
HAL Id: hal-04666241
https://hal.science/hal-04666241v1

Submitted on 22 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Artificial Bee Colony Algorithm for Coordinated
Scheduling of Production Jobs and Flexible

Maintenance in Permutation Flowshops
Asma Ladj, Fatima Benbouzid-Si Tayeb, Alaeddine Dahamni, Mohamed

Benbouzid

To cite this version:
Asma Ladj, Fatima Benbouzid-Si Tayeb, Alaeddine Dahamni, Mohamed Benbouzid. An Artificial
Bee Colony Algorithm for Coordinated Scheduling of Production Jobs and Flexible Maintenance in
Permutation Flowshops. Technologies , 2024, 12 (4), pp.45. �10.3390/technologies12040045�. �hal-
04666241�

https://hal.science/hal-04666241v1
https://hal.archives-ouvertes.fr

Citation: Ladj, A.;

Benbouzid-Si Tayeb, F.; Dahamni, A.;

Benbouzid, M. An Artificial Bee

Colony Algorithm for Coordinated

Scheduling of Production Jobs and

Flexible Maintenance in Permutation

Flowshops. Technologies 2024, 12, 45.

https://doi.org/10.3390/

technologies12040045

Academic Editor: Francesco Aggogeri

Received: 17 January 2024

Revised: 12 March 2024

Accepted: 18 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

An Artificial Bee Colony Algorithm for Coordinated
Scheduling of Production Jobs and Flexible Maintenance in
Permutation Flowshops
Asma Ladj 1 , Fatima Benbouzid-Si Tayeb 2 , Alaeddine Dahamni 2 and Mohamed Benbouzid 3,4,*

1 Railenium Research and Technology Institute, 59540 Valenciennes, France; asma.ladj@railenium.eu
2 Laboratoire des Méthodes de Conception de Systèmes (LMCS), Ecole Nationale Supérieure d’Informatique (ESI),

BP 68M, Oued Smar, Algiers 16270, Algeria; f_sitayeb@esi.dz (F.B.-S.T.); fa_dahamni@esi.dz (A.D.)
3 Institut de Recherche Dupuy de Lôme (UMR CNRS 6027), University of Brest, 29238 Brest, France
4 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: mohamed.benbouzid@univ-brest.fr

Abstract: This research work addresses the integrated scheduling of jobs and flexible (non-systematic)
maintenance interventions in permutation flowshop production systems. We propose a coordinated
model in which the time intervals between successive maintenance tasks as well as their number
are assumed to be non-fixed for each machine on the shopfloor. With such a flexible nature of
maintenance activities, the resulting joint schedule is more practical and representative of real-world
scenarios. Our goal is to determine the best job permutation in which flexible maintenance activities
are properly incorporated. To tackle the NP-hard nature of this problem, an artificial bee colony
(ABC) algorithm is developed to minimize the total production time (Makespan). Experiments are
conducted utilizing well-known Taillard’s benchmarks, enriched with maintenance data, to compare
the proposed algorithm performance against the variable neighbourhood search (VNS) method from
the literature. Computational results demonstrate the effectiveness of the proposed algorithm in
terms of both solution quality and computational times.

Keywords: permutation flowshop scheduling problem; flexible maintenance; integrated scheduling
of production and maintenance; artificial bee colony

1. Introduction

Production scheduling is a crucial problem that has been extensively explored in the
literature. This problem refers to the assignment of production jobs (tasks) to be processed
on machines (resources). The aim of machine scheduling problems in production (MSPP)
is to find a sequence of jobs to be processed on machines in a way that optimizes a set
of objectives [1].

For manufacturers, it is crucial to optimize equipment utilization by ensuring effi-
cient schedules at the operational level. Nonetheless, in MSPP theory, the majority of
studies assume that resources are continuously available for processing tasks throughout
the scheduling horizon. However, in realistic situations, machines may be unavailable
during certain periods due to deterministic or stochastic reasons. In the deterministic case,
the machine may not be available because of some planned machine stopping, such as
inspections, repair, tool change, preventive maintenance (PM), etc., where the starting times
and durations may be known or estimated in advance. Whereas in the stochastic case, the
unavailability of machines may be due to unpredictable machine stopping or breakdowns,
implying the inability to process the tasks until the restart of the machine. This work deals
with the first category of scheduling, where the deterministic aspect implies that the factors
influencing the schedule are not subject to randomness or uncertainty, providing a clear
and predictable environment for scheduling decisions. In this area, preventive maintenance

Technologies 2024, 12, 45. https://doi.org/10.3390/technologies12040045 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12040045
https://doi.org/10.3390/technologies12040045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-1299-2225
https://orcid.org/0000-0001-7032-8544
https://orcid.org/0000-0002-4844-508X
https://doi.org/10.3390/technologies12040045
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12040045?type=check_update&version=2

Technologies 2024, 12, 45 2 of 21

(PM) is the major reason for machine unavailability. PM tasks aim to avoid failures and
production stopping by trading off between planned unproductive downtimes dedicated
to performing maintenance interventions, and the risk of unscheduled downtimes due to
machine breakdown.

Deterministic scheduling problems with unavailability intervals have received con-
siderable attention since the beginning of the 1990s. Several comprehensive reviews of
scheduling under availability constraints in different kinds of production systems are
provided [2–5]. When unavailability constraints are due to PM, two different ways of mod-
elling the unavailability intervals have been considered in different machine environments:
(i) the intervals are fixed, and (ii) the intervals are flexible. The first type is the interrelated
model, which considers maintenance as a constraint, not a decision. The second type is
the integrated model, which corresponds to the situation where unavailability intervals
due to maintenance interventions also have decision variables. Moreover, regarding the
possibility for an operation to be interrupted by an unavailability period, jobs may be
resumable, where the interrupted operation can be continued without any penalty after the
end date of the unavailability period, or non-resumable, where the operation needs to be
fully restarted [6].

