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Abstract. In recent years, in order to facilitate the efficient application of deep 

convolutional neural networks, it has become increasingly important to acceler-

ate the inference stage of deep convolutional neural networks. But with the de-

velopment of numerous heterogeneous computing devices, today's popular deep 

learning inference tools only support specific devices, so they cannot effectively 

utilize different GPU devices to accelerate DNN inference. To address this issue, 

we propose an OpenCL-based parallel deep convolutional neural network infer-

ence algorithms. Firstly, we design and implement parallel kernel code using 

OpenCL to accelerate depthwise separable convolution, and implement parallel 

matrix multiplication combined with clBLAS to accelerate traditional convolu-

tion. Meanwhile, we design OpenCL parallel kernel codes for other operations in 

the inference stage of deep convolutional neural networks. Secondly, we further 

improve the inference performance by means of kernel fusion and increasing the 

workload per core. Finally, MobileNet v1 network and the 21-layer residual net-

work based on OpenCL are run on AMD Radeon Vega Frontier GPU and Nvidia 

GeForce GTX 1070 GPU. Compared to the Caffe implementation, 40.16x, 1.67x 

speedups are achieved on the AMD GPU and 14.95x, 1.11x speedups are 

achieved on the Nvidia GPU.   

Keywords: OpenCL, Deep Convolutional Neural Network, Inference, GPU.  

1 Introduction 

In recent years, deep neural networks have been widely used in image analysis [1], 

speech recognition, object detection [2], semantic segmentation, face recognition, and 

autonomous driving because of their excellent performance.  

GPUs have been used to accelerate the training and inference of various neural net-

work models due to their powerful parallel computing capabilities [3-4]. However, with 

the development of numerous heterogeneous computing devices, the manufacturers and 

models of GPUs have become increasingly complex and diverse. The programming 

environment for different GPUs also tends to be different. Therefore, it is of great value 

to study parallel algorithms with portability to adapt to different GPUs.  

OpenCL is a cross-platform parallel programming standard, and it provides APIs 
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with parallel programming. It not only can be applied on FPGA, but also can on CPU, 

GPU and DSP (Digital Signal Processors). By using OpenCL implement the inference 

of deep convolutional networks[5-6], we can deploy the networks on different devices, 

which extend the scope of application. 

Accelerating deep neural networks usually involves two stages. The first stage is train-

ing a model on a large dataset. In this stage, the commonly used parallel methods are 

data parallelism and model parallelism. For single-node data parallelism, by using par-

allel programming technology, independent computation is distributed to multiple com-

puting cores of a single hardware device. Model parallelism decomposes the network 

model, distributes the convolution operation located in the same layer to different com-

puting devices for calculation, and the output results are synchronized and transmitted 

to the next layer through communication between devices. The second stage is deep 

neural network inference stage. In this stage, we need to deploy the trained model on a 

device for image classification or object detection [7]. And there are many tools have 

been proposed to accelerate different deep neural network models on parallel computa-

tion device. Such as Intel OpenVINO[8] and NVIDIA TensorRT[9]. These inference 

tools both only support one manufacturer’s GPU, which limited the scope of application.  

Our main contributions of this work are summarized as follows: 

Compared with related works, we firstly design OpenCL kernel code to accelerate 

depthwise separable convolution. We test the performance of  MobileNet v1 network 

and the 21-layer residual net-work based on OpenCL on AMD Radeon Vega Frontier 

and Nvidia Ge-Force GTX 1070 GPU. By using kernel fusion and batch image pro-

cessing, we further improve the performance of parallel acceleration without decreasing 

the accuracy.  

2 Related work 

At present, there have been some researches on accelerating the inference stage of neu-

ral networks, for example, Akshay Dua et al. [10] presents Systolic-CNN, an OpenCL-

defined scalable, run-time-flexible FPGA accelerator architecture, optimized for accel-

erating the inference of various convolutional neural networks (CNNs)in multi-tenancy 

cloud/edge computing. Dian-Lun Lin et al. [11] introduce SNIG, an efficient inference 

engine for large sparse DNNs. SNIG develops highly optimized inference kernels and 

leverages the power of CUDA Graphs to enable efficient decomposition of model and 

data parallelisms, thereby accelerating large sparse neural network inference in parallel. 

