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Abstract—To acquire color images, most commercial cameras
rely on color filter arrays (CFAs), which are a pattern of
color filters overlaid over the sensor’s focal plane. Demosaicking
describes the processing techniques to reconstruct a full color
image for all pixels on the focal plane array. Most demosaicking
methods are tailored for a specific CFA, and tend to work
poorly for others. In this work we present an algorithm for
demosaicking a wide variety of CFAs. The proposed method
allows to blend the knowledge of the CFA with information
coming from data, employing a novel transformation and pattern-
invariant loss function. The method is based on the unrolling of
an algorithm based on a neural network learned on available
examples. Preliminary experiments over RGB and RGBW CFAs
show that the method performs well over a range of CFAs and is
competitive for CFAs for which competing methods were tailored
to work well on.

Index Terms—Demosaicking, unrolling, image processing, deep
learning, color filter arrays.

I. INTRODUCTION

In many applications such as small satellites or smartphone
cameras the size of the sensor plays a crucial role. A common
way to keep the sensors small is to use color filter arrays
(CFAs). A CFA defines a pattern of color filters which is
overlaid over the sensor’s pixels. Because each pixel only
embeds the information for one color demosaicking is required
to restore the missing colors.

The choice of the CFA itself leads to drastic changes in the
raw acquisition, increasing dependency of the demosaicking
algorithm to the CFA. The Bayer pattern shown on Fig. 1a is
the most widespread pattern that uses RGB filters. Addition-
ally, a newer family of CFAs uses RGBW filters (e.g., Fig. 1c)
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Fig. 1: Examples of CFAs.

which improves signal-to-noise ratio (SNR), especially in low
light condition.

This great variety of configurations makes demosaicking
difficult as most methods are tailored to a specific CFA. Many
categories of demosaicking techniques exist. For example
classic interpolation and its variants [4], [5]. Those methods
should be tailored to each CFA and thus lack invariance to the
choice of the CFA to work on.

Model-based methods rely on a forward model representing
the CFA operation [6], [7] and prior knowledge of the images
to be reconstructed. Those methods are invariant to the CFA,
but depend greatly on the quality of the forward model and
the choice of the prior, which can be a limiting factor.

Deep learning methods have recently emerged [8], [9]. They
deliver great performances thanks to an end-to-end training,
with couples of reference images and related raw acquisitions.
Yet this same training comes with a specialization on the CFA



the network is trained on and could need vast quantities of
data. In practice those methods are not robust to new CFAs
and are too computationally expensive to train on classic
computers.

Finally, a growing research domain aims at fusing model-
based methods with data-driven ones. Deep Image Prior (DIP)
[10] uses a neural network architecture as a prior. This method
can be considered as unsupervised and works like an iterative
algorithm, which provides a good invariance to the choice of
the CFA. Such methods do not need a prior but a forward
model. However, they are very computationally expensive, and
its performances depends on the choice of the architecture.

Algorithm unrolling [11]–[13] is another possibility which
has proven successful in various image processing tasks. It
tries to learn prior knowledge from a dataset while still using
a forward-model. Such methods should retain high robustness
to CFA changes while benefiting from the training of the prior.
However, experiences show that unrolling algorithms are prone
to overfit the dataset used for training and the learned prior
becomes dependent on the type of forward model used losing
the advantage of invariance provided by conventional model-
based approaches.

Therefore, the following work proposes a demosaicking
method based on unrolling which is robust to the choice of the
CFA. This paper presents the following novel contributions:

• An unrolled algorithm for demosaicking for varied CFAs.
It uses an inexpensive way to compute matrix inversion in
the demosaicking problem and a loss function enhancing
robustness to the CFA.

• A loss function which limits the network from learning
CFA-specific characteristics, focusing on the demosaick-
ing problem itself regardless of the considered CFAs.

