
HAL Id: hal-04666406
https://hal.science/hal-04666406v1

Submitted on 1 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Accelerating Deep Convolutional Neural Network
Inference Based on OpenCL

Yong Wu, Huming Zhu, Lingyun Zhang, Biao Hou, Licheng Jiao

To cite this version:
Yong Wu, Huming Zhu, Lingyun Zhang, Biao Hou, Licheng Jiao. Accelerating Deep Convolutional
Neural Network Inference Based on OpenCL. 5th International Conference on Intelligence Science
(ICIS), Oct 2022, Xi’an, China. pp.98-108, �10.1007/978-3-031-14903-0_11�. �hal-04666406�

https://hal.science/hal-04666406v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

Accelerating Deep Convolutional Neural Network

Inference Based on OpenCL

Yong Wu1, Huming Zhu2*, Lingyun Zhang2, Biao Hou2, and Licheng Jiao2

1 Xidian-Wuhu Research Institute

2 Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi’an 710071

zhuhum@mail.xidian.edu.cn

Abstract. In recent years, in order to facilitate the efficient application of deep

convolutional neural networks, it has become increasingly important to acceler-

ate the inference stage of deep convolutional neural networks. But with the de-

velopment of numerous heterogeneous computing devices, today's popular deep

learning inference tools only support specific devices, so they cannot effectively

utilize different GPU devices to accelerate DNN inference. To address this issue,

we propose an OpenCL-based parallel deep convolutional neural network infer-

ence algorithms. Firstly, we design and implement parallel kernel code using

OpenCL to accelerate depthwise separable convolution, and implement parallel

matrix multiplication combined with clBLAS to accelerate traditional convolu-

tion. Meanwhile, we design OpenCL parallel kernel codes for other operations in

the inference stage of deep convolutional neural networks. Secondly, we further

improve the inference performance by means of kernel fusion and increasing the

workload per core. Finally, MobileNet v1 network and the 21-layer residual net-

work based on OpenCL are run on AMD Radeon Vega Frontier GPU and Nvidia

GeForce GTX 1070 GPU. Compared to the Caffe implementation, 40.16x, 1.67x

speedups are achieved on the AMD GPU and 14.95x, 1.11x speedups are

achieved on the Nvidia GPU.

Keywords: OpenCL, Deep Convolutional Neural Network, Inference, GPU.

1 Introduction

In recent years, deep neural networks have been widely used in image analysis [1],

speech recognition, object detection [2], semantic segmentation, face recognition, and

autonomous driving because of their excellent performance.

GPUs have been used to accelerate the training and inference of various neural net-

work models due to their powerful parallel computing capabilities [3-4]. However, with

the development of numerous heterogeneous computing devices, the manufacturers and

models of GPUs have become increasingly complex and diverse. The programming

environment for different GPUs also tends to be different. Therefore, it is of great value

to study parallel algorithms with portability to adapt to different GPUs.

OpenCL is a cross-platform parallel programming standard, and it provides APIs

2

with parallel programming. It not only can be applied on FPGA, but also can on CPU,

GPU and DSP (Digital Signal Processors). By using OpenCL implement the inference

of deep convolutional networks[5-6], we can deploy the networks on different devices,

which extend the scope of application.

Accelerating deep neural networks usually involves two stages. The first stage is train-

ing a model on a large dataset. In this stage, the commonly used parallel methods are

data parallelism and model parallelism. For single-node data parallelism, by using par-

allel programming technology, independent computation is distributed to multiple com-

puting cores of a single hardware device. Model parallelism decomposes the network

model, distributes the convolution operation located in the same layer to different com-

puting devices for calculation, and the output results are synchronized and transmitted

to the next layer through communication between devices. The second stage is deep

neural network inference stage. In this stage, we need to deploy the trained model on a

device for image classification or object detection [7]. And there are many tools have

been proposed to accelerate different deep neural network models on parallel computa-

tion device. Such as Intel OpenVINO[8] and NVIDIA TensorRT[9]. These inference

tools both only support one manufacturer’s GPU, which limited the scope of application.