While much research has been done on the interrelated model, there are fundamental
limitations in this approach. For instance, the machine availability constraints must be set
ahead, which is challenging to know in practice and may affect the search space where
optimal solutions exist. Hence, it is more advantageous to adopt the integrated model,
which considers maintenance and production scheduling simultaneously [7–11]. All these
studies assume that the optimal PM intervals are regular, which means that after a constant
period, the PM actions must take place to renew the machine. This strategy may lead to
poor performance because it constrains the flexibility of the PM schedule, which does not
coordinate the production scheduling and maintenance well. To address this issue, the
non-periodic PM intervals are proposed [12–23].

Recently, predictive maintenance has emerged as an intelligent strategy based on the
actual condition of the equipment. Unlike time-based PM, which attempts to predefined
regular or flexible intervals based on reliability analysis or manufacturer recommendations,
predictive maintenance is scheduled based on the prognostics and health management
(PHM) process [24]. PHM seeks to analyze the health status of equipment which allows
us to define the optimal moment to schedule a maintenance intervention. This proactive
approach enables early detection of potential failures, minimizing downtime, optimizing
maintenance schedules, and extending the lifespan of equipment for improved operational
efficiency. Concisely, the production system’s health state is continuously (or periodically)
monitored by analyzing signals collected from embedded sensors (or inspection infor-
mation). After that, the current state is inferred and the future progression of failure is
predicted to estimate the time before failure, known as the remaining useful life (RUL).
The development of effective PHM approaches is a significant research field. Indeed, PHM
benefits are heavily reliant on decision-making based on prognosis information, a process
known as post-prognostic decision (PPD) [25]. PPD may occur as the integration of pre-
dictive maintenance planning and production schedule, to enhance safety, and minimize
downtimes and inopportune maintenance spending.

Building upon the above advancement in the field of predictive maintenance and
its superior advantages over traditional PM, this paper focuses on the optimization of
integrated production scheduling and predictive maintenance planning in permutation
flowshop, one of the most common types of manufacturing layouts. In such an organization,
the goal of production scheduling is to determine the optimal order of jobs to be processed
by the machines to minimize the overall completion time, referred to as Makespan or Cmax.
When coupled with predictive maintenance decisions, this job sequence must take into
account the integration of maintenance interventions for each machine. Concretely, each
machine on the floor is run to process jobs in the form of several production batches (or
processing periods). Upon completion of a production batch and reaching a high level of

Technologies 2024, 12, 45 3 of 21

degradation, the machine is stopped and a maintenance period takes place, during which,
a predictive maintenance activity is performed to renew the machine before it can resume
processing the next production batch. The pivotal decision to conclude a processing period
and initiate a maintenance period is based on the health state of the machine, provided by
prognostics information. Machines are permitted to operate as long as possible to optimize
their utilization. However, considering the objective of minimizing the Makespan, the
starting dates of maintenance operations are not fixed, which leads to more flexibility in
the schedule.

The PFSP with predictive maintenance is recognized as NP-hard as it extends the
classical flowshop scheduling problem under availability constraints [26]. Consequently,
metaheuristic algorithms have emerged as the most practical approach for addressing this
challenge. Hence, we propose tackling this issue by employing a population-based meta-
heuristic, specifically the artificial bees colony (ABC) algorithm [27]. ABC is a promising
metaheuristic algorithm that simulates the specific intelligent and collective behaviour of
honey bee swarms. Since ABC was proposed, it has mainly been used to solve uncon-
straint and constraint continuous function optimization problems [28,29]. Compared with
other metaheuristic algorithms, there are some remarkable characteristics of ABC such
as its effective global exploration capability, excellent local exploitation ability, and fast
convergence speed. Due to its simple structure and convenient implementation, ABC has
demonstrated efficiency in handling combinatorial optimization problems [30], and partic-
ularly scheduling problems [31]. Its successful applications on scheduling prove that ABC
possesses an excellent searchability and convergence rate. These factors motivated our idea
to use ABC to solve the integrated PFSP and predictive maintenance planning. However,
ABC cannot be directly used to solve this problem because it is completely different from
other scheduling problems. The algorithm needs to be modified according to our problem
features. Therefore, we are committed to making improvements on ABC for solving the
integrated PFSP and predictive maintenance planning, in this paper.

The remaining part of the paper is organized as follows. Related works are summa-
rized in Section 2. Section 3 describes the research problem. Section 4 explains the proposed
ABC algorithm. Section 5 is depicted to present the experimental results and discussions.
Section 6 outlines the main conclusions and future research topics.

2. Related Works

In this research work, the production scheduling part deals with one of the most
studied problems in the literature with extensive applications in real-life manufacturing,
namely the permutation flowshop scheduling problem (PFSP). Several interesting papers
reviewing the existing methods to solve the PFSP can be found in [32–37].

Whereas production scheduling is studied separately in the conventional PFSP, ex-
cluding maintenance considerations, the key contribution of this paper falls within the
scope of embedding maintenance activities. As the importance of joint optimization of
production and maintenance scheduling has been highlighted, this topic has attracted sig-
nificant research interest for several decades. The latest research trends are directing their
attention to the implementation and optimization of PHM approaches by establishing the
most effective integrated scheduling of production and predictive maintenance to enhance
the overall outcomes. Here, we will provide an overview of studies, focusing on flowshop
scheduling problems with flexible unavailability periods due to predictive maintenance. In
this area, it is noticed that relatively few works were proposed compared to conventional
PM. The reader may refer to the extensive review in [38].

The first approach to tackle with PFSP with predictive maintenance was introduced
in [39]. The authors proposed a new case study where machines can switch between two
production modes: nominal and sub-nominal. In the second mode, the machine is slowed
down to avoid early failures. As a consequence, the production tasks will be longer than
expected but the RUL is increased. They developed a mixed integer linear model (MILP)
that allows finding the best production and predictive maintenance scheduling optimizing

Technologies 2024, 12, 45 4 of 21

the aggregated sum of makespan and maintenance delays. However, a single maintenance
operation is considered per machine during the production horizon. Moreover, the defined
MILP optimally solves small instances but it is not able to compute the optimal solution for
instances with an important number of jobs and machines. To deal with large instances of
the same problem, the study in [40] proposes a local search method that is proven to be
effective and scalable compared to the exact approach (MILP). Authors in [41] designed an
improved genetic algorithm (GA) to solve the PFSP with predictive maintenance, where
several maintenance interventions are planned for each machine based on degradation
information provided by PHM module. In a close context, we can refer to the works
provided in [42,43], where authors studied the PFSP under maintenance constraints and
proposed different metaheuristics to minimize the expected Makespan. However, it was
assumed that the degradation value of a machine could be determined only through
inspections in pre-specified intervals.

