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Abstract
Cross-modal knowledge distillation (CMKD) refers to the scenario in which a learn-

ing framework must handle training and test data that exhibit a modality mismatch, more
precisely, training and test data do not cover the same set of data modalities. Tradi-
tional approaches for CMKD are based on a teacher/student paradigm where a teacher
is trained on multi-modal data with the aim to successively distill knowledge from a
multi-modal teacher to a single-modal student. Despite the widespread adoption of such
paradigm, recent research has highlighted its inherent limitations in the context of cross-
modal knowledge transfer.
Taking a step beyond the teacher/student paradigm, here we introduce a new framework
for cross-modal knowledge distillation, named DisCoM-KD (Disentanglement-learning
based Cross-Modal Knowledge Distillation), that explicitly models different types of
per-modality information with the aim to transfer knowledge from multi-modal data to a
single-modal classifier. To this end, DisCoM-KD effectively combines disentanglement
representation learning with adversarial domain adaptation to simultaneously extract, for
each modality, domain-invariant, domain-informative and domain-irrelevant features ac-
cording to a specific downstream task. Unlike the traditional teacher/student paradigm,
our framework simultaneously learns all single-modal classifiers, eliminating the need
to learn each student model separately as well as the teacher classifier. We evaluated
DisCoM-KD on three standard multi-modal benchmarks and compared its behaviour
with recent SOTA knowledge distillation frameworks. The findings clearly demonstrate
the effectiveness of DisCoM-KD over competitors considering mismatch scenarios in-
volving both overlapping and non-overlapping modalities. These results offer insights to
reconsider the traditional paradigm for distilling information from multi-modal data to
single-modal neural networks. Our code is available at this link.

1 Introduction
The modern landscape is characterized by a large diversity of devices consistently sensing
their environments. This influx of information poses new challenges in terms of data analysis
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and understanding, particularly for machine learning and computer vision models, which
must work seamlessly across a spectrum of platforms. From wearable gadgets to autonomous
vehicles, an array of sensors continuously collect data about the surroundings [9].

In this context, the same object or entity can be described by multiple modalities, ne-
cessitating new learning paradigms to handle the collected heterogeneous information [15].
Many multi-modal learning models assume that data modalities between the training and
deployment stages remain exactly the same [15]. However, due to the wide range of sensor
data available, systematically accessing data across all sensor modalities may be infeasible.

Specifically, a set of modalities may be available during the training stage, while another
set of modalities, either overlapping with the former or not, may be accessible during the
deployment stage [18]. In such a scenario, strategies are required to operate under cross-
modal scenarios, leveraging the multi-modal information available during the training stage
to enhance classification capabilities on the modalities accessible at deployment stage.

Recently, Cross-Modal Knowledge Distillation (CMKD) has proven to be effective for
multi-modal applications characterized by modalities mismatch [16]. The majority of ex-
isting solutions rely on a teacher/student paradigm [5, 11, 19, 24], where a teacher model
trained on one or several data modalities is then used to supervise a single-modal student
model trained on the modality available at deployment stage. However, this paradigm has
several shortcomings, such as the arbitrary choice of modalities used to train the teacher
model, the computational burden associated with the training of multiple models for specific
downstream applications, and the need to set up a separate process each time a single-modal
student model needs to be trained. Additionally, recent studies in [28] clearly highlights the
inherent limitations of this paradigm in automatically distilling useful information such as
modality-discriminative features for cross-modal knowledge transfer.

In this study, we aim to address the challenge of multi-modal learning in applications
characterized by modalities mismatch. We explore an alternative approach based on disen-
tanglement representation and adversarial learning, overcoming mainstream teacher/student
paradigms and their associated limitations. Specifically, we introduce a novel framework for
cross-modal knowledge distillation, called DisCoM-KD (Disentanglement-learning based
Cross-Modal Knowledge Distillation). This framework explicitly models different types
of per-modality information to transfer knowledge from multi-modal data to a single-modal
classifier. DisCoM-KD effectively combines disentanglement representation learning with
adversarial domain adaptation to simultaneously extract domain-invariant, domain-informative,
and domain-irrelevant features for each modality, tailored to a specific downstream task.
Conversely to traditional teacher/student paradigms, our framework learns all single-modal
classifiers simultaneously, eliminating the need to train each student model separately. To
evaluate the effectiveness of our framework, we consider three standard multi-modal bench-
marks and recent state-of-the-art knowledge distillation frameworks, demonstrating DisCoM-
KD’s ability to outperform previous strategies in scenarios of modalities mismatch, covering
both overlapping and non-overlapping modalities between training and deployment stages.