Shengyu He et al. [12] propose PhoneBit, a GPU-accelerated BNN inference engine 

for mobile devices that fully exploits the computing power of BNNs on mobile GPUs. 

Jiale Chen et al. [13] presents a model split framework, namely, splitCNN, in order to 

run a large CNN on a collection of concurrent IoT sensors. The splitCNN achieves 

significant reduction in the model size and inference time while maintaining similar 

accuracy. Although these studies have made significant progress in inference accelera-

tion, there are still some limitations to the current work; most of these studies are based 

on a particular device, cannot effectively use different GPUs to accelerate inference, 

and the cross-platform problem remains unresolved.  
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3 Design,Implementation and Optimization of CNN on OpenCL 

3.1 Parallel Strategy for Convolution Layer 

Traditional parallel computing of convolution usually uses the method of converting 

convolution to matrix multiplication. This kind of method is called im2col. Mo-

bileNet[14] uses deep separable convolution to replace the traditional convolution op-

erations, which greatly reduces the number of mathematical operations and parameters. 

It uses depth wise convolution (DWC) and point wise convolution (PWC) to replace 

traditional convolution. We use OpenCL to design a kernel function to accelerate depth 

wise convolution of deep separable convolution and use matrix multiplication method 

to accelerate point wise convolution of deep separable convolution.  

In order to achieve cross-platform performance portability, we use OpenCL to imple-

ment im2col operation and combine the matrix multiplication API provided by clBLAS 

library to speed up traditional convolution in parallel.  

When using the clBLASCgemm function in clBLAS to speed up batch convolution 

operations, im2col needs to first convert the four-dimensional input data (NCWH) into 

a two-dimensional matrix, and then the clBLASCgemm function is called to complete 

the multiplication of input matrix and convolution core weight matrix. The output matrix 

is stored in the form of CNWH, so the data need to be rearranged into the storage in the 

form of NCWH. At the same time, the final output of clBLAS only completes the con-

volution operation without bias, so it is necessary to start another kernel function to com-

plete the operation of adding bias. 

Therefore, in order to realize the clBLAS accelerated convolution operation, it is nec-

essary to use OpenCL to implement three kernels, As shown in the left picture of Fig. 1, 

to perform im2col, data conversion and adding bias respectively. 
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Batch 1

Batch 2

 

Fig. 1. Convolution process by suing clBLAS(left picture) and mapping relationship of OpenCL 

global index space for deep convolution(right picture)  

 

The process of depth separable convolution operation on the output feature map is equiv-

alent to a vector point product. The calculation process of different pixels is independent 

and can be carried out in parallel. In the structure of convolution neural network, the size 

of convolution filter is generally small, if using parallel reduction, the cost of synchro-

nization may outweigh the benefits of parallelism, so the result of different filter’s pixels 

are added serially. Therefore, the parallel scheme of deep convolution calculation 
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designed by OpenCL is as follows: the size of the global index space corresponds to the 

number of pixels in the output feature map, that is, each work item is responsible for 

calculating a pixel in the output feature map, and a certain number of work items are 

formed into a working group. The global index space is set to three dimensions: x, y and 

z. The x dimension corresponds to the pixels of the same channel in the output feature 

map, the y dimension corresponds to the number of channels in the output feature map, 

and the z dimension corresponds to the batch size of the output feature map. The pixel 

points that each thread is responsible for is determined by obtaining the global index 

value. The mapping relationship is shown in the right figure of Fig. 1.   

For the depth convolution operation, the input data addresses to be accessed by con-

secutive pixels located in the same channel feature map are consecutive, and the weight 

addresses are the same. Therefore, in order to combine memory access, consecutive in-

dex values in the global index space should correspond to two consecutive output feature 

maps. pixel. The point-by-point convolution is the same as the traditional convolution 

method, except that the size of the convolution kernel is changed to 1×1, so we use the 

matrix multiplication convolution implemented earlier to speed up the point-by-point 

convolution. 

 

3.2 Parallel Strategy for Other Layers 

In order to achieve the parallel acceleration of the deep convolution neural network 

inference stage in OpenCL, other operations in the inference stage need to be imple-

mented in parallel, such as global average pooling, shortcut operation, batch normaliza-

tion, activation function and full connection operation. 