To address uncertainties of PHM information, [44,45] proposed fuzzy logic-based
metaheuristics to solve the PFSP with predictive maintenance. In these studies, uncertain
PHM outputs are modelled using fuzzy logic. A modified version of the PFSP with
flexible maintenance is investigated in [46] where processing times of jobs are assumed
to be variable due to deterioration and learning effects. Considering the dynamic aspect
of real-life scheduling, a novel approach is developed in [47] to solve the PFSP with
predictive maintenance. Sensor data are processed using machine learning algorithms and
times to failure (RULs) are predictive. The proposed framework, combined with discrete
event simulation, enables the integration of predictive maintenance constraints into the
scheduling process, to minimize the Makespan.

Production scheduling is an arduous decision-making process and has been recog-
nized as NP-hard for almost all machine configurations, constraints, and optimization
criteria combinations [48,49]. Indeed, the simplest single-machine scheduling with total
tardiness is NP-hard, so large-scale scheduling problems are often difficult to solve by the
traditional methods and metaheuristics become the main path to solve these problems for
their effectiveness in offering optimal/near-optimal results within a reasonable amount
of time notably on large-scale optimization problems [50,51]. Metaheuristic algorithms
mimic the processes of natural phenomena [52–55]. Evolutionary algorithms mimic the
evolution behaviour of humans or animals (genetic algorithms [56], biogeography-based
optimization [57], etc.), swarm intelligence algorithms imitate the activity of groups of
animals (such as particle swarm optimization [58], ant colony optimization [59], fruit fly
optimization [60], bat algorithm [61], grey wolf optimization [62], migrating birds opti-
mization [63], etc.), and physics or chemical processes based algorithms emulate physics
or chemical laws (such as chemical reaction optimization [64], galaxy-based search algo-
rithm [65], black hole algorithm [66], etc.). Due to the large number of problem variants and
solution methods, several survey papers provide comprehensive insights into the literature
addressing various types of scheduling problems. These surveys cover solution methods
such as evolutionary algorithms [67], automatically generated dispatching rules [68], and
multi-population-based metaheuristics [31].

Among swarm intelligence algorithms for optimization problems, the artificial bee
colony (ABC) algorithm was first proposed in 2005 to solve continuous (unconstrained)
problems [27] and it was later successfully extended to constrained optimization prob-
lems [69]. Literature results show that the performance of ABC algorithm is comparable
to other state-of-the-art algorithms for high dimensionality optimization [70]. ABC has
become a very active research area and many modifications [28] and enhancements [71] of
the original algorithm were introduced. For PFSP, ABC was applied for different versions
of the problem, as a standalone method [72–77], hybridized with other approaches [46,78],
to optimize single or multiple objective functions [79,80].

Technologies 2024, 12, 45 5 of 21

3. Problem Statement

We tackle the joint scheduling of production and predictive maintenance within a
specific manufacturing layout: the permutation flowshop. This integrated problem involves
the simultaneous optimization of the production schedule and maintenance activities
planning. Hence, the goal is to identify the most effective sequencing of jobs and the
strategic timing of maintenance activities for each machine. The optimization objective is to
minimize the total completion time (of production jobs and maintenance activities), referred
to as Makespan or Cmax. For each machine on the shopfloor, the resulting joint schedule can
be seen as a succession of production blocks, during which the machine executes the jobs
included in the block, separated by unavailability periods, in which predictive maintenance
interventions are planned.

In a permutation flowshop, a set J = {J1, J2, . . . , Jn} of n production jobs move
through a seriesM = {M1, M2, . . . , Mm} of m machines, in a predetermined order without
altering the order of the jobs from one machine to another, i.e. only permutation schedules
are allowed. The processing time of job Jj on machine Mi is denoted pij. All jobs are
assumed to be available at time zero and preemption of jobs is not allowed, i.e., once the
execution of an operation is started, it cannot be interrupted neither by other operations
nor by maintenance activities. Each machine processes only one action (production job or
maintenance activity) at a time. Setup times are included in the processing times and are
sequence-independent.

For the maintenance side, multiple unavailability periods are considered for each
machine. Unavailability periods are due to predictive maintenance activities scheduled
based on PHM outputs. For each machine Mi, a degradation value δij is associated when
processing each job Jj. We consider the degradation value associated to job Jj when being
processed on machine Mi, δij =

pij
RULij

× 100% where 0 < δij < 100% and RULij is the
remaining useful life provided by PHM process.

At t = 0, all machines are supposed to be “as good as new”; i.e., their initial degra-
dation values are null. When processing each job Jj, the accumulated degradation of a
machine Mi is updated according to the corresponding degradation value δij. When the
current accumulated degradation of a machine (i.e., the sum of degradation values of
jobs that have been processed) reaches a maximal threshold ∆ = 100%, a maintenance
intervention must be performed. Flexible interventions are considered. The time intervals
between each two consecutive maintenance activities as well as the number of maintenance
activities are assumed to be decision variables and they are defined during the search
process. Indeed, the maintenance planning strategy, described in Section 4.1 allows to align
with the production schedule by ensuring minimal disruption of the schedule. Maintenance
intervention timing is not fixed but is adapted for each machine with respect to total completion
time (Cmax) minimization. We suppose that at least one maintenance intervention is performed
on each machine and no maintenance intervention is performed after the processing of the last
job. After each maintenance intervention, the machine is recovered to be “as good as new”.