In summary, the contributions of our work are the following:

• A novel CMKD framework based on disentanglement representation and domain ad-
versarial learning;

• An alternative CMKD strategy that circumvents traditional teacher/student paradigms
to distill knowledge from multi-modal data to single-modal neural networks;

• An extensive comparison of DisCoM-KD across three computer vision multi-modal
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benchmarks with state-of-the-art knowledge distillation approaches, highlighting the
broad applicability of our framework in the field of multi-modal learning.

The rest of the manuscript is organized as follows: related works are reviewed in Sec-
tion 2. Section 3 introduces the proposed framework based on feature disentanglement and
adversarial learning. The experimental assessment and the related results are reported and
discussed in Section 4, while Section 5 draws the conclusions.

2 Related Work
In this section, we firstly provide a brief recap of general knowledge distillation strategies,
then we focus on knowledge distillation for multi-modal learning and, finally, we conclude
by discussing elements on disentanglement representation-based learning.
Knowledge Distillation. Knowledge Distillation (KD) [7] was introduced to transfer "dark"
knowledge from a teacher model to a lightweight student model by learning the student
model from the soft labels generated by the teacher. The standard KD loss formulation used
to train the student model is defined as follows:

L = αLtask +(1−α)LKD (1)

Here, Ltask represents the downstream loss and LKD represents the distillation loss enforcing
the knowledge transfer from teacher to student, with α determining the balance between the
two terms. Different approaches vary in how they implement the LKD term, which can be
logit-based [10], feature-based [4], or relation-based [8].
Recent studies have shown that logit-based approaches outperform other strategies [21].
Logit-based approaches implement the LKD component by exploiting the Kullback-Leibler
divergence between the teacher and student logits. For example, [31] proposes to explicitly
decouple the target class from non-target classes in the knowledge distillation process. In
[14], a curriculum learning process is introduced to estimate the temperature value to be
used in the Kullback-Leibler divergence. [10] employs a multi-level approach to perform
logit distillation at different granularity levels (instance, class, and batch), considering multi-
ple temperature values to make the knowledge transfer more robust. Recently, [21] proposes
a plug-in extension that can be combined with any of the previous frameworks in which
teacher and student logits are standardized prior to the analysis, ensuring a more coherent
and consistent comparison.
Cross/Multi-Modal Knowledge Distillation. Cross-modal KD extends traditional KD ap-
proaches to encompass multi-modal learning [28]. While cross-modal KD does not assume
any overlap between the modalities accessed by the teacher and student models, in the multi-
modal KD scenario [16], the information used by the student is a subset of the modalities
used by the teacher model, thus making the former a more general scenario than the lat-
ter. However, in both scenarios, the student model typically has access only to a single data
modality. The majority of the proposed frameworks for both cross-modal and multi-modal
KD [5, 11, 19, 24] are tailored for task specific use cases with lack of a generic solution. This
is primarily due to the fact that, despite the empirical success demonstrated by prior works,
the mechanisms behind cross-modal KD still remains loosely understood [28]. An initial
investigation towards understanding this mechanism has been proposed in [28], where the
authors emphasize the significance of modality-discriminative features as key components
for cross-modal KD. However, their study provides preliminary experiments that are heavily
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reliant on data-specific characteristics, thus limiting the generic value of the obtained find-
ings.
Disentanglement Representation Learning. Disentangled representation learning aims to
identify and separate hidden information in the underlying data [25]. In contrast to standard
learning processes, which focus solely on learning domain-invariant features, disentanglement-
based methods explicitly decompose the learned representation into domain-specific and
domain-invariant features, thus paving the way to the extraction of task-relevant and task-
irrelevant information [22]. In the context of multi-modal learning, disentanglement-based
strategies are used to extract both multi-modal and modality-specific factors [23, 30]. Re-
cent approaches have focused on disentangling shared information among modalities to per-
form various downstream tasks [17, 27, 29]. Despite its contributions to numerous set-
tings [3, 12, 25], disentangled representation learning still remains unexplored in the realm
of knowledge distillation.

