
HAL Id: hal-04666404
https://hal.science/hal-04666404v1

Submitted on 1 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Appendix of the paper ”From document to program
embeddings: can distributional hypothesis really be used

on programming languages?”
Thibaut Martinet, Guillaume Cleuziou, Matthieu Exbrayat, Frédéric Flouvat

To cite this version:
Thibaut Martinet, Guillaume Cleuziou, Matthieu Exbrayat, Frédéric Flouvat. Appendix of the paper
”From document to program embeddings: can distributional hypothesis really be used on programming
languages?”. 2024. �hal-04666404�

https://hal.science/hal-04666404v1
https://hal.archives-ouvertes.fr

Appendix of the paper “From document to program
embeddings: can distributional hypothesis really be used

on programming languages?”
Thibaut Martineta,*, Guillaume Cleuzioua, Matthieu Exbrayata and Frédéric Flouvatb

aUniversity of Orléans, INSA-CVL, LIFO, EA 4022, F45067 Orléans, France
bAix Marseille Univ, CNRS, LIS, Marseille, France

ORCID (Thibaut Martinet): https://orcid.org/0000-0002-0170-9260, ORCID (Guillaume Cleuziou):
https://orcid.org/0000-0002-2885-1152, ORCID (Matthieu Exbrayat): https://orcid.org/0000-0002-1740-4752,

ORCID (Frédéric Flouvat): https://orcid.org/0000-0001-7288-0498

A Implementation
In order to compute the different program representations, we use the
python library tree-sitter[1], which contains parsers for a number of
programming languages, and allows us to parse a piece of code and
compute its AST, with leaf nodes corresponding to every token of the
code, and some additional abstract nodes to represent the hierarchical
structure of code.

About our AST format, we chose to convert tree-sitter one into a
custom one, in which the nodes correspond to so-called instructions,
which are either simple expressions (e.g. assignment, function call,
etc), control structure headers (without body statements, e.g. if/else,
loop, etc), or declaration statements (e.g. function, class, etc). Each
node has a list attribute containing the corresponding tokens. This
way, we can extract the set of instructions as well as the set of tokens,
reconstructing the original source code by walking through the nodes
in a depth-first order.

A.1 Anonymization of source code

First of all, we anonymized comments by replacing each one by a to-
ken _COMMENT_. We also anonymized each declared function and
class name by a token _FUNCTION_NAME_ or _CLASS_NAME_
respectively. Next, we anonymized each imported module and
tools by a token _MODULE_ or _TOOL_ respectively. And we
anonymized every constant by a token containing its type, e.g.
_CONST_INT_, _CONST_FLOAT_, etc.

Finally, we tried different anonymization strategies for the vari-
ables and function parameters, since they are the most impacting el-
ement of the code. We replaced the variables by a token _VAR_, but
we tried either to anonymize with or without a number, i.e. _VAR1_,
VAR2 and so on. We tried the same thing with function parameters,
but also either by a token _VAR_ or a token _PARAM_. We ended up
with the best results when anonymizing both with _VAR_ and without
numbers. Here is an example of the resulting anonymization strategy
of the program below:

0 def _FUNCTION_NAME_(_VAR_):
1 _VAR_ = _CONST_NONE_
2 for _VAR_ in _VAR_:
3 if _VAR_ is _CONST_NONE_ or _VAR_ > _VAR_:
4 _VAR_ = _VAR_
5 return _VAR_

B Program representation examples
Here is an example of a program, corresponding to the anonymized
one above, and to the ASTs and execution trace below:

∗ Corresponding Author. Email: thibaut.martinet@univ-orleans.fr

0 def max(l):
1 res = None
2 for e in l:
3 if res is None or e > res:
4 res = e
5 return res

B.1 AST example

Example of token-based and instruction-based ASTs are shown in
figs. 1 and 2 respectively, based on the above source code.

Program

def___max___(___l___)___:

res___=___None for___e___in___l___:

if___res___is___None___or___e___>___res___:

res___=___e

return___res

Figure 1. instruction-based AST

B.2 Execution trace example

Here is an example of execution trace, corresponding to the above
source code executed with the input [2, 3, 1, 0].