The resulting integrated schedule is denoted Π = {π1, π2, . . . , πm} where πi, i =
1, . . . , m represents the corresponding integrated sequence of n jobs and ki (≥ 1) flexible
maintenance on machine Mi. Then πi can be seen as a succession of ki + 1 blocks of jobs Bl

i
(subsets of J) separated by predictive maintenance operations PdMl

i :

πi = {B1
i , PdM1

i , B2
i , PdM2

i , . . . , Bk
i , PdMk

i , Bki+1
i }, where∪ki+1

l=1 Bl
i = J .

4. Proposed ABC-Based Solving Approach

The ABC algorithm has demonstrated notable success in solving scheduling prob-
lems [31]. For PFSP, ABC was applied for different versions of the problem, as a standalone
method [72–77], hybridized with other approaches [46,78], to optimize single or multiple
objective functions [79,80]. This success lies in its ability to leverage the principles of swarm
intelligence to efficiently navigating solution spaces and finding near-optimal schedules.

Technologies 2024, 12, 45 6 of 21

Indeed, bee colonies collect information from their surroundings and adapt their behavior
accordingly. When applied in the context of scheduling problems, subject to multiple
constraints, this intelligent and highly dynamic behavior seems to be very efficient. ABC
capacity to strike a balance between exploration and exploitation makes it well-suited for
such complex optimization problems. These two key mechanisms, i.e., exploration and
exploitation, are inherently included within the ABC algorithm, as will be described in
the next section. Moreover, its simplicity and ease of implementation contribute to its
widespread applicability. Furthermore, since the performance of metaheuristic algorithms
depends on parameters tuning, a notable advantage of the ABC algorithm is that it uses
only 3 control parameters (colony size, maximum cycle number, and number of iteration to
drop out a solution).

Concretely, ABC algorithm employs three distinct and collective classes of artificial
bees: employed bees, onlookers, and scouts. Employed bee stays on a food source (i.e.,
candidate solution) and examines its neighborhood. Onlookers are allocated to a food
source based on the information that they gain from employed bees. If a food source does
not improve for a certain number of cycles, scouts replace that food source with a new
random one.

The general scheme of the proposed ABC algorithm to solve the integrated production and
flexible maintenance scheduling problem is shown in Figure 1 and given in Algorithm 1. Two
stopping criteria are used in the proposed ABC algorithm. The first one is the maximum cycle
number MCN. Another option is to stop the search if the best solution found by the algorithm
has not been improved for a given number of iterations max_improv.

The detailed description of the main features of the proposed algorithm including
the initialization procedure, employed bees phase, onlookers phase, and scouts phase, are
detailed in the sections below.

Figure 1. Flow chart of the proposed ABC algorithm.

Technologies 2024, 12, 45 7 of 21

Algorithm 1 The proposed ABC algorithm

1: Parameters
2: SN: Colony size (number of food sources)
3: limit: Maximum number of iterations without improvement to drop out a food source
4: MCN: Maximum cycle number of the algorithm
5: max_improv: Maximum number of iterations without improvement to stop the algo-

rithm
6: Initialize population with SN food sources (solutions);
7: Associate a food source to each employed bee;
8: while MCN and max_improv not reached do
9: EMPLOYED_BEES_PHASE();

10: ONLOOKER_BEES_PHASE();
11: SCOUT_BEES_PHASE();
12: Return best solution;
13: end while

4.1. Solution Representation, Objective Function and Initialization Procedure

In ABC, food sources represent solutions in search space, and the nectar density
corresponds to the fitness value of a feasible solution. In this paper, a two-field structure
is used to represent a candidate solution,i.e., food source, which jointly specifies the
production job sequence and the maintenance operations positions on each machine, as
proposed in [13]. The sequence of jobs to be processed by the permutation flowshop is
coded using a permutation S = {Js1, . . . , Jsn}, where Jsj is the jth job to be executed. For the
maintenance side, to represent the maintenance intervention positions on each machine,
a binary matrix PM(m × n) is used, where each line is dedicated to a machine of the
shopfloor. To indicate the presence of maintenance activity on machine Mi after the jth job
of the sequence, we put PM[i, j] = 1, otherwise PM[i, j] = 0.

A single objective function is addressed in this work, which is the total completion time of
the integrated schedule, after maintenance activities planning, referred to as Makespan or Cmax.

As for any evolutionary algorithm, population (colony) initialization is a critical step
for ABC algorithm. Indeed, the convergence speed and the quality of the final solution are
highly affected by the diversity of the initial population. In this work, random solutions
as well as good quality solutions are generated and included in the initial population.
Randomly generated solutions contribute to the exploration phase of the algorithm by
helping in exploring distinct regions of the solution space, which increases the chances of
discovering more promising areas and avoids getting trapped in local optima. On the other
side, good candidate solutions enhance the exploitation phase by focusing on promising
areas where optimal or near-optimal solutions may be located. Hence, in this study, we
proposed a two-step initialization procedure to generate an initial population of SN food
sources (integrated solutions) as follows:

1. Generation of production sequences In this work, SN production sequences are
generated as follows:

• Good quality solutions. One production sequence is generated using the well-
known NEH heuristic [81] considered one of the best constructive methods for
minimizing Makespan in PFSP. Furthermore, 5%× SN sequences are generated
using the modified NEH heuristic [82], inspired by the original NEH heuristic,
which has also proved good performance;

• Randomly generated solutions. The remaining part of the initial production se-
quences is generated randomly.

2. Generation of maintenance activities planning
To build a feasible solution, i.e., an integrated production and maintenance schedule,
a maintenance matrix PM is associated with each production sequence S, obtained
from the previous step. The maintenance planning is achieved based on PHM data,
in the form of degradation values. We use the heuristic proposed in [41]. The main

Technologies 2024, 12, 45 8 of 21

idea of this heuristic is to schedule maintenance operations in ascending order, i.e.,
starting from the first machine of the flowshop, by evaluating the total accumulated
degradation of the machine when processing jobs. Jobs in the sequence S are scanned
one by one and maintenance tasks are inserted, on each machine, according to the
current cumulative degradation δi with respect to the threshold (∆ = 100%). Hence,
for each machine Mi in the shopfloor, two cases could be observed as shown in the
illustrative example in Figure 2:

• If δi < ∆, no predictive maintenance intervention has to be scheduled because
the full degradation has not been achieved yet. So, we scan the next production
job in the sequence. This is observed in example of Figure 2, when performing
jobs J1, J3, J8, the cumulative degradation of machine M1 doesn’t reach the full
degradation ∆, hence, no maintenance operation is scheduled;

• If δi ≥ ∆. The machine reaches the total degradation threshold (∆ = 100%)
and a high risk of machine failure is faced. Hence, we schedule a maintenance
intervention either before or after the current job, according to the position that
best optimizes the Makespan. This is shown in the example of Figure 2 when
processing job J5: δ11 + δ13 + δ18 + δ15 ≥ ∆ so we evaluate the two options of
scheduling a maintenance before or after current job J5 and we choose the one
minimizing Cmax.

