistency regularization between weakly-
augmented and strongly-augmented data can be formulated as:

1
µB

µB∑
i=1

1 (max (p (y |α (ui) )) > τ)H (p̂ (y |α (ui) ) , p (y |υ (ui) )) , (2)

where υ is a strong augmentation function compared with weak augmentation
α.

2.2 Adaptive Class-related Pseudo Labeling

The framework of our proposed RSMatch is exhibited in Fig. 1. The main idea of
our method is to use ACPL algorithm to upgrade the fixed threshold in FixMatch
to adaptive category-related one and thus learns the scenes in RS data set that
are difficult to be recognized better.

Data

Labeled Data

Unlabeled Data

Augmentation

Weak Augmentation

Strong Augmentation

Backbone ACPL

Total Loss
ResNet-18

Supervised loss:

Unsupervised loss:

Labeled data

Unlabeled data

Class C

Class 1

Estimated learning effects 
of each class and thus 

adjust flexible thresholds Class 1

Class C

Step t-1 Step t

Fig. 1. Framework of our proposed RSMatch.

The threshold τ in Eq. 2 is a pre-defined scale, which implicitly forces Fix-
Match treat the learning difficulty of each category in data set as same. However,
different scenes always contain various volume of semantic information for model
to learn. For example, in UCM data set1, “dense residential”, “medium residen-
tial”, and “sparse residential” are difficult for model to recognize them because
of the latent content in these scene images are similar.

To solve the limitation of FixMatch, we propose an adaptive class-related
pseudo labeling strategy (ACPL) to adjust the thresholds according to the mod-
el’s learning status of each class. This operation allows the model to assign the
pseudo labels to different classes at different time steps. Nevertheless, it does
not introduce additional parameters.
1 http://vision.ucmerced.edu/datasets/landuse.html
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Specifically, based on the assumption [13] that when the threshold is high,
the learning effect of a class can be reflected by the number of samples whose
predictions fall into this class and above the threshold, we can dynamically adjust
the threshold according to the learning status estimated on learning effect, which
can be formulated as:

σt (c) =
N∑
i=1

1(max (pt (y |ui )) > τ) · 1 (argmax (pt (y |ui ) = c)) , (3)

where σt (c) reflects the learning effect of class c at time step t. pt (y |ui ) is
the model’s prediction for unlabeled data ui at time step t, and N is the total
number of unlabeled data. After normalizing σt (c) to make its range between 0
to 1, it can be used to scale the fixed threshold τ :

βt (c) =
σt(c)
maxσt

c

, (4)

Tt (c) = βt (c) · τ, (5)

where Tt (c) is the flexible threshold for class c at time step t.
Note that because of the confirmation bias caused by the parameter ini-

tialization, the model may predict most unlabeled samples into a certain class
mistakenly at this stage. Therefore, a warm-up operation is introduced to Eq. 5
as:

βt (c) =
σt(c)

max

{
max

c
σt,N−

∑C
c=1 σt(c)

} , (6)

where C is the number of categories per iteration. N −
∑C
c=1 σt (c) can be re-

garded as the number of unlabeled data that have not been used. This ensures
that at the beginning of the training, all estimated learning effects gradually rise
from 0 until most unlabeled data participate in model training.

In addition to the issue we discussed above that will affect the performance
of the model, another problem may contribute to an unstable model. In Eq. 5,
the flexible threshold depends on the normalized estimated learning effects via
a linear mapping. However, in the real training process, this linear mapping will
sensitive to the change of βt (c) in the early stage when the predictions of the
model are still unstable, and only make small fluctuations after the class is well-
learned in mid and late training stage. Therefore, it is preferable if the flexible
thresholds can be more sensitive when βt (c) is large and vice versa.