II. METHODOLOGY

A. Problem Formulation

Let us denote a vectorized RGB image by x ∈ R3n×1. The
image formation usually assumes a linear model and additive
Gaussian noise [6], [7], [14]. It takes the RGB image and
produces the raw acquisition to represent the camera’s image
formation model, which is thus written as:

y = Ax+ η, (1)

where the degradation operator A ∈ Rn×3n encodes a CFA.
It will sample the raw acquisition y ∈ Rn×1 from the RGB
image x, and η ∈ Rn×1 is a vector noise. The objective is to
reconstruct x using y and the knowledge of A.

The problem is approached by minimizing a convex cost
function which is the sum of two terms. First is the data
fidelity term F = ∥y −Ax∥2 ensuring consistency with the
acquisition, which derives from the log-likelihood estimator
when η is a zero-mean Gaussian noise. The second term is
a regularizer R : R3n×1 → R encoding constraints on the
reconstruction:

x̂ ∈ argmin
x

F (x) +R(x). (2)

The arbitrary choice of R is a limitation of model-based
approaches as it is hard to find the optimal regularizer for
a given forward model and a given acquisition. Nonetheless,
some regularizers are widely used like Total Variation (TV)
[15] which yields good results in a wide range of image
processing tasks.

B. Unrolled Algorithm

a) ADMM solver: The cost function (2) is minimized by
an iterative method such as the Alternating Direction Method
of Multipliers (ADMM) [7], [16]. Which consists in iterating
the following three steps [17], [18]:

xk+1 = proxρ,F (z
k − uk)

zk+1 = proxτ,R(x
k+1 + uk)

uk+1 = uk + xk+1 − zk+1
(3)

where k ∈ N is the iteration index, proxρ,F (v) =
argmin

w
F (w) + ρ

2∥w − v∥2 and proxτ,R is defined in the

same way. ρ, τ ∈ R+
∗ are the proximal steps of the algorithm

and one has to tune them empirically in addition to the
complex choice of R which leads to suboptimal performances.

b) Unrolling ADMM: Algorithm unrolling offers a way
to benefit from deep learning networks, by replacing the term
proxτ,R and the hyperparameters with learnable layers [11],
[19]. It seeks to fuse the expressive power of deep learning
methods with the interpretability and robustness of model-
based methods.

Algorithm unrolling takes an iterative algorithm, such as
ADMM, and unfolds a certain number K iterations of the
algorithm. At iteration k ∈ [0,K − 1] the call to proxτ,R is
replaced by a neural network Nθk , θk being the trainable pa-
rameters. Algorithm 1 presents the pseudocode of the method,
which is similar to ADMM. However, if the overall algorithm
keeps the iterative framework, each iteration can be different.

Algorithm 1 Unrolled ADMM algorithm fθ over K iterations.

Input: y ∈ Rn×1,A ∈ Rn×3n,K ∈ N
Output: xK−1 ∈ R3n×1

1: x0 ← ATy
2: z0 ← ATy
3: u0 ← 0
4: for k = 0 to K − 1 do
5: xk+1 ← DAk(zk,uk)
6: zk+1 ← Rk(xk+1,uk)
7: uk+1 ←Mk(xk+1, zk+1,uk)
8: end for

As shown in Algorithm 1, each iteration of the unrolled
algorithm mirrors those of ADMM in (3) and is composed
of three distinct blocks of layers. At iteration k the blocks
are: the data block DAk performing the xk+1 update, the
regularizer blockRk for zk+1 and the multiplier blockMk for
uk+1. All those blocks contain learnable parameters which are
independent of one iteration to another. However, the network



tends to lose its invariance property and overfits on the CFAs
seen during the training. In the following, fθ(A,y)k will
denote the result of the k-th iteration of Algorithm 1 with
learnable parameters θ as a function of a CFA A and a raw
acquisition y.

