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Abstract. Segmentation of liver tumors plays an important role in the
subsequent treatment of liver cancer. At present, the mainstream method
is the fully supervised method based on deep learning, which requires
medical experts to manually label a large number of pixel level labels for
training, resulting in high time and labor cost. In this article, we focus
on using bounding boxes as weak label to complete the segmentation
task. It can be roughly divided into two steps. The first step is to use
region mining technology to obtain pixel level labels from the bounding
box. The second step uses pixel level labels to train the semantic seg-
mentation network to obtain segmentation results. In the whole task, the
quality of pixel level labels obtained from bounding boxes plays an im-
portant role in the performance of segmentation results. Therefore, our
goal is to generate high-quality pixel level labels. Aiming at the problem
that the current region mining method based on classification network
is inaccurate and incomplete in object location, we use the Adversarial
Complementary Learning module to make the network pay attention to
more complete objects. We conduct analysis to validate the proposed
method and show that our approach performs is comparable to that of
the fully supervised method.

Keywords: Weakly supervised learning · Tumor segmentation · Bound-
ing box annotation.

1 Introduction

Liver cancer is one of the most common and highest mortality cancers in the
world. According to the World Cancer Report 2020, liver cancer ranks fifth in
incidence and second in mortality [1].

A liver tumor segmentation mask obtained from a medical image such as
computed tomography(CT) provides important delineation information of liver
tumor, which is of great significance for subsequent diagnosis and treatment.

Recently, semantic segmentation networks based on deep learning have achieved
excellent performance in the field of medical image segmentation [2]. However,
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the fully supervised semantic segmentation network based on full pixel annota-
tion needs a large number of pixel level labels to train, which leads to huge labor
and time costs, especially in the field of medicine.

Therefore, Many scholars have focused on how to use weak label to complete
the segmentation task. Figure 1 shows pixel level label and common weakly
supervised label. In Fig 1, (a), (c), (d) and (e) are weakly typed annotations,
while (b) is a complete pixel level annotation.

Image-level labels are the easiest to obtain. But it only indicates whether
an object is present in the image, and provides no other information about the
object’s location or profile. Therefore, image-level labels make the problem very
challenging and performance is limited.

Another common type of weakly label is the bounding box, which limits
the object to a rectangular area and specifies the background area (outside the
box). WSSL[3] first uses Dense Conditional Random Field(CRF) [4] to generate
pixel-level labels and then carries out iterative training. Youngmin Oh et al,
[5] proposed the background aware pooling method, which calculates the cosine
similarity between the background features outside the box and the features
inside the box, so as to obtain different weights for different positions inside the
box and enhance the distinction between the background and the foreground
inside the box. This process makes the generated label more accurate.

The region mining technique is usually based on the classification network to
obtain the location and shape information of a specific class objects. At present,
the mainstream region mining method for weakly supervised semantic segmenta-
tion is using Class Activation Map(CAM) [6] to obtain localization map, which is
used to generate pixel level labels through refinement algorithms such as Dense
CRF [4]. However, CAM often only highlights the salient area of the object,
resulting in inaccurate generated pixel labels.

In this work, we focused on the segmentation of liver tumors using boxes.
In order to make up for the shortcomings of CAM [6], we used an Adversar-
ial Complementary Learning(ACoL) [7] module to mine the non-salient object
regions.

The accuracy of classification and the completeness of acquisition object can
be balanced by setting appropriate salient threshold. If the salient threshold is
too high, only a very small part of the area will be shielded, which is not obvious

(a) image (b) fully pixel (c) box (d) scribble (e) point

Fig. 1. Examples of fully supervised mask annotation and weakly supervised
box annotation
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to the mining of the remaining area of the object. If the salient threshold is too
low, the background may be identified as the foreground.

2 Approach

Our approach mainly consists of two stages. First, we trained a classification
network based on Adversarial Complementary Learning [7] to obtain pixel level
labels using box as positive and negative samples. The second is to train the
semantic segmentation network with pixel level labels.

(a) (b)

Fig. 2. (a):Feature Pyramid Network. (b): Region Proposal Network anchor
boxes generation process.

2.1 Anchor Boxes generation

The first problem we need to solve is how to obtain Bounding boxes from the
image. It is obvious that the positive samples are the Ground truth bounding
boxes containing tumors labeled by us. For the generation of negative sam-
ples, our solution strategy is as follows. More specifically, we adopt the anchor
generation process of Faster RCNN with Feature Pyramid Network(FPN) [8]
structure, which collects the features of different scale boxes on different feature
layers through feature fusion.

Figure 2 shows the generation process of anchor boxes and FPN.

2.2 Adversarial Complementary Learning

For mining complete tumor from bounding boxes, we use Adversarial Comple-
mentary Learning(ACoL) [7] strategy, which is a CAM-based variant.

It is necessary to review CAM [6], which is one of the most basic mining
techniques. After the feature of the picture is extracted by the feature extractor,
followed by a Global Average Pooling(GAP) and a fully connected layer with
length C(number of the classes). It is assumed that the feature map of the last
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C channels is S ∈ RW×H×C and the weight of the fully connected layer is W .
The localization map Mc of class c is calculated as follows:

Mc =
∑
k

Sk ·W c
k (1)

Where Sk is the k− th channel of S and W c
k is the weight of class c for the k− th

channel.
The main idea of ACoL [7] consists of two classification branches A and B,

which mine different regions through a complementary operation. A and B have
the same structure. Where, the input feature map of branch B is guided by the
tumor localization map of A to shield the salient regions (see Fig3). The tumor
localization map MA of A is subjected to RELU operation and normalized by
min-max to obtain MA. The erasing operation is performed by setting a salient
threshold δ. Specifically, if MA in the position (i, j) is greater than δ, multiply
the feature at (i, j) by 0 and finally send the feature after erasing the salient
area to B to mine the non-salient regions.