This strategy seeks to use machines at their full potential by planning maintenance
only when necessary. Moreover, this enhances schedule flexibility and minimizes
production disturbance by considering various options for maintenance insertion for
the Makespan optimization.

𝑆 = 1 3 8 5 6 7 4 2

Option 1: Schedule a maintenance before 𝐽5
and calculate 𝐶𝑚𝑎𝑥

𝑆 = 1 3 8 5 6 7 4 2 Update cumulative degradation 𝛿11 < Δ
𝑆 = 1 3 8 5 6 7 4 2 𝛿11 + 𝛿13 < Δ
𝑆 = 1 3 8 5 6 7 4 2 𝛿11 + 𝛿13 + 𝛿18 < Δ
𝑆 = 1 3 8 5 6 7 4 2 𝛿11 + 𝛿13 + 𝛿18 + 𝛿15 > Δ

𝑱𝟏

𝑱𝟑𝑱𝟏 𝑱𝟖 𝑱𝟓

𝑱𝟑 𝑱𝟖 𝑱𝟓

𝑷𝑴𝒊𝟏

𝐶𝑚𝑎𝑥
1

𝑀2

Option 2: Schedule a maintenance after 𝐽5
and calculate 𝐶𝑚𝑎𝑥

𝑱𝟏

𝑱𝟑𝑱𝟏 𝑱𝟖 𝑱𝟓

𝑱𝟑 𝑱𝟖 𝑱𝟓

𝑷𝑴𝒊𝟏

𝑀2

𝑀1𝑀1

Process 𝐽1 on 𝑀1

Process 𝐽3 on 𝑀1

Process 𝐽8 on 𝑀1

Process 𝐽5 on 𝑀1

𝐶𝑚𝑎𝑥
2

𝐶𝑚𝑎𝑥
2 < 𝐶𝑚𝑎𝑥

1 ⇒ Schedule a maintenance after 𝐽5

Figure 2. Maintenance insertion strategy.

Once the initial population is created, the search process is launched. Each iteration
consists of three stages: the employed bees phase, the onlooker bees phase, and the scout
bees phase, which will be presented in the next sections.

4.2. Employed Bees Phase

The employed bees phase is the first step in the search process of ABC algorithm.
In this phase, a food source, i.e., an integrated schedule within the current population,
is associated with each employed bee. Hence, the number of employed bees is equal
to the number of food sources SN. The main role of employed bees is to move around
the neighborhood of their assigned food sources to discover new and potentially better
solutions. Hence, move strategies need to be defined to navigate in the search space. In this
work, we use two complementary and efficient neighborhood structures from the existing

Technologies 2024, 12, 45 9 of 21

literature, which have proven to be efficient in exploring solutions in PFSP. These structures
allow exploration of production sequences neighborhood as follows:

• One-swapping based neighborhood. To obtain a neighbor solution, a swap move is
carried out by exchanging the positions of two production jobs, randomly selected
from the production sequence of the current solution, as shown in Figure 3.
Let S be the production sequence of the current solution. p and q are two distinct posi-
tions, randomly selected from 1 to n (size of S). When applying one-swapping move,
all jobs are maintained but jobs corresponding to positions p and q are interchanged
to obtain the new sequence S′:

S′[p] = S[q]

S′[q] = S[p]

S′[k] = S[k] for k ̸= p, q

• Double-swapping based neighborhood. In this case, two swap moves are carried out
successively on the production jobs sequence, as shown in Figure 3.

1 9 3 8 5 6 7 4 2 1 7 3 8 5 6 9 4 2

𝑂𝑛𝑒 − 𝑆𝑤𝑎𝑝 𝑚𝑜𝑣𝑒

1 9 3 8 5 6 7 4 2 1 7 3 8 5 6 9 4 2

1 7 3 8 5 6 9 4 2 1 7 8 5 6 9 4 2 3

𝐷𝑜𝑢𝑏𝑙𝑒 − 𝑆𝑤𝑎𝑝 𝑚𝑜𝑣𝑒

10

10 10

1010

10

Figure 3. Illustrative examples of One-swap and Double-swap moves.

• One-insertion-based neighborhood. A production job is randomly selected from the
production sequence, deleted from its current position, and then inserted into a new
randomly selected one, as shown in Figure 4.
Let S be the production sequence of the current solution. p and q are two distinct
positions, randomly selected from 1 to n (size of S). When applying one-insertion
move, job corresponding to position p is deleted from the sequence S and then inserted
in position q.
If p < q:

S′[i] =

S[i] f or i < p or i > q
S[i + 1] f or p ≤ i < q
S[p] i f i = q

(1)

If p > q:

S′[i] =

S[i] f or i < q or i > p
S[i− 1] f or q < i ≤ p
S[q] i f i = p

(2)

• Double-insertion based neighborhood. It consists of two insert moves, carried out
successively on the production jobs sequence, as shown in Figure 4.

Technologies 2024, 12, 45 10 of 21

1 9 3 8 5 6 7 4 2 0 1 3 8 5 6 7 9 4 2 0

𝑂𝑛𝑒 − 𝐼𝑛𝑠𝑒𝑟𝑡 𝑚𝑜𝑣𝑒

1 9 3 8 5 6 7 4 2 0 1 3 8 5 6 7 9 4 2 0

1 3 8 5 6 7 9 4 2 0 1 3 5 6 7 9 4 8 2 0

𝐷𝑜𝑢𝑏𝑙𝑒 − 𝐼𝑛𝑠𝑒𝑟𝑡 𝑚𝑜𝑣𝑒

Figure 4. Illustrative examples of One-insert and Double-insert moves.