C. Proposed Method
a) Data block DAk: This block remains largely un-

changed compared to its ADMM counterpart. It consists in a
closed-form formula involving a learnable scalar which serves
as the proximal iteration ρk:

DAk(zk,uk) = (ρkI +ATA)−1(ρk(zk−uk)+ATy), (4)

where I is the identity matrix, ρk ∈ R+
∗ is learnable and A

is the degradation operator presented in (1). The computation
of (ρkI+ATA)−1 is unfeasible on a computer as the matrix
is too large. We propose to compute using the Sherman-
Morrison-Woodbury formula found in [17]:

(ρkI +ATA)−1 =
1

ρk
(I −AT (I +

1

ρk
AAT )−1A). (5)

Eq. (5) is particularly useful in the demosaicking problem
as the matrix AAT is a diagonal matrix. Even if the matrix

(I+
1

ρk
AAT ) is still large its inversion is straight forward as

it is only the element-wise inversion of its diagonal elements.
Combining (4) and (5) gives the final form of the data block.

b) Regularizer block Rk: We choose to implement the
regularizer block as a scaled version of the U-Net network [20]
as using relatively small convolutional neural network (CNN)
at each iteration helps keeping the size of the network globally
constrained. The architecture of the network is composed of
the same kind of layers as U-Net, using double convolutions,
max pooling and upsampling layers. Compared to the U-Net
this network is much more lightweight, keeping the overall
algorithm accessible for personal computers as the use of the
degradation model will guide the reconstruction, compensating
for the small size of the network. The block is thus represented
by the following equation:

Rk(xk+1,uk) = Nθk(xk+1 + uk),

where Nθk is the network presented previously. It is important
to note that even if the architecture is the same for all iterations
the weights θk are different. Forcing the weights to be equal
across the iterations would greatly reduce the expressive power
of the network.

c) Multiplier block Mk: The multiplier block is the
simplest one as it applies a straight forward closed-form
formula with a learnable scalar:

Mk(xk+1, zk+1,uk) = uk + ηk(xk+1 − zk+1),

with ηk ∈ R a learnable weight which allows the algorithm to
have a greater flexibility regarding the data. This block keeps
track of the residual between xk+1 and zk+1 and should help
the future iterations to refine the other variables.

d) Number of parameters: The last iteration of fθ has
only the DA block as the other blocks are only useful to the
next iteration. Consequentially the total number of parameters
is given by:

|θ| = (K − 1)(2 + |θk|) + 1, (6)

where K the number of iterations and |θk| the number of
parameters in the regularizer block at iteration k.

e) On vanishing gradients: Even if the network has few
parameters it is relatively deep as it stacks CNNs one on
top of the others, which quickly leads to vanishing gradients.
We propose to replace the ReLU activation functions in the
regularizer blocks Rk by LeakyReLU functions, which limits
the appearance of vanishing gradient.

Another important element resides in the loss function.
Instead of performing the back propagation on the output of
the final iteration fθ(A,y)K−1, we propose to use all outputs
from the intermediate iterations fθ(A,y)k, k ∈ [0,K − 1].
Computing the loss between the iterations allows the gradient
flow to go directly to the previous iterations instead of going
through all the previous iterations, with less risk of vanishing
gradients along the way.

f) CFA invariant loss function: Unrolled algorithms are
prone to overfit on the CFA they were trained on, limiting
their robustness when applied on images acquired with other
CFAs. Indeed, each new CFA to demosaick is a new problem
in itself, which explains the specialization of the demosaicking
methods found in the literature. To alleviate this problem we
propose a novel loss function that will provide the algorithm
a global view of the demosaicking task. CFAs (see Fig. 1)
can be seen as different spatial arrangements of patterns. If
we consider a set of geometrical transformation T such as
a subset of the isometries of R2: T ⊆ {g : R2 → R2 |
|g(a) − g(b)| = |a − b|, ∀a, b ∈ R2}, we can generate new
CFAs increasing their diversity. For example, Fig. 2 shows
such geometric transformations applied to a CFA. Each initial
CFA seen during training generates multiple new ones which
are geometric transformations of the initial one. This ensures
the network will not overfit on specific CFAs and increases the
capability to handle images acquired with other CFAs. In other
terms this loss function favors robustness to new CFAs but
also an invariant reconstruction to geometric transformations
as follows:

fθ(T (A),yT (A)) = fθ(A,yA) = x, ∀T ∈ T ,

where A is a CFA seen during training, yA = Ax the raw
acquisition from A and yT (A) = T (A)x the raw acquisition
from T (A). The concept is related to the equivariance concept
proposed in [21] for promoting some structural features in the
results (e.g., translation equivariance). In this work the concept
is adapted to favor the image reconstruction operator to be
CFA-agnostic.