Global mean pooling directly calculates the global mean of the input feature map. The 

Shortcut operation is equivalent to a matrix addition operation. Batch normalization is 

to calculate each pixel in the input feature map according to the calculation process of 

formula (2) and activation function is to calculate the activation function for each pixel 

in the input feature map, and the fully connected layer can be regarded as a dot product 

operation of two vectors. Similar to convolution operations, these operations output a set 

of feature maps. The computation of pixels in the feature map is independent. Therefore, 

we use the same parallel approach as convolution to design the kernel function. Finally, 

the overall inference process of the OpenCL-based parallel deep convolutional neural 

network is shown in Fig. 2.  

 

Input network 
weight parameters

Setting up the 
network structure

OpenCL 
initialization

Input data

Copy data Inference

Copy dataresults

Host Device

 
Fig. 2. Inference flow of parallel deep convolution neural network based on OpenCL 
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3.3 Kernel Fusion and Increasing Global Task 

Since the start of the kernel takes extra time, as the number of network layers increases, 

using kernel frequently would increase more extra consumption. We can use kernel 

fusion method to reduce the consumption. As Fig. 3 shown, we combine the two oper-

ations of BN and Relu, as well as the operations of shortcut and Relu.  

 

Batch  

normalization

Relu

+

                   

Shortcut

Relu

Convolution

...

...

Batch  

normalization
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Shortcut+Relu

Convolution
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Fig. 3. Schematic diagram of the kernel fusion method 

 

For the kernel fusion of batch normalization and convolution, we can implement it by 

using the following formula. First, the convolution formula shown as (1). 

𝑋𝑐𝑜𝑛𝑣 = 𝑥 × 𝑊 + 𝑏 (1) 

𝑋𝑐𝑜𝑛𝑣  represents output, 𝑥  represents input, 𝑊  represents weights，𝑏  represents 

bias. And the formula of batch normalization shown as (2). 

𝑋𝑏𝑛 = 𝛾 ×
(𝑥 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (2) 

𝛾，𝛽 are learnable parameters, 𝐸[𝑥] represents the mean of 𝑥, 𝑉𝑎𝑟[𝑥] represents 

the variance of 𝑥. 𝜀 is a minimal positive number to prevent denominator from be-

coming zero. We can combine formula (1) and formula (2):  

𝑋𝑏𝑛 = 𝑥 ×
𝛾𝑊

√𝑉𝑎𝑟[𝑥] + 𝜀
+

𝛾(𝑏 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (3) 

And then we can use the follows formulas to obtain new weights and bias to replace 

old ones.  

𝑊𝑛𝑒𝑤 =
𝛾𝑊

√𝑉𝑎𝑟[𝑥] + 𝜀
          𝑏𝑛𝑒𝑤 =

𝛾(𝑏 − 𝐸[𝑥])

√𝑉𝑎𝑟[𝑥] + 𝜀
+ 𝛽 (4) 

When we obtain new weights and bias and replace old values, we can use them to 

compute formula (1) directly, and obtain the same results as using old values to 

compute formula (1) and formula (2). So the batch normalization operation is omit-

ted and has no effect on the results. 
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In addition to kernel fusion, it can further improve performance by increasing batch 

size to increase the workload per core. and occupy more GPU resources. Compared to 

inputting only one image, inputting multiple images at a time can reduce the number of 

OpenCL kernel functions to start, which will reduce the extra time consumption. 

4 Experiment and Evaluations 

4.1 Experimental Environment  

In order to verify the inference performance of the OpenCL accelerating convolution 

neural network proposed in this paper, we implemented a deeply separable convolutional 

neural network and a residual neural network using OpenCL as shown in Table 1. We 

run the proposed method on NVIDIA and AMD GPU to verify portability. The hardware 

information is shown in Table 2. 