To explore solutions neighborhood based on maintenance planning, two other struc-
tures are used as shown in Figure 5:

• Right shift-based neighborhood. In this move, a maintenance operation planned on a
selected machine is randomly chosen from the predictive maintenance matrix, and
then shifted to the right, i.e., moved forward to be rescheduled after the next job.

• Left shift-based neighborhood. A maintenance operation planned on a selected ma-
chine is randomly chosen and then shifted to the left, i.e., moved backward to be
rescheduled before the current job.

0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑚𝑜𝑣𝑒𝑠

𝐿𝑒𝑓𝑡 𝑠ℎ𝑖𝑓𝑡

𝑅𝑖𝑔ℎ𝑡 𝑠ℎ𝑖𝑓𝑡

Figure 5. Illustrative examples of right and left shift moves.

Once the initial population is generated as explained before, each employed bee flies
to a unique food source (candidate solution). Throughout the search process iteration, each
employed bee seeks to find a new food source within its neighborhood. For this reason, the
employed bee randomly selects one of the previous neighborhood structures and uses it
to generate a new solution. Note that if maintenance operations are altered, they will be
readjusted. A greedy selection mechanism is used to choose between the current and the
new food sources. In other words, if the Makespan of the current solution is improved,
then it is replaced by the new solution, which will be then assigned to the employed bee in
subsequent iterations. Otherwise, the current solution is retained. To control the evolution
of solutions manipulated by the employed bees and their eventual stagnation in local
optima, a counter trials_count is associated with each solution and incremented whenever
its objective function (Makespan) doesn’t improve. Employed bees share their findings
(solution information) with onlooker bees. The process of employed bees phase in given in
Algorithm 2.

Technologies 2024, 12, 45 11 of 21

Algorithm 2 Employed bees phase algorithm

1: procedure EMPLOYED_BEES_PHASE()
2: for all Employed bees EBi, i = 1, .., SN do
3: Let SNi be the food source associated to Bi
4: Randomly select a neighborhood structure move from (swap, double swap, insert,

double insert, leftshift, rightshift)
5: Use move to generate new solution SN∗i from SNi
6: Reschedule maintenance operations of SN∗i
7: if f itness(SN∗i) > f itness(SNi) then
8: Update food solution SNi with SN∗i
9: Reset trials_count of SNi to 0

10: else
11: Increment trials_count of SNi;
12: end if
13: end for
14: end procedure

4.3. Onlooker Bees Phase

The onlooker bees phase in the ABC algorithm deals with the exploitation of the search
process. This phase involves the selection of promising food sources by onlooker bees
based on the information shared by employed bees. Onlooker bees then generate new
solutions through a local search method, and if the new solution is better in term of the
Makespan, the corresponding food source is updated, as detailed in Algorithm 3. Similarly,
if maintenance operations are modified, they are readjusted after the local search process.

Algorithm 3 Onlooker bees phase algorithm

1: procedure ONLOOKER_BEES_PHASE()
2: Onlookers: Number of onlooker bees
3: for all Onlooker bees OBi, i = 1, .., Onlookers do
4: Select a food source SN using roulette wheel scheme
5: SN∗ ← LOCAL_SEARCH(SN, d)
6: Reschedule maintenance activities of SN∗

7: if f itness(SN∗) > f itness(SN) then
8: Update food solution SN with SN∗

9: Reset trials_count of SN to 0
10: else
11: Increment trials_count of SN
12: end if
13: end for
14: Apply the same process on the best food source in the population
15: end procedure

The selection process is performed by onlooker bees using a roulette wheel approach,
where each food source is associated with a selection probability determined by its fitness
evaluation. This allows food sources with better fitness to have a higher chance of being
selected. Note that for Makespan (Cmax) minimization, the considered fitness function is
f itness = 1/Cmax. The following formula is used to evaluate the selection probability pi of
a food source f si:

pi =
f itness(f si)

∑SN
k=1 f itness(f sk)

(3)

Once each onlooker bee selects a food source, it starts generating a new solution
through a local search method. Various local search algorithms are available in the litera-
ture. In this work, the proposed local search is inspired by the construction/destruction
mechanism introduced in [73]. This procedure consists of removing a predetermined

Technologies 2024, 12, 45 12 of 21

number of jobs from the production sequence and then rescheduling them based on the
well-known NEH heuristic [81]. Since NEH heuristics allows finding the best emplacement
of a job in a sequence to minimize Cmax, this local search method enhances the quality of
the solution found by the employed bees, promoting then the exploitation of the search
process. Two distinct stopping criteria are considered for the local search: first improve
criterion, where the local search concludes upon achieving the first improved solution.
This criterion is applied to all selected food sources at each iteration. The second criterion
involves conducting an exhaustive search, by inserting the removed jobs into all possible
positions. Given that this criterion is greedy in terms of computational time, it is applied
only to the best solution in each iteration. Similarly to the employed bees phase, if a solu-
tion is not improved after the local search procedure, its respective counter (trials_count)
is incremented. The local search procedure integrated in onlooker bees phase is given
Algorithm 4.

Algorithm 4 Local search algorithm

1: procedure LOCAL_SEARCH(SN, d)
2: SN: food source (solution)
3: d: number of jobs to be rescheduled
4: Let S = {Js1, .., Jsn} be the job sequence associated to solution SN
5: for i← 1 to d do
6: Select a random job position j and delete corresponding job Jsj
7: for k← 1 to n− 1 do
8: Insert Jsj in position k and evaluate new Makespan (C∗max)
9: if (C∗max < Cmax) then

10: Update solution SN
11: end if
12: if SN is not the best solution in the population then
13: stop procedure (first improvement scheme)
14: end if
15: end for
16: end for
17: end procedure

4.4. Scout Bees Phase

The scout bees phase is the last stage of ABC algorithm iteration. During this phase,
scout bees fly to candidate solutions with trials_count exceeding the allowed maximum
threshold, denoted limit. These solutions are abandoned and replaced by new randomly
generated ones in the subsequent iteration, as given in Algorithm 5.