3 Method
The proposed architecture, depicted in Figure 1, consists of two independent branches, one
for each modality, extracting several per-modality representations. These representations
are then used by per-modality task classifiers to make the final prediction. Furthermore,
auxiliary classifiers, acting at intermediate stages, are leveraged to ensure that the extracted
per-modality representations cover different complementary facets of the underlying infor-
mation while also carrying information related to the downstream task.
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Figure 1: Schematic overview of DisCoM-KD: On the left, there are two per-modality branch
extractors for modalities M1 and M2, along with two per-modality task classifiers to obtain
the final prediction. On the right, several auxiliary classifiers, acting on intermediate repre-
sentations, help disentangling per-modality information and make representations task infor-
mative. The training of the two parallel architectures is performed jointly, but at inference
time, each model is deployed independently.

Given an image x∗, where x∗ can be either xM1 or xM2 (with M1 and M2 being two differ-
ent modalities), DisCoM-KD extracts three per-modality embeddings zinv

∗ ,zin f
∗ ,zirr

∗ referred
as modality-invariant, modality-informative and modality-irrelevant representation, respec-
tively. All the embeddings have the same dimensionality zinv

∗ ,zin f
∗ ,zirr

∗ ∈ RD. Subsequently,
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zinv
∗ and zin f

∗ are fed to the (per-modality) main task classifiers, while zirr
∗ is discarded, as

its objective is to collect/attract per-modality information that should not contribute to the
downstream task. Specifically, for each of the input modalities, we have a task classifier Cl∗
that outputs class probabilities ŷ∗ =Cl∗([zinv

∗ ||zin f
∗ ]) ∈RC for the C existing classes and || de-

notes the concatenation operation. This means that two main task classifiers ClM1 and ClM2

are trained during the process, with ŷM1 =ClM1([zinv
M1||z

in f
M1]) and ŷM2 =ClM2([zinv

M2||z
in f
M2]).

Beyond the main architecture, we introduce several modules to ensure that the extracted
embeddings represent complementary information derived from the multi-modal input data.
These additional modules are: i) A modality classifier Cladv coupled with gradient rever-
sal layer [2] to facilitate the extraction of modality-invariant representations; ii) Two aux-
iliary modality classifiers, Clm-in f and Clm-irr, ensuring that modality-informative (zin f

∗ ) and
modality-irrelevant (zirr

∗ ) embeddings contain modality-specific information and iii) An aux-
iliary task classifier Claux enforcing modality-invariant (zinv

∗ ) and modality-informative (zin f
∗ )

embeddings to be discriminative for the downstream task. During inference, only the per-
modality extractors and the main task classifiers (ClM1 and ClM2) are retained, resulting in
two distinct models that have been jointly learnt and can be deployed independently of each
other.

3.1 Training losses
To train our cross-modal knowledge distillation framework DisCoM-KD, we design a set of
loss functions that explicitly model several properties beyond the main downstream classi-
fication task with the aim to enforce disentanglement across complementary per-modality
representations. Specifically, the training procedure optimizes five different loss terms.

The first term is directly related to the downstream classification task. Both modality in-
variant (zinv

∗ ) and modality informative (zin f
∗ ) embeddings are fed to the main task classifiers.

Then, we use standard Cross-Entropy loss (CE) between the output of each per-modality
task classifier and the associated ground-truth y:

Lcl = ∑
m∈{M1,M2}

CE(Clm([zinv
m ||zin f

m ]),y) (2)

The second term has the goal to enforce the learning of modality-invariant representa-
tions. We adopt a CE loss over the output of a classifier that discriminates across represen-
tations of samples from different modalities. Here, we use an adversarial training strategy,
implemented via Gradient Reversal Layer (GRL) [2] over the modality invariant (zinv

∗ ) repre-
sentations:

Ladv = ∑
m∈{M1,M2}

CE(Cladv(GRL(zinv
m )),m) (3)