Given Φ the training dataset of clean images and Ψ the set
of CFAs to be trained on, avoiding vanishing gradients and the
invariant reconstruction property are enforced by the following
loss function:
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Fig. 2: Sony CFA and some possible transformations.

Lθ(Ξ,Ψ, T ) = 1

K|Ξ||Ψ||T |

K−1∑
k=0

|Ξ|∑
i=1

|Ψ|∑
j=1

|T |∑
l=1

∥xi − x̂i
k,j,l∥2,

where xi ∈ Ξ, A ∈ Ψ and x̂i
k,j,l = fθ(Tl(Aj), Tl(Aj)x

i)k
the output of the algorithm at iteration k.

III. EXPERIMENTS

The proposed method 1 is initialized with K = 4 iterations
and 32 channels for the first convolution of the networks.
Each iteration contains about 1 million of parameters to train,
thus following (6) the overall method contains 3.2 million of
parameters. This is relatively small compared to other deep
learning methods in image processing. The training is done
on a set Φ of 64× 64 overlapping patches from the BSD500
[22] for 200 epochs. The initial learning rate is set to 1×10−2.

The method is trained on a set Ψ of 13 different CFAs (both
RGB and RGBW). Some of the masks that were used for the
training are seen in Fig. 1a to Fig. 1e, and we label them as
”seen” in the tables and figures. Some other patterns, such as
the Xtrans in Fig. 1f, were never utilized in the training and are
used to test the ability of the proposed network to generalize
to unknown patterns. Those are labeled as ”unseen” in tables
and figures.

Additionally, the set T of geometrical transformations is
composed of all the possible cyclic translations, their 4 differ-
ent rotations with an angle of π/2 and vertical and horizontal
reflections. To increase the number of variations T also in-
cludes all the possible compositions of those transformations.
An example of such transformations is shown in Fig. 2.

It is worth noting that the unseen patterns cannot be gen-
erated by the geometric transformation of the seen patterns,
making them effectively never seen during the training phase.

The method, denoted ”Ours v2”, will be compared to six
other methods: bilinear interpolation; pan-sharpening, adapted
from [4] to work with multiple CFAs; PIP-Net [23] a su-
pervised demosaicking method trained for Bayer demosaick-
ing, which uses 4.5 million of parameters (a 50% increase
compared to our method); total variation [7] which is fully
model-based; Deep Image Prior (DIP) [10] a state-of-the-art
technique for image reconstruction. Finally, the method will
be compared to plain ADMM unrolling, denoted ”Ours v1”,
using the same architecture and training set as proposed above
without the invariant procedure. This highlights the fact that
unrolling alone is not able to generalize to other CFAs and will

1The code, written in Pytorch, and the weights are publicly available at
https://github.com/mattmull42/unrolled demosaicking

(a) Ground truth

(b) Ours v2 (33.67dB) (c) Ours v1 (26.60dB)

(d) PIP-Net (12.99dB) (e) DIP (33.12dB)

Fig. 3: Ouputs and PSNR for various methods on the unseen
Xtrans CFA (best viewed with zoom).

overfit on the seen ones. Tables I and II present the PSNR
(dB) and the SSIM of all those methods on the testing subset
of the BDS500 dataset, on seen or unseen CFAs.

Table I shows that our method yields good results and is
on par with unrolling without invariance on CFAs that were
seen during training. The high quality of the reconstruction
is expected as the networks were explicitly trained for this
task. PIP-Net achieves comparable results but only for Bayer,
which is a clear limitation of the method, the network should
be retrained for each CFA whereas our method is lighter and
works on thirteen CFAs with one training. Finally, bilinear
interpolation, pan-sharpening technique, TV-ADMM and DIP
work on all the tested CFAs but are not competitive enough.