Our main contributions of this work are summarized as follows:

Compared with related works, we firstly design OpenCL kernel code to accelerate

depthwise separable convolution. We test the performance of MobileNet v1 network

and the 21-layer residual net-work based on OpenCL on AMD Radeon Vega Frontier

and Nvidia Ge-Force GTX 1070 GPU. By using kernel fusion and batch image pro-

cessing, we further improve the performance of parallel acceleration without decreasing

the accuracy.

2 Related work

At present, there have been some researches on accelerating the inference stage of neu-

ral networks, for example, Akshay Dua et al. [10] presents Systolic-CNN, an OpenCL-

defined scalable, run-time-flexible FPGA accelerator architecture, optimized for accel-

erating the inference of various convolutional neural networks (CNNs)in multi-tenancy

cloud/edge computing. Dian-Lun Lin et al. [11] introduce SNIG, an efficient inference

engine for large sparse DNNs. SNIG develops highly optimized inference kernels and

leverages the power of CUDA Graphs to enable efficient decomposition of model and

data parallelisms, thereby accelerating large sparse neural network inference in parallel.

Shengyu He et al. [12] propose PhoneBit, a GPU-accelerated BNN inference engine

for mobile devices that fully exploits the computing power of BNNs on mobile GPUs.

Jiale Chen et al. [13] presents a model split framework, namely, splitCNN, in order to

run a large CNN on a collection of concurrent IoT sensors. The splitCNN achieves

significant reduction in the model size and inference time while maintaining similar

accuracy. Although these studies have made significant progress in inference accelera-

tion, there are still some limitations to the current work; most of these studies are based

on a particular device, cannot effectively use different GPUs to accelerate inference,

and the cross-platform problem remains unresolved.

3

3 Design,Implementation and Optimization of CNN on OpenCL

3.1 Parallel Strategy for Convolution Layer

Traditional parallel computing of convolution usually uses the method of converting

convolution to matrix multiplication. This kind of method is called im2col. Mo-

bileNet[14] uses deep separable convolution to replace the traditional convolution op-

erations, which greatly reduces the number of mathematical operations and parameters.

It uses depth wise convolution (DWC) and point wise convolution (PWC) to replace

traditional convolution. We use OpenCL to design a kernel function to accelerate depth

wise convolution of deep separable convolution and use matrix multiplication method

to accelerate point wise convolution of deep separable convolution.

In order to achieve cross-platform performance portability, we use OpenCL to imple-

ment im2col operation and combine the matrix multiplication API provided by clBLAS

library to speed up traditional convolution in parallel.

When using the clBLASCgemm function in clBLAS to speed up batch convolution

operations, im2col needs to first convert the four-dimensional input data (NCWH) into

a two-dimensional matrix, and then the clBLASCgemm function is called to complete

the multiplication of input matrix and convolution core weight matrix. The output matrix

is stored in the form of CNWH, so the data need to be rearranged into the storage in the

form of NCWH. At the same time, the final output of clBLAS only completes the con-

volution operation without bias, so it is necessary to start another kernel function to com-

plete the operation of adding bias.

Therefore, in order to realize the clBLAS accelerated convolution operation, it is nec-

essary to use OpenCL to implement three kernels, As shown in the left picture of Fig. 1,

to perform im2col, data conversion and adding bias respectively.

Global index space

x

yz

Batch 0

Batch 1

Batch 2

Fig. 1. Convolution process by suing clBLAS(left picture) and mapping relationship of OpenCL

global index space for deep convolution(right picture)

The process of depth separable convolution operation on the output feature map is equiv-

alent to a vector point product. The calculation process of different pixels is independent

and can be carried out in parallel. In the structure of convolution neural network, the size

of convolution filter is generally small, if using parallel reduction, the cost of synchro-

nization may outweigh the benefits of parallelism, so the result of different filter’s pixels

are added serially. Therefore, the parallel scheme of deep convolution calculation

4

designed by OpenCL is as follows: the size of the global index space corresponds to the

number of pixels in the output feature map, that is, each work item is responsible for

calculating a pixel in the output feature map, and a certain number of work items are

formed into a working group. The global index space is set to three dimensions: x, y and

z. The x dimension corresponds to the pixels of the same channel in the output feature

map, the y dimension corresponds to the number of channels in the output feature map,

and the z dimension corresponds to the batch size of the output feature map. The pixel

points that each thread is responsible for is determined by obtaining the global index

value. The mapping relationship is shown in the right figure of Fig. 1.