0 def max(l):
1 res = None
2 for e in l:
3 if res is None or e > res:
4 res = e
2 for e in l:
3 if res is None or e > res:
4 res = e
2 for e in l:
3 if res is None or e > res:
2 for e in l:
3 if res is None or e > res:
5 return res

https://orcid.org/0000-0002-0170-9260
https://orcid.org/0000-0002-2885-1152
https://orcid.org/0000-0002-1740-4752
https://orcid.org/0000-0001-7288-0498

Program

Function

def max (l) : Inst

res = None

Loop

for e in l : Inst

if res is None or e > res : Inst

res = e

Inst

return res

Figure 2. token-based AST

Table 1. Analogy evaluation per types, with PV-SG architecture, after 500 epochs on NC5690

Source Trace AST

Sec2vec∗(Ht
S) Sec2vec∗(Hi

S) Sec2vec∗(Ht
T) Sec2vec∗(Hi

T) Sec2vec∗(Ht
A) Sec2vec∗(Hi

A)

Syntactic analogies 0.335 ±0.016 0.203 ±0.011 0.268 ±0.015 0.164 ±0.010 0.471 ±0.015 0.151 ±0.023

Semantic analogies 0.966 ±0.000 0.006 ±0.003 0.964 ±0.001 0.007 ±0.003 0.942 ±0.012 0.007 ±0.003

C Additional evaluations with PV-SG and
instruction-based models

The results of our framework on PV-SG architecture are shown in
figs. 3 and 4 and table 1, and on instruction-based models in figs. 5
to 7.

Figure 3. Clustering index ρ monitoring on dataset NC5690 the external
information (here the exercises) captured by different sec2vec models (with
PV-SG architecture): on source codes (blue), execution traces (green) and
ASTs (brown).

Figure 4. Cartography evolution on NC5690 from different distributional
hypotheses, using the PV-SG architecture, after training phases of different
number of epochs, reduced to 2 dimensions by t-SNE models. The dot colors
are based on the exercises.

Figure 5. Analogy evaluation of different instruction-based sec2vec mod-
els applied on NC5690, after training phases of different number of epochs,
aligned by number of epochs on the left, and by number of iterations on the
right (one epoch consists of as many iterations as learning examples). The
scale from the paper has been kept here.

Figure 6. Analogy evaluation of different instruction-based sec2vec mod-
els (with PV-SG architecture) applied on NC5690, after training phases of
different number of epochs, aligned by number of epochs on the left, and by
number of iterations on the right (one epoch consists of as many iterations as
learning examples). The scale from the paper has been kept here.

Figure 7. Analogy evaluation of sec2vec models (with PV-SG architecture)
based on tokens in source code and execution trace, applied on NC5690, after
training phases of different number of epochs, aligned by number of epochs
on the left, and by number of iterations on the right (one epoch consists of
as many iterations as learning examples). The scale from the paper has been
kept here.

D Additional evaluations on other datasets

Figure 8. Cartography evolution on AD2022 (python) from different dis-
tributional hypotheses, after training phases of different number of epochs,
reduced to 2 dimensions by t-SNE models. The dot colors are based on the
exercises.

Figure 9. Cartography evolution on ProgPedia (python) from different dis-
tributional hypotheses, after training phases of different number of epochs,
reduced to 2 dimensions by t-SNE models. The dot colors are based on the
exercises.

Figure 10. Cartography evolution on AD2022 (java) from different distri-
butional hypotheses, after training phases of different number of epochs, re-
duced to 2 dimensions by t-SNE models. The dot colors are based on the
exercises.

Figure 11. Cartography evolution on ProgPedia (java) from different dis-
tributional hypotheses, after training phases of different number of epochs,
reduced to 2 dimensions by t-SNE models. The dot colors are based on the
exercises.

Figure 12. Clustering index ρ monitoring on dataset AD2022 (python) the
external information (here the exercises) captured by different sec2vec mod-
els : on source codes (blue), execution traces (green) and ASTs (brown).

Figure 13. Clustering index ρ monitoring on dataset ProgPedia (python)
the external information (here the exercises) captured by different sec2vec
models : on source codes (blue), execution traces (green) and ASTs (brown).

Figure 14. Clustering index ρ monitoring on dataset AD2022 (java) the ex-
ternal information (here the exercises) captured by different sec2vec models :
on source codes (blue), execution traces (green) and ASTs (brown).

Figure 15. Clustering index ρ monitoring on dataset ProgPedia (java) the
external information (here the exercises) captured by different sec2vec mod-
els : on source codes (blue), execution traces (green) and ASTs (brown).

References
[1] M. Brunsfeld, P. Thomson, J. Vera, A. Hlynskyi, P. Turnbull, T. Clem,

and A. Muller. tree-sitter/tree-sitter: v0. 20.0, 2018.

	Implementation
	Anonymization of source code

	Program representation examples
	AST example
	Execution trace example

	Additional evaluations with PV-SG and instruction-based models
	Additional evaluations on other datasets