Fig. 3 presents the outputs of the method without the
invariance property. Indeed, the checkerboard pattern present
in Fig. 3c shows that the unrolling method alone is unable
to perform with this CFA. On the contrary once invariance
is enabled the reconstruction is much more successful as in
Fig. 3b.

On CFAs that were not seen during training, unrolling
without invariance fails even though it was trained on a wide
variety of CFAs. However, with invariance the method is much
more robust to new CFAs, even if the results are not as good
as for seen ones. The geometric transformations in the training
effectively helped the network to focus on generic features of

https://github.com/mattmull42/unrolled_demosaicking


Method Bayer (seen) Chakrabarti (seen) Xtrans (unseen)
PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

Ours v2 41.54± 2.77 0.992± 0.003 39.50± 2.85 0.990± 0.004 35.43± 1.81 0.959± 0.021
Ours v1 42.30± 2.89 0.993± 0.002 38.90± 2.49 0.988± 0.005 29.33± 1.65 0.839± 0.082
DIP [10] 31.37± 2.96 0.925± 0.039 33.20± 2.41 0.963± 0.011 30.21± 2.57 0.904± 0.064

TV-ADMM [7] 29.65± 3.54 0.896± 0.052 34.22± 3.04 0.975± 0.008 29.08± 3.49 0.883± 0.057
PIP-Net [23] 43.14± 1.80 0.993± 0.002 9.06± 1.91 0.143± 0.029 13.56± 1.17 0.461± 0.080

Pan-sharpening [4] 25.14± 2.75 0.859± 0.056 28.79± 2.70 0.934± 0.017 24.41± 2.45 0.812± 0.060
Bilinear 27.79± 3.21 0.869± 0.063 21.62± 2.70 0.583± 0.132 26.03± 2.92 0.791± 0.079

TABLE I: Mean and standard deviation of the PSNR and SSIM on two seen CFAs and one unseen. Best/second best.

the CFAs and avoided a specialization on specific ones.

Method Ψ (13 trained CFAs) 3 non-trained CFAs
PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

Ours v2 40.6 ± 2.9 0.99 ± 0.00 34.5 ± 2.3 0.94 ± 0.04
Ours v1 40.8 ± 2.8 0.99 ± 0.00 28.7 ± 2.2 0.84 ± 0.09

TV-ADMM [7] 31.7 ± 3.4 0.94 ± 0.03 29.9 ± 3.6 0.90 ± 0.05
PIP-Net [23] 12.9 ± 1.7 0.28 ± 0.05 15.1 ± 1.3 0.49 ± 0.08

Pan-sharpening [4] 26.9 ± 2.9 0.88 ± 0.05 24.8 ± 2.6 0.83 ± 0.07
Bilinear 24.8 ± 3.0 0.73 ± 0.10 26.9 ± 3.1 0.83 ± 0.07

TABLE II: Mean and standard deviation of the PSNR and
SSIM on seen and unseen CFAs. Best/second best.

Additionally, Table II summaries the performances of the
methods on Ψ and on the 3 unseen CFAs. The invariant loss
does not improve the performances on Ψ but clearly gives
robustness to the unrolled algorithm. The DIP method is absent
from the table as it was not fast enough (above 10 hours) over
the 16 studied CFAs. On the contrary all the other methods
ran for less than an hour for the same task.

IV. CONCLUSION

This paper presents a generic method for demosaicking a
wide variety of CFAs, being either traditional RGB or RGBW.
To achieve state-of-the-art results the proposed method uses
ADMM unrolling coupled with a novel loss function that al-
lows the trained network to avoid certain CFA-specific features
and to focus independent representations. This combination
helps to blend the knowledge on the model with knowledge
acquired from data, which solves demosaicking for multiple
CFAs, including new ones. The algorithm, while being con-
strained on size, delivers performances on par with specialized
demosaicking methods while being much more generic. Future
work will explore ways to reduce the remaining gap between
seen CFAs and unseen ones.
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