For the depth convolution operation, the input data addresses to be accessed by con-

secutive pixels located in the same channel feature map are consecutive, and the weight

addresses are the same. Therefore, in order to combine memory access, consecutive in-

dex values in the global index space should correspond to two consecutive output feature

maps. pixel. The point-by-point convolution is the same as the traditional convolution

method, except that the size of the convolution kernel is changed to 1×1, so we use the

matrix multiplication convolution implemented earlier to speed up the point-by-point

convolution.

3.2 Parallel Strategy for Other Layers

In order to achieve the parallel acceleration of the deep convolution neural network

inference stage in OpenCL, other operations in the inference stage need to be imple-

mented in parallel, such as global average pooling, shortcut operation, batch normaliza-

tion, activation function and full connection operation.

Global mean pooling directly calculates the global mean of the input feature map. The

Shortcut operation is equivalent to a matrix addition operation. Batch normalization is

to calculate each pixel in the input feature map according to the calculation process of

formula (2) and activation function is to calculate the activation function for each pixel

in the input feature map, and the fully connected layer can be regarded as a dot product

operation of two vectors. Similar to convolution operations, these operations output a set

of feature maps. The computation of pixels in the feature map is independent. Therefore,

we use the same parallel approach as convolution to design the kernel function. Finally,

the overall inference process of the OpenCL-based parallel deep convolutional neural

network is shown in Fig. 2.

Input network
weight parameters

Setting up the
network structure

OpenCL
initialization

Input data

Copy data Inference

Copy dataresults

Host Device

Fig. 2. Inference flow of parallel deep convolution neural network based on OpenCL

5

3.3 Kernel Fusion and Increasing Global Task

Since the start of the kernel takes extra time, as the number of network layers increases,

using kernel frequently would increase more extra consumption. We can use kernel

fusion method to reduce the consumption. As Fig. 3 shown, we combine the two oper-

ations of BN and Relu, as well as the operations of shortcut and Relu.

Batch

normalization

Relu

+

Shortcut

Relu

Convolution

...

...

Batch

normalization

+Relu

Shortcut+Relu

Convolution

...

...

Fig. 3. Schematic diagram of the kernel fusion method

For the kernel fusion of batch normalization and convolution, we can implement it by

using the following formula. First, the convolution formula shown as (1).

𝑋𝑐𝑜𝑛𝑣 = 𝑥 × 𝑊 + 𝑏 (1)

𝑋𝑐𝑜𝑛𝑣 represents output, 𝑥 represents input, 𝑊 represents weights，𝑏 represents

bias. And the formula of batch normalization shown as (2).

𝑋𝑏𝑛 = 𝛾 ×
(𝑥 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (2)

𝛾，𝛽 are learnable parameters, 𝐸[𝑥] represents the mean of 𝑥, 𝑉𝑎𝑟[𝑥] represents

the variance of 𝑥. 𝜀 is a minimal positive number to prevent denominator from be-

coming zero. We can combine formula (1) and formula (2):

𝑋𝑏𝑛 = 𝑥 ×
𝛾𝑊

√𝑉𝑎𝑟[𝑥] + 𝜀
+

𝛾(𝑏 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (3)

And then we can use the follows formulas to obtain new weights and bias to replace

old ones.

𝑊𝑛𝑒𝑤 =
𝛾𝑊

√𝑉𝑎𝑟[𝑥] + 𝜀
 𝑏𝑛𝑒𝑤 =

𝛾(𝑏 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (4)

When we obtain new weights and bias and replace old values, we can use them to

compute formula (1) directly, and obtain the same results as using old values to

compute formula (1) and formula (2). So the batch normalization operation is omit-

ted and has no effect on the results.

6

In addition to kernel fusion, it can further improve performance by increasing batch

size to increase the workload per core. and occupy more GPU resources. Compared to

inputting only one image, inputting multiple images at a time can reduce the number of

OpenCL kernel functions to start, which will reduce the extra time consumption.