Algorithm 5 Scout bees phase algorithm

1: procedure SCOUT_BEES_PHASE()
2: for all Food sources SNi, i = 1, .., SN do
3: if trials_count of SNi > limit then
4: Generate new random solution SN∗;
5: Update food solution SNi with SN∗;
6: Reset trials_count of SN to 0;
7: end if
8: end for
9: end procedure

5. Computational Results

This section is devoted to presenting the results of computational experiments con-
ducted to calibrate and evaluate the newly proposed ABC algorithm for the integrated
scheduling of production and predictive maintenance. All algorithms and tests were

Technologies 2024, 12, 45 13 of 21

developed using Python and executed on Microsoft Azure cloud using the Standard
NC6_Promo virtual machine under the Ubuntu 18 operating system, equipped with 6 cores
and 6 gigabytes of RAM.

We first describe the data benchmarks used in this study. Next, we outline the sta-
tistical analysis conducted for the configuration of ABC parameters. Finally, we analyze
the performance of the proposed ABC algorithm when compared to a VNS (variable
neighborhood search) method from the literature [44].

5.1. Data Benchmarks for the Integrated Scheduling Problem

We apply a similar data generation approach as proposed in [44]. For produc-
tion data, we use the well-known Taillard’s instances [83]. This benchmark consists of
120 instances of the PFSP, where 12 configurations of flowhsop (n× m) are considered:
n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}. For each configuration, 10 instances are
included. For predictive maintenance data, PHM information in form of degradation
values δij are generated for each job when being executed by each machine, according to its
processing time pij. This involves three cases: Low, Medium, and High degradation values
as follows:

• Jobs with processing times pij < 20 induce machine degradation δij uniformly dis-
tributed in [0.02, 0.03];

• Jobs with processing times 20 ≤ pij < 50 induce machine degradation δij uniformly
distributed in distributed in [0.03, 0.06];

• Jobs with processing times pij ≥ 50 induce machine degradation δij uniformly dis-
tributed in [0.06, 0.1].

For maintenance operations processing times, two variants are considered. In the
first mode, medium maintenance durations are generated from the uniform distribution
U[50, 100]. In the second mode, long maintenance durations are generated from the uniform
distribution U[100, 150]. Hence, we obtain a set of 120 instances of the integrated scheduling
problem for each maintenance mode, and then a total of 240 instances.

Three metrics are calculated to assess the performance of the proposed ABC algorithm:
(1) The relative percentage deviation (RPD) of the Makespan (Cmax) obtained by the ABC

algorithm, with respect to a theoretical lower bound LB. The RPD is calculated as follows:

RPD =
Cmax − LB

LB
× 100 (4)

The proposed lower bound LB is based on the lower bound suggested by Taillard
in [83], taking into account the maintenance operations. Let ai be the minimum duration that
machine Mi must wait before it can start processing (waiting for the previous machines in
the flowshop), bi the minimum duration the machine Mi remains inactive after completing
processing all jobs (waiting for the next machines in the flowshop), ki the total number of
maintenance activities of duration D and Ti be the total processing time of machine Mi
including both production and maintenance operations. Then:

ai = min
j
(

i−1

∑
k=1

Pkj) (5)

bi = min
j
(

m

∑
k=i+1

Pkj) (6)

Ti =
n

∑
j=1

Pij + ki × D (7)

where m is the number of machines in the flowshop, n is the number of jobs, and pij is the
processing time of task Jj on machine Mi.

Technologies 2024, 12, 45 14 of 21

The sum ai + Ti + bi represents the time a machine should wait before it starts process-
ing (ai), added to the total time it needs to process all production and maintenance tasks
(Ti), added to the minimum period it waits till the next machines of the flowshop finish
their execution (bi). Given that no waiting times are considered between tasks, Cmax must
exceeds the maximum of ai + Ti + bi. On the other hand, Cmax also exceeds the maximum
period required for jobs to pass through all machines of the flowshop. Hence, the lower
bound LB is obtained as follows:

LB = max{max
i

(ai + Ti + bi), max
j

m

∑
i=1

Pij} (8)

(2) The average percentage of maintenance operations earliness/tardiness (ET). It is
calculated according to the machine’s accumulated degradation at the moment of predictive
maintenance intervention scheduling. An ideal maintenance operation is scheduled when
the machine is fully exploited, i.e., its accumulated degradation is equal to 100%. Otherwise,
a maintenance operation is either early if the accumulated machine degradation is less than
100% or tardy if the accumulated machine degradation is greater than 100%. Hence, the ET
of maintenance operations on machine Mi is:

ETi =
∑ni

k=1 |δk − 1|
ni

(9)

where ni is the number of predictive maintenance operations scheduled on machine Mi
and δk is the value of the accumulated degradation of the machine when the kth predictive
maintenance is scheduled.

The average percentage of ET of all maintenance operations of the schedule is calcu-
lated as follows:

ET =
∑m

i=1 ETi

m
× 100 (10)

(3) Computation time CPU.

5.2. Statistical Analysis for ABC Parameters Tuning

The ABC algorithm has three parameters, namely, the number of food sources (SN)
which is equal to the number of employed bees, the number of iterations after which a
non-improved solution is abandoned limit, and the maximum cycle number (MCN). In
most cases, the number of onlooker bees is equal to the number of employed bees. In this
work, to limit the computation time and enhance the balance between exploration and
exploitation for the specific needs of our optimization problem, the number of onlooker
bees (denoted Onlookers) is also considered as a parameter.

Four parameters (SN, MCN, limit, and Onlookers) are assessed in the calibration
procedure. Various levels are considered for each parameter: SN ∈ {50, 70, 100}, MCN ∈
{100, 150, 200}, limit ∈ {5, 10, 50}, and Onlookers ∈ {0.2× SN, 0.3× SN, 0.4× SN} of the
total number of food sources SN. A full factorial design was conducted, in which all
possible combinations of various parameters were tested. The results were then analyzed
using analysis of variance method statistical method, with the least significant difference
intervals at 95%, to set each factor to its best level.