 

Table 1. The networks used in experiments 

CNNs Convolution layers Dataset accuracy 

MobileNet v1[14] 27 ImageNet 70.81% 

ResNet[15] 21 Cifar 10 91.7% 

 

Table 2. The platforms used in experiments 

GPU Single Precision 

Peak Performance 

Cores Memory 

AMD Radeon Vega Frontier 13.1TFLOPS 4096 cores 1600MHz 16GB 483GB/s 

NVIDIA GTX 1070 6.5TFLOPS 1920 cores 1506MHz 8GB 256GB/s 

 

As shown in Table 1, the depth separable neural network is MobileNet v1, which is used 

to classify the Imagenet dataset. There are 27 convolution layers and one full connection 

layer. The residual neural network we used has 21 convolution layers. And the network 

is used to classify cifar10 dataset. In addition, the host side of the NVIDIA platform is 

an AMD FX-8300 processor with a frequency of 3.3GHz, the host side of the AMD 

platform is an AMD A10-7870K Radeeon R7 processor with a frequency of 3.9GHz, 

and the host operating system is Ubuntu16.04. The Caffe version is the Hip version, 

which is an accelerated Caffe GPU version based on ROCm. ROCm is AMD's general-

purpose GPU programming framework. This paper adopts ROCm 2.0. The compiler 

uses g++ 5.4.0. OpenCL uses OpenCL 1.2.  

 

4.2 Performance Comparison of Depthwise Convolution Operations 

Firstly, we compare our proposed method that accelerates depth convolution with Caffe 

and Diagonal method proposed in[16] . We extract depth convolution from MobileNet 

v1, and divide them into 9 different layers according to the size of input feature map and 
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convolution parameters. The results for batchsize=1 are shown in Table 3.  

Table 3. Time comparison of different depth convolution parallel methods 

 OpenCL(ms) Caffe(ms) Diagonal(ms) 

Conv2_1dw 0.1488 1.7928 0.2915 

Conv2_2dw 0.1461 2.8236 0.3024 

Conv3_1dw 0.1531 4.2580 0.6749 

Conv3_2dw 0.1005 5.1743 0.4954 

Conv4_1dw 0.1420 9.3704 1.0614 

Conv4_2dw 0.0991 13.2270 0.7529 

Conv5dw 0.0985 27.2045 1.6190 

Conv5_6dw 0.0895 28.0888 1.7314 

Conv6dw 0.0879 51.3935 4.0700 

 

From the result data in the Table 3, we can see that the proposed method is obviously 

better than the other two. Caffe's depth convolution performance is the worst, and with 

the increase of the number of input channels, the serial execution between multiple chan-

nels results in low parallel efficiency. Especially in several layers of conv4_1dw to 

conv6d, the input feature maps become relatively small, result in the matrices converted 

by im2col become small, too. So it can’t use more GPU computing resources. The diag-

onal method avoids serial execution and directly converts the convolution filters and 

input data into two large matrices for parallel acceleration. Although it avoids the over-

head of serial execution and increases the utilization of GPU hardware resources, it also 

increases the computational complexity and runtime due to its conversion of deep con-

volution into traditional convolution. 

 

4.3 Comparison of Parallel DCNN Inference Performance 

After the implementation of OpenCL inference to accelerate MobileNet V1 and residual  

neural network for performance comparison with Caffe. First, we run the forward prop-

agation of MobileNet V1 network and residual neural network on the same GPU through 

Caffe. The inference time of MobileNet V1 network and residual neural network are 

shown in Table 4.  

 

Table 4. Parallel acceleration time of MobileNet V1 and ResNet neural network inference 

   Caffe(ms) OpenCL(ms) Speedup 

MobileNet v1 45.9460 7.4873 7.2275 

ResNet 8.1670 4.4939 1.8174 

 

According to Table 4, the parallel inference time of MobileNet V1 is 7.4873 ms, which 

is 7.2275 times faster than that of Caffe GPU, thanks to the acceleration of deep convo-

lution. The parallel inference time of residual neural network is 4.4939 ms, which is 

1.8174 times faster than that of Caffe. In order to further optimize the acceleration, we 

use the method of kernel fusion to eliminate the time proportion of batch normalization 
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and activation function. 

We using kernel fusion combine the kernels of convolution and batch normalization, 

after this, we continue to combine the kernels of convolution and activation. Finally, the 

result shown in Table 5 We can see that, after kernel fusion. The performance of Mo-

bileNet v1 improves 22.26%, and the performance of ResNet improves 30.95%. 

 

Table 5. Process time before and after kernel fusion 

 Before (ms) After (ms) Reduced time percentage (%) 

MobileNet v1 7.48729 5.8145 22.26 

ResNet 4.4939 3.1031 30.95 

 

After kernel fusion, we can increase the batch size to improve global task load, and to 

occupy more hardware resources. Compared to classifying only one image at a time, 

increasing batch size can reduce the overhead of OpenCL kernels when classify the same 

number images.  