4 Experiment and Evaluations

4.1 Experimental Environment

In order to verify the inference performance of the OpenCL accelerating convolution

neural network proposed in this paper, we implemented a deeply separable convolutional

neural network and a residual neural network using OpenCL as shown in Table 1. We

run the proposed method on NVIDIA and AMD GPU to verify portability. The hardware

information is shown in Table 2.

Table 1. The networks used in experiments

CNNs Convolution layers Dataset accuracy

MobileNet v1[14] 27 ImageNet 70.81%

ResNet[15] 21 Cifar 10 91.7%

Table 2. The platforms used in experiments

GPU Single Precision

Peak Performance

Cores Memory

AMD Radeon Vega Frontier 13.1TFLOPS 4096 cores 1600MHz 16GB 483GB/s

NVIDIA GTX 1070 6.5TFLOPS 1920 cores 1506MHz 8GB 256GB/s

As shown in Table 1, the depth separable neural network is MobileNet v1, which is used

to classify the Imagenet dataset. There are 27 convolution layers and one full connection

layer. The residual neural network we used has 21 convolution layers. And the network

is used to classify cifar10 dataset. In addition, the host side of the NVIDIA platform is

an AMD FX-8300 processor with a frequency of 3.3GHz, the host side of the AMD

platform is an AMD A10-7870K Radeeon R7 processor with a frequency of 3.9GHz,

and the host operating system is Ubuntu16.04. The Caffe version is the Hip version,

which is an accelerated Caffe GPU version based on ROCm. ROCm is AMD's general-

purpose GPU programming framework. This paper adopts ROCm 2.0. The compiler

uses g++ 5.4.0. OpenCL uses OpenCL 1.2.

4.2 Performance Comparison of Depthwise Convolution Operations

Firstly, we compare our proposed method that accelerates depth convolution with Caffe

and Diagonal method proposed in[16] . We extract depth convolution from MobileNet

v1, and divide them into 9 different layers according to the size of input feature map and

7

convolution parameters. The results for batchsize=1 are shown in Table 3.

Table 3. Time comparison of different depth convolution parallel methods

 OpenCL(ms) Caffe(ms) Diagonal(ms)

Conv2_1dw 0.1488 1.7928 0.2915

Conv2_2dw 0.1461 2.8236 0.3024

Conv3_1dw 0.1531 4.2580 0.6749

Conv3_2dw 0.1005 5.1743 0.4954

Conv4_1dw 0.1420 9.3704 1.0614

Conv4_2dw 0.0991 13.2270 0.7529

Conv5dw 0.0985 27.2045 1.6190

Conv5_6dw 0.0895 28.0888 1.7314

Conv6dw 0.0879 51.3935 4.0700

From the result data in the Table 3, we can see that the proposed method is obviously

better than the other two. Caffe's depth convolution performance is the worst, and with

the increase of the number of input channels, the serial execution between multiple chan-

nels results in low parallel efficiency. Especially in several layers of conv4_1dw to

conv6d, the input feature maps become relatively small, result in the matrices converted

by im2col become small, too. So it can’t use more GPU computing resources. The diag-

onal method avoids serial execution and directly converts the convolution filters and

input data into two large matrices for parallel acceleration. Although it avoids the over-

head of serial execution and increases the utilization of GPU hardware resources, it also

increases the computational complexity and runtime due to its conversion of deep con-

volution into traditional convolution.

4.3 Comparison of Parallel DCNN Inference Performance

After the implementation of OpenCL inference to accelerate MobileNet V1 and residual

neural network for performance comparison with Caffe. First, we run the forward prop-

agation of MobileNet V1 network and residual neural network on the same GPU through

Caffe. The inference time of MobileNet V1 network and residual neural network are

shown in Table 4.

Table 4. Parallel acceleration time of MobileNet V1 and ResNet neural network inference

 Caffe(ms) OpenCL(ms) Speedup

MobileNet v1 45.9460 7.4873 7.2275

ResNet 8.1670 4.4939 1.8174

According to Table 4, the parallel inference time of MobileNet V1 is 7.4873 ms, which

is 7.2275 times faster than that of Caffe GPU, thanks to the acceleration of deep convo-

lution. The parallel inference time of residual neural network is 4.4939 ms, which is

1.8174 times faster than that of Caffe. In order to further optimize the acceleration, we

use the method of kernel fusion to eliminate the time proportion of batch normalization

8

and activation function.