The third term guides the learning of modality-aware representations via modality clas-
sifiers. We use two classifiers, one for modality informative (Clm-in f ) and one for modality
irrelevant (Clm-irr) embeddings in order to predict from which branch the embedding origi-
nates:

Lmod = ∑
m∈{M1,M2}

CE(Clm-in f (zin f
m ),m)+ ∑

m∈{M1,M2}
CE(Clm-irr(zirr

m ),m) (4)

The fourth term aims to enhance the task discriminative information carried by the per-
modality embeddings. Here, we employ an auxiliary task classifier over the set of modality
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invariant (zinv
∗ ) and modality informative (zin f

∗ ) embeddings:

Laux = ∑
m∈{M1,M2}

∑
i∈{inv,in f}

CE(Claux(zi
m),y) (5)

The last term explicitly constrains embeddings from the same modality to contain com-
plementary information. We implement a double disentanglement process, enforcing or-
thogonality [12] between modality-invariant (zinv

∗ ) and informative (zin f
∗ ) representations, as

well as between modality-informative (zin f
∗ ) and irrelevant (zirr

∗ ) embeddings. This guides
the network to explicitly separate different per-modality contributions:

L⊥ = ∑
m∈{M1,M2}

⟨zinv
m ,zin f

m ⟩
∥zinv

m ∥2∥zin f
m ∥2

+ ∑
m∈{M1,M2}

⟨zin f
m ,zirr

m ⟩
∥zin f

m ∥2∥zirr
m ∥2

(6)

The final loss function is defined as the sum of all the previous terms:

L= Lcl +Ladv +Lmod +Laux +L⊥ (7)

Implementation details. Each modality branch extractor, as reported in Figure 2, is com-
posed of two encoders: a modality specific encoder and a modality invariant encoder. As
encoder backbone we use a ResNet-18 model [6].

Modality  
Specific 
Encoder

Modality  
Invariant 
Encoder

Modality Branch Extractor

Projection

Head
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Figure 2: Details of the Modality Branch Extractor. It consists of two encoders, one extract-
ing modality-specific (zirr

∗ , zin f
∗ ) and one deriving modality-invariant (zinv

∗ ) representations. A
projection head is used on the output of the modality-invariant encoder to obtain embeddings
of the same size as the other representations.

The modality-specific encoder (shown in gold) extracts modality-specific information,
namely: modality-irrelevant zirr

∗ and modality-informative zin f
∗ representations encoded sep-

arately into each half of the generated embedding vectors (depicted in light blue and purple,
respectively). The modality-invariant encoder produces the modality-invariant representa-
tion zinv

∗ . To ensure that all representations have the same size, a projection head, imple-
mented via a fully connected layer, is used to project the output of the modality-invariant
encoder to zinv