 

Table 6. Inference time of MobileNet V1 and ResNet in different batch size  

Bitch OpenCL GPU Caffe GPU Diagonal GPU 

Size MobileNet V1 ResNet MobileNet V1 ResNet MobileNet V1 

1 5.8145ms 3.1031ms 45.9460ms 8.1670ms 16.5178ms 

5 2.1951ms 0.7953ms 40.0650ms 1.6890ms 6.1303ms 

10 1.7568ms 0.4330ms 39.6705ms 0.9090ms 5.3144ms 

20 1.7178ms 0.2543ms 40.7603ms 0.4940ms 6.0869ms 

30 1.6190ms 0.1928ms 40.1693ms 0.3510ms 5.8368ms 

40 1.5480ms 0.1652ms 47.8613ms 0.2820ms 5.4615ms 

50 1.4891ms 0.1434ms 46.6712ms 0.2500ms 5.1117ms 

60 1.4108ms 0.1385ms 45.4217ms 0.2230ms 4.8595ms 

70 1.2815ms 0.1273ms 50.3016ms 0.2130ms 3.8701ms 

80 1.2642ms 0.1597ms 48.8303ms 0.1960ms 3.8503ms 

90 1.2024ms 0.1373ms 48.2878ms 0.1900ms 3.8516ms 

100 1.2370ms 0.1494ms 52.8464ms 0.1840ms 3.7961ms 

 

As shown in Table 6, first, with the increase of batch size, the time of inference single 

image decreases gradually. But when the batch size is above 90, even if the batch size 

increases, the time for a single image will not decrease any more. Therefore, the Mo-

bileNet V1 network performs best when the batch size is 90, It shows that when the batch 

size is 90, the number of work items can make full use of the hardware computing re-

sources of GPU. At this time, the inference time of an image is 1.2024 ms. Residual 

network has the best performance when the batch size is 70. The inference time of an 

image is 0.1273 ms, which improves the performance by 79.32% and 95.90% respec-

tively compared with that before increasing the global task load. 

 

4.4 Performance Comparison of Different Hardware Environments 
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To verify OpenCL code’s portability, we test the performance of parallel deep convolu-

tional neural networks on NVIDIA GeForce GTX 1070.  The results are shown in Table 

7. 

 

Table 7. Inference time of MobileNet V1 and ResNet on NVIDIA GeForce GTX 1070 

   Bitch 

   Size 

OpenCL implementation Caffe implementation 

MobileNet V1 ResNet MobileNet V1 ResNet 

1 3.9697ms 3.0494ms 31.3674ms 7.8862ms 

5 2.7944ms 0.9113ms 25.2806ms 1.7380ms 

10 2.4275ms 0.6165ms 26.2420ms 0.8253ms 

20 1.9580ms 0.3997ms 24.7225ms 0.4764ms 

30 1.9634ms 0.2786ms 25.3207ms 0.3343ms 

40 1.7546ms 0.2670ms 25.4780ms 0.2991ms 

50 1.7213ms 0.2498ms 25.6426ms 0.2583ms 

60 1.6903ms 0.2188ms 25.2632ms 0.2440ms 

 

As shown in Table 7, the method also shows good acceleration effect on NVIDIA GPU,  

combining with the performance of this method on AMD GPU, the OpenCL accelerated 

deep convolution neural network inference algorithm proposed in this paper has 

achieved good performance on both AMD GPU and NVIDIA GPU hardware platforms. 

Compared to Caffe implementation, the performance of MobileNet V1 network has been 

improved by 40.16 and 14.95 times, respectively. And residual neural network has been 

improved by 1.67 and 1.11 times, respectively. The OpenCL accelerated deep convolu-

tional neural network inference algorithm proposed in this paper is more effective in 

accelerating MobileNet v1, and some performance portability on NVIDIA and AMD 

GPUs. 

5 Conclusions 

In this paper, we propose an OpenCL-based parallel deep convolutional neural network 

inference algorithm with kernel fusion to further improve the performance and increase 

the global task load without affecting the accuracy of the algorithm. The problem of not 

being able to efficiently utilize different GPU devices to accelerate DNN inference is 

addressed.  

In the future, we will consider optimizing our approach for more hardware, and com-

bine it with kernel auto-tuning methods for automatic parameter tuning. 
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