By rewriting the Eq. 5, a non-linear mapping function is used to enable the
threshold to have a non-linear increasing curve when βt (c) ranges uniformly
from 0 to 1 as:

Tt (c) = βt(c)
2−βt(c)

· τ (7)

This non-linear mapping strategy ensures the threshold grows slowly when
βt (c) is small, and becomes more sensitive as βt (c) gets larger.
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After obtaining the category-related threshold, APCL can be achieve by cal-
culating the unsupervised loss, which can be formulated as:

Lu,t = 1
µB

µB∑
i=1

1(max (pi) > Tt (argmax (pi)))H (p̂i, p (y |υ (ui) )), (8)

where pi = p (y |α (ui) ). The category-related flexible thresholds are updated at
each iteration. Finally, the totsal loss Lt of APCL as the weight combination of
supervised ans unsupervised loss by a pre-defiend scale λ can be formulated as:

Lt = Ls + λLu,t, (9)

where Ls is the supervised loss on labeled data:

Ls = 1
B

B∑
i=1

H (yi, p (y |α (xi) )). (10)

From the above discussion, ACPL is a cost-free method. Practically, once
the prediction confidence of unlabeled data ui is above the fixed threshold τ ,
the data and its predicted label are marked and will be used for calculating
βt (c) at the next step. Such simply marking action force the model pay more
attention to those scenes that difficult to be recognized. Moreover, ACPL can
easily cooperate with other pseudo labeling semi-supervised methods to improve
their performance and do not introduce new parameters.

3 Experiments

3.1 Experimental settings

To verify the effectiveness of our RSMatch, we select the UC Merced Land
Use (UCM) data set. There are 2100 high-resolution aerial images with a pixel
resolution of 1 foot. UCM contains 21 semantic categories, each of which has 100
images. The size of images is 256× 256

All of the experiments are implemented by the Pytorch platform using a
workstation with two Amax GeForce RTX 3090 GPUs. For a fair comparison,
the optimizer for all experiments is stochastic gradient descent (SGD) with a
momentum of 0.9 [16]. We use an initial learning rate of 0.03 with a cosine
learning rate schedule [17] as η = η0 cos

(
7πk
16K

)
, where η0 is the initial learning

rate, k is the current training step and K is the total training step that is set
to 217. An exponential moving average with the momentum of 0.999 are also
utilized. The batch size of labeled data is 32. µ is set to 7, which means the
batch size of unlabeled data is 32*7 for RSMatch and its comapred methods. τ
is set to 0.95 for FixMatch and our RSMatch. The strong augmentation function
used in our experiments is RandAugment [18] while the weak augmentation is
a standard flip-and-shift augmentation strategy. We use ResNet-18 [19] as our
backbone.



6 Lin et al.

3.2 Classification results

To evaluate the effectiveness of our model, we conduct the classification exper-
iments and compare our method with several semi-supervised algorithms pro-
posed in recent years, including FixMatch [13], MSMatch [9], and SSCL [8]. UCM
data set is split into 20% for validation, 20% for test, and 60% for training. A-
mong them, all training samples are further divided into 10% labeled training
data and 50% unlabeled training data. We train all the methods with 5 label
samples, 8 label samples and 10 label samples per class, respectively. Following
the common training definition in semi-supervised methods [13, 14], we use the
label amount to define these three classification tasks as 105 lables, 168 labels
and 210 labels, respectively. The classification results are exhibited in Table 1.
What’s more, we pose the confusion matrix of RSMtach of three semi-supervised
classification scenatios in Fig. 2. Form the observation of the results, we can find
RSMatch achieves the best performance than others. The promising results il-
lustrate our method is effective for semi-supervised RSSC task.

Table 1. Classification accuracy (%) on UCM data set.

Method
UCM

105 labels 168 labels 210 labels

MSMatch 78.36±0.77 86.48±1.01 88.43±0.56

SSCL 78.43±0.67 87.10±0.44 90.26±0.68

FixMatch 77.08±0.27 86.33±0.56 88.42±0.18

RSMatch (ours) 78.64± 0.32 87.56± 0.17 90.75±0.24

4 Conclusion

In this psper, RSMatch, which utilizes adaptive category-related pseudo labeling
(ACPL) strategy, is adopted for remote sensing scene classification based on
limited labeled samples and enough unlabeled samples to learn discriminative
feature representation accorfing to the learning effects of each class in data set
and the learning status of the model. The positive experimental results have
demonstrated our proposed RSMatch outperforms the several compariosn semi-
supervised methods.