∗ ∈ RD. For the two per-modality downstream task classifiers (ClM1 and ClM2)
as well as all other auxiliary classifiers (Cladv, Clm-in f , Clm-irr, Claux) we use a single linear
layer with as many neurons as the number of classes to predict.
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4 Experimental Evaluation
To evaluate our framework, DisCoM-KD, we designed an experimental evaluation consider-
ing three different multi-modal benchmarks involving SOTA teacher/student strategies from
the Knowledge Distillation field encompassing both cross-modal and multi-modal KD sce-
narios. Additionally, an ablation study of DisCoM-KD is proposed to analyze the interplay
between its different components.
DATASETS. As datasets we consider: i) SUNRGBD, the version proposed in [1] for multi-
modal RGB-D scene classification. We consider RGB and Depth images from the Kinect v2
domain, for a total of 2 105 pairs of RGB/Depth images, with 3 and 1 channels respectively,
covering 10 classes; ii) EuroSat-MS-SAR proposed in [26] for multi-modal Multi-Spectral
(MS) and Synthetic Aperture Radar (SAR) remote sensing scene classification. The dataset
contains 54 000 pairs of MS and SAR images, with 13 and 2 channels respectively, for a
land cover classification task spanning 10 classes; iii) TRISTAR proposed in [20] for multi-
modal (RGB, Thermal and Depth) action recognition. According to results reported in [20],
here we only consider the two most informative modalities (Thermal and Depth). The dataset
contains 14 201 pairs of Thermal and Depth images, with 1 channel each, representing an
action recognition task spanning 6 classes.
COMPETING METHODS. We adopt three recent state-of-the-art strategies: Decoupled
Knowledge distillation (DKD) [31], Curriculum Temperature Knowledge Distillation (CT KD)
[14] and Multi-Level Knowledge Distillation (MLKD) [10]. Furthermore, we integrate two
baseline methods proposed in [28], referred to as KDv1 and KDv2. Both baselines imple-
ment the traditional knowledge distillation loss reported in Equation 1, with KDv1 setting
the α hyper-parameter to 0, while KDv2 sets it to 0.5. While KDv1 only uses the soft label
to train the student model, KDv2 equally weighs the information from the original hard la-
bels and the teacher soft labels. We combine each of these five strategies with the plug-in
logit standardization preprocessing (LSKD) proposed in [21]. Additionally, as references,
we report the performance of the teacher model (referred to as TEACHER) and a student
model that has not received any distillation supervision (referred to as STUDENT) for each
evaluation scenario.
EVALUATION SCENARIOS. We adopt two evaluation scenarios: cross-modal KD and
multi-modal KD. For the cross-modal KD scenario the teacher is trained on the richest, in
terms of downstream task performances, modality and, successively a single-modal student
is distilled leveraging the remaining modality. Here the teacher is implemented via a ResNet-
18 [6] architecture. For the multi-modal KD scenario the teacher model is trained on the full
set of per-dataset modalities and, successively, a single-modal student is distilled. For this
scenario, the teacher model is a two-branch architecture with a per modality encoder imple-
mented via a ResNet-18. The fusion is performed at the penultimate layer of the ResNet-18
architecture via feature element-wise addition. Finally, a linear layer exploits the fused rep-
resentation for the classification decision. All the student models are implemented with a
ResNet-18 architecture.
EXPERIMENTAL SETTINGS. For all the approaches the same training setup is used: 300
training epochs, a batch size of 128 and Adam [13] as parameters optimizer with a learning
rate of 10−4. For all the approaches we use online data augmentation via geometrical trans-
formations (e.g. flipping and rotation). For the competing methods, we adopt the original
hyper-parameter settings. The assessment of the models performance, on the test set, is done
considering the weighted F1-Score, subsequently referred simply as F1-Score. Each dataset
is divided into training, validation and test set with a proportion of 70%, 10% and 20% of
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the original data, respectively. We repeat each experiment five times and report average re-
sults. Experiments are carried out on a workstation equipped with an Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz, with 377Gb of RAM and four RTX3090 GPU. All the methods
require only one GPU for training.

4.1 Results

Table 1 and Table 2 present the average F1-Score results of the competing methods on both
cross-modal and multi-modal KD scenarios, respectively. We use green arrows to indicate
when a model outperforms the STUDENT baselines, and red arrows otherwise.
In the cross-modal KD scenario, Table 1, we consider the following cases: RGB → DEPTH
for SUNRGBD, MS → SAR for EuroSat-MS-SAR, and THERMAL → DEPTH for TRIS-
TAR. Here, the left modality indicates the one used by the teacher model while the one on the
right is leveraged by the student. We observe that DisCoM-KD outperforms all competitors
on both SUNRGBD (47.69 vs. 42.87 achieved by the best competitor) and EuroSat-MS-
SAR (80.03 vs. 78.89 achieved by the best competitor). Moreover, it achieves comparable
performance with the best competitor on TRISTAR (92.86 vs. 93.06 achieved by the best
competitor). Notably, our framework is the only one that consistently improves (as indicated
by green arrows) over the STUDENT baseline across all considered cross-modal scenarios.