We using kernel fusion combine the kernels of convolution and batch normalization,

after this, we continue to combine the kernels of convolution and activation. Finally, the

result shown in Table 5 We can see that, after kernel fusion. The performance of Mo-

bileNet v1 improves 22.26%, and the performance of ResNet improves 30.95%.

Table 5. Process time before and after kernel fusion

 Before (ms) After (ms) Reduced time percentage (%)

MobileNet v1 7.48729 5.8145 22.26

ResNet 4.4939 3.1031 30.95

After kernel fusion, we can increase the batch size to improve global task load, and to

occupy more hardware resources. Compared to classifying only one image at a time,

increasing batch size can reduce the overhead of OpenCL kernels when classify the same

number images.

Table 6. Inference time of MobileNet V1 and ResNet in different batch size

Bitch OpenCL GPU Caffe GPU Diagonal GPU

Size MobileNet V1 ResNet MobileNet V1 ResNet MobileNet V1

1 5.8145ms 3.1031ms 45.9460ms 8.1670ms 16.5178ms

5 2.1951ms 0.7953ms 40.0650ms 1.6890ms 6.1303ms

10 1.7568ms 0.4330ms 39.6705ms 0.9090ms 5.3144ms

20 1.7178ms 0.2543ms 40.7603ms 0.4940ms 6.0869ms

30 1.6190ms 0.1928ms 40.1693ms 0.3510ms 5.8368ms

40 1.5480ms 0.1652ms 47.8613ms 0.2820ms 5.4615ms

50 1.4891ms 0.1434ms 46.6712ms 0.2500ms 5.1117ms

60 1.4108ms 0.1385ms 45.4217ms 0.2230ms 4.8595ms

70 1.2815ms 0.1273ms 50.3016ms 0.2130ms 3.8701ms

80 1.2642ms 0.1597ms 48.8303ms 0.1960ms 3.8503ms

90 1.2024ms 0.1373ms 48.2878ms 0.1900ms 3.8516ms

100 1.2370ms 0.1494ms 52.8464ms 0.1840ms 3.7961ms

As shown in Table 6, first, with the increase of batch size, the time of inference single

image decreases gradually. But when the batch size is above 90, even if the batch size

increases, the time for a single image will not decrease any more. Therefore, the Mo-

bileNet V1 network performs best when the batch size is 90, It shows that when the batch

size is 90, the number of work items can make full use of the hardware computing re-

sources of GPU. At this time, the inference time of an image is 1.2024 ms. Residual

network has the best performance when the batch size is 70. The inference time of an

image is 0.1273 ms, which improves the performance by 79.32% and 95.90% respec-

tively compared with that before increasing the global task load.

4.4 Performance Comparison of Different Hardware Environments

9

To verify OpenCL code’s portability, we test the performance of parallel deep convolu-

tional neural networks on NVIDIA GeForce GTX 1070. The results are shown in Table

7.

Table 7. Inference time of MobileNet V1 and ResNet on NVIDIA GeForce GTX 1070

 Bitch

 Size

OpenCL implementation Caffe implementation

MobileNet V1 ResNet MobileNet V1 ResNet

1 3.9697ms 3.0494ms 31.3674ms 7.8862ms

5 2.7944ms 0.9113ms 25.2806ms 1.7380ms

10 2.4275ms 0.6165ms 26.2420ms 0.8253ms

20 1.9580ms 0.3997ms 24.7225ms 0.4764ms

30 1.9634ms 0.2786ms 25.3207ms 0.3343ms

40 1.7546ms 0.2670ms 25.4780ms 0.2991ms

50 1.7213ms 0.2498ms 25.6426ms 0.2583ms

60 1.6903ms 0.2188ms 25.2632ms 0.2440ms

As shown in Table 7, the method also shows good acceleration effect on NVIDIA GPU,

combining with the performance of this method on AMD GPU, the OpenCL accelerated

deep convolution neural network inference algorithm proposed in this paper has

achieved good performance on both AMD GPU and NVIDIA GPU hardware platforms.