References

1. X. Tang, Q. Ma, X. Zhang, F. Liu, J. Ma and L. Jiao, "Attention Consistent Network
for Remote Sensing Scene Classification," in IEEE Journal of Selected Topics in



RSMatch for Remote Sensing Scene Classification 7

Fig. 2. Confusion matrix of UCM data set. The scene numbers and names are summa-
rized as follows. 1-Agricultural, 2-Airplane, 3-Baseball Diamond, 4-Beach, 5-Buildings,
6-Chaparral, 7-Dense Residential, 8-Forest, 9-Freeway, 10-Golf Course, 11-Harbor, 12-
Intersection, 13-Medium Density Residential, 14-Mobile Home Park, 15-Overpass, 16-
Parking Lot, 17-River, 18-Runway, 19-Sparse Residential, 20-Storage Tanks, and 21-
Tennis Courts,

Applied Earth Observations and Remote Sensing, vol. 14, pp. 2030-2045, 2021, doi:
10.1109/JSTARS.2021.3051569.

2. Y. Yang et al., "AR2Det: An Accurate and Real-Time Rotational One-Stage
Ship Detector in Remote Sensing Images," in IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1-14, 2022, Art no. 5605414, doi: 10.1109/T-
GRS.2021.3092433.

3. X. Tang et al., "An Unsupervised Remote Sensing Change Detection Method Based
on Multiscale Graph Convolutional Network and Metric Learning," in IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022, Art no. 5609715,
doi: 10.1109/TGRS.2021.3106381.

4. G. Cheng, C. Yang, X. Yao, L. Guo and J. Han, "When Deep Learning Meets Metric
Learning: Remote Sensing Image Scene Classification via Learning Discriminative
CNNs," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 5,
pp. 2811-2821, May 2018, doi: 10.1109/TGRS.2017.2783902.

5. Q. Wang, S. Liu, J. Chanussot and X. Li, "Scene Classification With Recurrent
Attention of VHR Remote Sensing Images," in IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 2, pp. 1155-1167, Feb. 2019, doi: 10.1109/T-
GRS.2018.2864987.

6. X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu and Y. Zheng, "Siamese Convolutional
Neural Networks for Remote Sensing Scene Classification," in IEEE Geoscience and
Remote Sensing Letters, vol. 16, no. 8, pp. 1200-1204, Aug. 2019, doi: 10.1109/L-
GRS.2019.2894399.

7. D. Guo, Y. Xia and X. Luo, "GAN-Based Semisupervised Scene Classification of
Remote Sensing Image," in IEEE Geoscience and Remote Sensing Letters, vol. 18,
no. 12, pp. 2067-2071, Dec. 2021, doi: 10.1109/LGRS.2020.3014108.

8. J. Zhang, M. Zhang, B. Pan and Z. Shi, "Semisupervised Center Loss for Remote
Sensing Image Scene Classification," in IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, vol. 13, pp. 1362-1373, 2020, doi:
10.1109/JSTARS.2020.2978864.

9. P. Gomez and G. Meoni, "MSMatch: Semisupervised Multispectral Scene Classi-
fication With Few Labels," in IEEE Journal of Selected Topics in Applied Earth



8 Lin et al.

Observations and Remote Sensing, vol. 14, pp. 11643-11654, 2021, doi: 10.1109/JS-
TARS.2021.3126082.

10. Li Y, Zhang H, Xue X, et al. Deep learning for remote sensing image classifica-
tion: A survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2018, 8(6): e1264.

11. Yang X, Song Z, King I, et al. A survey on deep semi-supervised learning[J]. arXiv
preprint arXiv:2103.00550, 2021.

12. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural net-
works[C]//International conference on machine learning. PMLR, 2019: 6105-6114.

13. Sohn K, Berthelot D, Carlini N, et al. Fixmatch: Simplifying semi-supervised learn-
ing with consistency and confidence[J]. Advances in Neural Information Processing
Systems, 2020, 33: 596-608.

14. Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results[J]. Advances in
neural information processing systems, 2017, 30.

15. Grandvalet Y, Bengio Y. Semi-supervised learning by entropy minimization[J].
Advances in neural information processing systems, 2004, 17.

16. Sutskever I, Martens J, Dahl G, et al. On the importance of initialization and mo-
mentum in deep learning[C]//International conference on machine learning. PMLR,
2013: 1139-1147.

17. Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts[J].
arXiv preprint arXiv:1608.03983, 2016.

18. Cubuk E D, Zoph B, Shlens J, et al. Randaugment: Practical automated data
augmentation with a reduced search space[C]//Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops. 2020: 702-703.

19. He K, Zhang X, Ren S, et al. Deep residual learning for image recogni-
tion[C]//Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016: 770-778.