In the multi-modal KD scenario, Table 2, DisCoM-KD outperforms all state-of-the-art
KD approaches, consistently improving classification performance compared to the STU-
DENT baseline. It is worth noting that our framework is the only one that achieves im-
provement on the TRISTAR dataset when the THERMAL modality is considered for the
deployment stage, achieving a classification score of 97.06. On EuroSat-MS-SAR, all com-
petitors are capable of distilling a student single-modal neural network that outperforms the
TEACHER model. Also in this case, DisCoM-KD achieves the best classification perfor-
mance with a score of 98.12. Interestingly, we observe that depending on the dataset, teach-
ers trained on multiple modalities are not always the best choice for distilling a single-modal
student. For example, in the TRISTAR case, when the deployment stage covers the DEPTH
modality, all KD frameworks exhibited their best performances when the TEACHER has
been only trained on the THERMAL modality (cross-modal KD scenario) rather than on the
whole set of modalities (multi-modal KD scenario). This underscores that no strategy (nei-
ther cross-modal nor multi-modal) guarantees a systematic improvement, highlighting the
arbitrary impact this inherent choice can have on the underlying distillation process.
Ablations. The first ablation study (Table 3) explores the importance of the different com-
ponents on which our framework is built. We observe that Auxiliary Task Classifiers (Laux)
and the Disentanglement Loss (L⊥) seem to play the most significant roles in the underlying
process. Depending on the considered dataset, each loss term has different relative impacts,
and on average, the highest performance is achieved when all components are involved,
underscoring the rationale behind the proposed framework. The second ablation study (Ta-
ble 4) investigates the interplay between the different representations extracted by the disen-
tanglement process. Here, we note that only considering one of the two groups of informa-
tion —modality-invariant (zinv

∗ ) or modality-informative (zin f
∗ )— systematically decreases the

classification performances. Modality-informative features provide slightly better discrimi-
nation capability, with varying margins depending on the dataset. In summary, this analysis
suggests the suitability of exploiting both modality-invariant and modality-informative rep-
resentations for the downstream classification task.
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SUNRGBD EuroSat-MS-SAR TRISTAR
RGB → DEPTH MS → SAR THER. → DEPTH

TEACHER - 44.45 95.49 96.99
STUDENT - 43.82 71.54 90.66

KDv1 ORIG 40.10 (↓) 78.38 (↑) 92.71 (↑)
w/ LSKD 37.96 (↓) 78.29 (↑) 91.91 (↑)

KDv2 ORIG 41.61 (↓) 78.19 (↑) 92.92 (↑)
w/ LSKD 42.08 (↓) 78.27 (↑) 91.68 (↑)

DKD ORIG 42.44 (↓) 78.30 (↑) 92.53 (↑)
w/ LSKD 41.88 (↓) 78.83 (↑) 92.02 (↑)

CTKD ORIG 40.09 (↓) 78.89 (↑) 92.46 (↑)
w/ LSKD 40.76 (↓) 78.89 (↑) 92.36 (↑)

MLKD ORIG 44.43 (↑) 47.63 (↓) 93.06 (↑)
w/ LSKD 42.87 (↓) 78.13 (↑) 91.83 (↑)

DisCoM-KD - 47.69 (↑) 80.03 (↑) 92.86 (↑)
Table 1: Avg. F1-Score performances on cross-modal KD evaluation scenario. We consider
the scenarios RGB → DEPTH, MS → SAR and THERMAL → DEPTH for the SUNRGBD,
EuroSat-MS-SAR and TRISTAR, respectively. ↑ (resp. ↓ ) indicates improved (resp. de-
graded) performances compared to the STUDENT baseline.

SUNRGBD EuroSat-MS-SAR TRISTAR
RGB DEPTH MS SAR THER. DEPTH

TEACHER - 55.95 95.36 97.72
STUDENT - 44.45 43.82 95.49 71.54 96.99 90.66

KDv1 ORIG 49.88 (↑) 47.46 (↑) 97.92 (↑) 78.69 (↑) 96.82 (↓) 92.47 (↑)
w/ LSKD 47.44 (↑) 42.90 (↓) 97.37 (↑) 78.45 (↑) 96.60 (↓) 91.45 (↑)

KDv2 ORIG 50.38 (↑) 46.08 (↑) 97.90 (↑) 78.86 (↑) 96.82 (↓) 92.54 (↑)
w/ LSKD 47.38 (↑) 43.52 (↓) 97.88 (↑) 77.71 (↑) 96.22 (↓) 91.64 (↑)

DKD ORIG 48.95 (↑) 46.38 (↑) 97.39 (↑) 78.45 (↑) 96.60 (↓) 91.54 (↑)
w/ LSKD 49.01 (↑) 43.40 (↓) 97.84 (↑) 78.37 (↑) 96.54 (↓) 91.45 (↑)