Fig. 3. ACoL architecture

2.3 Application

So far, the two main modules used to generate pixel-level labels from the bound-
ing box have been introduced. Next, we use these two modules to build region
mining model based anchor and ACoL [7], as shown in Fig 4. Negative Bound-
ing boxes are defined as anchors completely non-overlapping with Ground truth
bounding boxes.

It should be noted that we do not use all anchors generated on all feature
layers, because this may lead to the imbalance of positive and negative samples.

Therefore, The sampling strategy is to first calculate the Euclidean distance
between the center point of each anchor and the center point of its closest Ground
truth bounding box. According to the distance, give priority to the negative
samples with short distance. We select the top 10% anchor boxes of each layer
according to the distance, and then randomly select N anchor boxes from the
selected anchor boxes. Each classifier consists of two convolution layers, in which
the output channel of the first convolution layer is 512 and the second is 2 (fore-
ground and background). RELU operation is performed between two convolution
layers.
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Fig. 4. The structure of regional mining method based on ACoL and anchor

(a) Input (b) Ground truth (c) CAM (d) ACoL

Fig. 5. Visualization of localization map generated by using CAM and ACoL

2.4 Pseudo mask generation

In order to generate pseudo pixel level labels. For a Ground truth bounding box,
the tumor localization map MA of A and the tumor localization map MB of B
are generated according to the pipeline of CAM [6]. MA and MB are subjected
to RELU operation and normalized by min-max to obtain MA and MB .

The fused object localization map Mfuse is defined as the element-wise max-
imum result over MA and MB . The Mfuse is adjusted to the size of the Ground
truth bounding box through bilinear interpolation. The ACoL [7] fused tumor
localization map and tumor localization map of CAM are shown in Fig 5. We
use Dense CRF [4] to estimate pixel level labels from bounding box localization
maps. The unary term of Dense CRF for tumor class is set Mfuse. The unary
term of the background class is set (1−Mfuse).

Considering the influence of noise in the Ground truth bounding boxes, we
adopt a method similar to [9], ignoring the background in the Ground truth
bounding boxes(when training the segmentation model, the background area in
the Ground truth bounding boxes will not be calculated in the loss).
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3 Experiments

In this section, We will describe the experimental details and the environment.
We use pytoch deep learning framework to build the proposed network model,
and use NVIDIA 2080Ti GPU for training and verification.

3.1 Datasets and evaluated metric

In this paper, public dataset Liver Tumor Segmentation Challenge (LiTS-ISBI2017)
is used as the research.

We use SGD optimizer with momentum of 0.9 and weight decay of 0.0005
train the region mining model based on classification network for 50 epochs, and
the batch size was set to 8. The learning rate is initialized to 0.001.

The image size is 512 × 512. We select 3762 images from LiTS-ISBI2017 as
the training set and 1669 images as the test set. The Dice coefficient is used as
an evaluation metric.

3.2 Classification Network and Hyperparameter settings

ResNet50 is used as backbone. In ResNet [10], the layers with the same output
feature size are classified into the same stage. The output of the last residual
block of each stageCi are used for features fusion and generate anchor.

The fusion results of {C2, C3, C4, C5} according to FPN strategy are called
{P2, P3, P4, P5}. Follow the settings of [8], the anchor area on P2 is set to 322, P3

to 642, P4 to 1282 and P5 to 2562 pixels, and use 3 aspect ratios {1:1, 1:2, 2:1}.
For a feature map with size W ×H, a total of W ×H×3 anchors are generated.

The salient threshold δ mentioned in Section 2.2 is set to 0.6, and the number
of negative samples N mentioned in Section 2.3 is set to 256. A box with height
h and width w(on the input image) is assigned to Pk to obtain features, where
k is calculated according to the following formula:

k = ⌊4 + log
(
√
wh/224)

2 ⌋ (2)

3.3 Segmentation network and test results

We use the pixel level labels to train the semantic segmentation network. For the
segmentation model, we choose Deeplab-v3[11] with ResNet-50 architecture as
the backnone model, and use dice loss proposed in [12] for training. Dice loss can
well solve the problem of imbalance between foreground and background in image
segmentation. DeepLabV3 is trained for 50 epochs using the SGD optimizer with
momentum of 0.9 and weight decay of 0.0001. Batch size is set to 6. The initial
learning rate is 0.005. The learning rate adjustment strategy of DeepLabV3 is
(initial_learning_rate)× (1− iter

maxiter
)
0.9.

The segmentation results on the test set are shown in Table 1. We define a
naive baseline that treats all pixels in the boxes as foreground. The comparison
of baseline, CAM and ACoL is shown in Table 2
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Table 1. Comparison of segmentation performance between based on ACoL
method and fully supervised and weakly supervised methods on test set.

Methods Annotation type Dice
U-Net[13] Pixel-level 0.702

DeepLab-V3[11] Pixel-level 0.711
SDIbox[9] Box-level 0.626
WSSL[3] Box-level 0.632

Our Box-level 0.658

Table 2. Comparison of baseline, CAM and ACoL segmentation results on test
set.

Methods Annotation type Dice
Baseline Box-level 0.563
CAM Box-level 0.617
Our Box-level 0.658

Finally, in Figure 6 we show some segmentation examples.

(a) Image (b) Ground truth (c) DeepLabv3[11] (d) WSSL[3] (e) Our

Fig. 6. Examples of predicted semantic masks

4 Conclusions

A weakly supervised liver tumor segmentation method based on box labeling
is proposed with the help of ACoL [7] region mining strategy. The final results
on the test set showed that the proposed method is comparable to the fully
supervised method, which proved the effectiveness of the proposed method in
liver tumor segmentation.
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