Compared to Caffe implementation, the performance of MobileNet V1 network has been

improved by 40.16 and 14.95 times, respectively. And residual neural network has been

improved by 1.67 and 1.11 times, respectively. The OpenCL accelerated deep convolu-

tional neural network inference algorithm proposed in this paper is more effective in

accelerating MobileNet v1, and some performance portability on NVIDIA and AMD

GPUs.

5 Conclusions

In this paper, we propose an OpenCL-based parallel deep convolutional neural network

inference algorithm with kernel fusion to further improve the performance and increase

the global task load without affecting the accuracy of the algorithm. The problem of not

being able to efficiently utilize different GPU devices to accelerate DNN inference is

addressed.

In the future, we will consider optimizing our approach for more hardware, and com-

bine it with kernel auto-tuning methods for automatic parameter tuning.

Funding

This work is funded in part by the Key Research and Development Program of

Shaanxi(Program No. 2022ZDLGY01-09), funding: GHfund A (No. 202107014474 ）
GHfund C (No. 202202036165), Wuhu and Xidian University special fund for industry-

university-rsearch cooperation(Project No. XWYCXY-012021013), and Cloud

10

Computing Key Laboratory of Gansu Province.

References

1. Guo P.: Multi-institutional collaborations for improving deep learning-based magnetic reso-

nance image reconstruction using federated learning. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2423-2432. IEEE, Piscataway, NJ (2021).

2. Wang J.: End-to-end object detection with fully convolutional network. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-tion, pp. 15849-15858. IEEE,

Piscataway, NJ (2021).

3. Das A.: Enabling On-Device Smartphone GPU based Training: Lessons Learned. In: 2022

IEEE International Conference on Pervasive Computing and Communications Workshops

and other Affiliated Events (PerCom Workshops), pp. 533-538. IEEE, Piscataway, NJ (2022).

4. Kim S.: Performance Evaluation of INT8 Quantized Inference on Mobile GPUs. IEEE Access

9, 164245-164255 (2021).

5. Wai Y J.: Fixed Point Implementation of Tiny-Yolo-v2 using OpenCL on FPGA. Interna-

tional Journal of Advanced Computer Science and Applications 9(10), 506-512 (2018).

6. Mu J.: Optimizing Opencl-Based CNN Design on FPGA with Comprehensive Design Space

Exploration and Collaborative Performance Modeling. ACM Transactions on Reconfigurable

Technology and Systems (TRETS) 13(3), 1-28 (2020).

7. Koo Y.: OpenCL-Darknet: implementation and optimization of OpenCL-based deep learning

object detection framework. World Wide Web 24(4), 1299-1319 (2021).

8. Dagli R.: Deploying a smart queuing system on edge with Intel OpenVINO toolkit. Soft Com-

puting 25(15), 10103-10115 (2021).

9. Marco V S.: Optimizing deep learning inference on embedded systems through adaptive

model selection. ACM Transactions on Embedded Computing Systems 19(1), 1-28 (2020).

10. Dua A.: Systolic-CNN: an OpenCL-defined scalable run-time-flexible FPGA accelerator ar-

chitecture for accelerating convolutional neural network inference in cloud/edge computing.

In: Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 231-231. IEEE, Piscataway, NJ (2020).

11. Lin D L.: Accelerating Large Sparse Neural Network Inference Using GPU Task Graph Par-

allelism. IEEE Transactions on Parallel and Distributed Systems 33(11), 3041-3052 (2021).

12. He S.: An efficient GPU-accelerated inference engine for binary neural network on mobile

phones. Journal of Systems Architecture 117, 102156 (2021).

13. Chen J.: Split Convolutional Neural Networks for Distributed Inference on Concurrent IoT

Sensors. In: International Conference on Parallel and Distributed Systems (ICPADS), pp. 66-

73. IEEE, Piscataway, NJ (2022).

14. Howard A G.: Mobilenets: Efficient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

15. He K.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770-778. IEEE, Piscataway, NJ (2016).

16. Qin Z.: Diagonalwise refactorization: An efficient training method for depthwise convolu-

tions. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 770-778.

IEEE, Piscataway, NJ (2016).