CTKD ORIG 48.27 (↑) 44.78 (↑) 97.40 (↑) 79.45 (↑) 91.84 (↓) 91.84 (↑)
w/ LSKD 48.54 (↑) 43.57 (↓) 97.73 (↑) 79.03 (↑) 96.57 (↓) 91.19 (↑)

MLKD ORIG 51.48 (↑) 42.57 (↓) 57.90 (↓) 36.17 (↓) 52.39 (↓) 92.27 (↑)
w/ LSKD 48.92 (↑) 43.82 (↓) 97.78 (↑) 77.64 (↑) 91.64 (↓) 91.44 (↑)

DisCoM-KD - 53.63 (↑) 47.69 (↑) 98.12 (↑) 80.03 (↑) 97.06 (↑) 92.86 (↑)
Table 2: Avg. F1-Score performances on multi-modal KD evaluation scenario. Here,
the TEACHER model has access to all modalities for each dataset. ↑ (resp. ↓ ) indicates
improved (resp. degraded) performances compared to the STUDENT baseline.

SUNRGBD EuroSat TRISTAR Avg.
RGB DEPTH MS SAR THER. DEPTH -

w/o Ladv 51.38 46.83 98.10 80.63 96.86 92.93 77.78
w/o Lmod 53.73 46.86 98.11 80.44 96.93 92.79 78.14
w/o Laux 53.91 41.38 97.82 79.10 96.68 91.56 76.74
w/o L⊥ 49.44 42.97 98.03 79.79 97.06 92.62 76.65
DisCoM-KD 53.63 47.69 98.12 80.03 97.06 92.86 78.23

Table 3: DisCoM-KD components ablation study. Analysis of the contributions of all the
components on which our framework is built on in terms of Avg. F1-Score.
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SUNRGBD EuroSat TRISTAR Avg.
RGB DEPTH MS SAR THER. DEPTH -

Only zinv
∗ 46.13 39.92 97.73 76.21 96.55 90.79 74.56

Only zin f
∗ 50.82 43.29 97.60 78.09 96.20 90.68 76.11

DisCoM-KD 53.63 47.69 98.12 80.03 97.06 92.86 78.23
Table 4: DisCoM-KD modality representations ablation study. Analysis of the contribution
of the modality-invariant and -informative representations in terms of Avg. F1-Score.

5 Conclusion

In this study we have introduced a new framework for cross-modal knowledge distillation,
namely DisCoM-KD. Our aim is to transfer knowledge from multi-modal data to a single-
modal classifier. To this end, our framework effectively combines disentanglement repre-
sentation learning with adversarial domain adaptation. Experimental evaluation, consider-
ing both cross-modal and multi-modal knowledge distillation evaluation scenarios, demon-
strates the quality of DisCoM-KD compared to recent state-of-the-art KD techniques based
on the standard teacher/student paradigm. In addition to performance improvements, our
framework offers several inherent advantages over the standard paradigm: i) it learns all
single-modal classifiers simultaneously, eliminating the need to train each student model
separately; ii) it avoids the use of a teacher model, thereby eliminating the need to select
which set of data modalities must be used to train the teacher model. Furthermore, our
research work introduces an alternative strategy that opens new opportunities beyond the
traditional teacher/student paradigm commonly employed for cross-modal and multi-modal
knowledge distillation.

Several possible future avenues can be drawn. Our current process has only been assessed
on cross-modal distillation tasks involving no more than two modalities. Extending DisCoM-
KD to manage more than two modalities at once remains an open question. While most of
the terms of the proposed loss function can be directly adapted to multiple modalities, how
to modify the adversarial term to cope with more than two modalities is not straightforward.
Another possible follow-up could investigate how to take inspiration from DisCoM-KD to
design multi-modal distillation frameworks dealing with semantic segmentation and object
detection tasks. For these tasks, the common methodologies are based on encoder/decoder
neural network architectures that provide dense predictions as result. All these elements
prevent the direct application of our methodology requiring to rethink how disentanglement
and adversarial learning may be defined and implemented.
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