To allow fair parameter tuning, the algorithm calibration tests are executed on a
new set of instances. Production data are generated following procedure outlined in [83],
including 20 combinations of n×m, where n ∈ {20, 70, 120, 170, 220} and m ∈ {5, 10, 15, 20}.
Two instances are generated for each combination, resulting in a total of 40 instances. The
same approach described in Section 5.1 is used for maintenance data generation (the first
maintenance mode is adopted).

Applying a full factorial design, we have 3× 3× 3× 3 = 81 parameter combinations
to test on 40 instances, with 5 runs per instance, resulting in 16.200 executions. The
response variable for analysis of variance is the Makespan deviation RPD. Results show

Technologies 2024, 12, 45 15 of 21

that the best combination of ABC parameters is: SN = 70, MCN = 200, limit = 5, and
Onlookers = 0.4× SN.

5.3. ABC Performance Analysis

In this section, we will provide insights into results obtained by the proposed ABC
algorithm when applied to solve the 120 instances of the integrated scheduling problem
in the two maintenance modes. To assess the performance of the ABC approach, it is
compared to a variable neighborhood approach (VNS) from the literature [44]. This work
was selected as it tackles the same integrated scheduling problem of production and
predictive maintenance. To make a fair comparison, the VNS algorithm was re-executed on
the same instances and in the same environment (machine configuration). Results obtained
by ABC and VNS in terms of RPD and ET are depicted in Tables 1 and 2, for maintenance
modes 1 and 2, respectively.

Table 1. RPD and ET results for ABC and VNS algorithms in maintenance mode 1 (in %).

Instance RPD ABC RPD VNS ET ABC ET VNS

20 × 5 4.62 11.52 2.05 2.08
20 × 10 12.82 23.01 2.67 3.07
20 × 20 25.03 28.19 3.84 1.58
50 × 5 1.94 1.72 3.83 0.82

50 × 10 9.8 8.24 3.7 1.85
50 × 20 19.69 18.5 4.28 2.01
100 × 5 1.17 1.35 4.7 0.69
100 × 10 4.37 5.09 4.73 1.47
100 × 20 13.47 15 4.87 1.81
200 × 10 1.75 3.13 5 1.77
200 × 20 7.25 11.21 4.93 2.33
500 × 20 3 - 5.04 -

Average 9.26 11.55 4.14 1.85

Table 2. RPD and ET results for ABC and VNS algorithms in maintenance mode 2 (in %).

Instance RPD ABC RPD VNS ET ABC ET VNS

20 × 5 3.68 10.617 2.06 2.8
20 × 10 14.05 24.199 4.13 3.12
20 × 20 27.52 32.982 3.14 1.72
50 × 5 3.03 1.933 4.66 1.16

50 × 10 12.39 9.955 4.23 1.93
50 × 20 24.9 19.276 4.22 2.15
100 × 5 1.47 1.463 4.56 0.85
100 × 10 6.23 5.483 4.67 1.61
100 × 20 16.43 15.614 4.8 1.97
200 × 10 2.52 3.429 4.88 1.93
200 × 20 9.64 12.549 4.89 2.33
500 × 20 3.04 - 5.01 -

Average 11.57 12.5 4.27 1.96

For Makespan (Cmax) minimization, the proposed ABC algorithm outperforms the
VNS method for the majority of instances, in both maintenance modes. On average, ABC is
the best, with an average RPD of 9.26% against 11.55% for VNS in maintenance mode 1,
and 11.57% against 12.5% in maintenance mode 2. Hence we could conclude that ABC is
more efficient in Cmax minimization. It is important to note that we could not execute the
VNS algorithm for instances 500× 20 due to excessively long execution times.

To statistically validate the significance of the difference in RPD values provided by
the proposed ABC algorithm and VNS, Wilcoxon’s statistical analysis of variance was

Technologies 2024, 12, 45 16 of 21

conducted. Results reject the null hypothesis, i.e., significant variance is validated between
the two algorithms at a confidence interval of 90% (p-value) was set to 0.1). Figure 6 shows
the mean plots of both algorithms for RPD optimization.

Figure 6. Box-plots for ABC and VNS algorithms for RPD optimization.

On the other hand, when considering maintenance average ET minimization, the VNS
method provides better results in most cases, with an average ET of 1.85% against 4.14%
for the proposed ABC in maintenance mode 1, and 1.96% against 4.27% for maintenance
mode 2. It is worth noting that the maintenance criterion (average ET) was only calculated
in this study, but single objective optimization, of Cmax, was considered. However, when
jointly observing both criteria, we can confirm that ABC allows achieving a good trade-off
between production completion time and maintenance ET while maintaining good results
for Cmax.

When comparing maintenance modes, we notice that Cmax deviations increase in mode
2, while maintenance average ET remains steady. Indeed, Cmax deviations are influenced
by the duration of maintenance interventions: greater disruptions occur when longer
maintenance activities are scheduled. However, maintenance ET depends solely on the
timing of maintenance interventions and remains unaffected by their duration.

A critical feature of an optimization problem is the convergence phenomenon. To
analyze the behaviour of the proposed ABC algorithm through the search iterations, we
provide in Figure 7 an illustrative example of several independent executions of the ABC
algorithm on one given instance of the integrated problem of size 100× 10 in maintenance
mode 1. We can observe that the ABC algorithm is effectively progressing towards finding
the near-optimal possible solution. We notice that the convergence rate is high at the
first ≈ 50 iterations, after that, the search progress slows down. In most cases, the search
process globally converges towards the same best solution (RPD = 2.56%). Some local
convergences (in local optima) are also observed, but the ABC algorithm is most often
able to boost the search process. Otherwise, based on the second termination criterion
max_improv = 40 iterations, the search process is stopped if the algorithm is stacked in
local optimum for more than 40 iterations.

Technologies 2024, 12, 45 17 of 21

Figure 7. Convergence curves of the ABC algorithms and average curve (in red) for one instance of
size 100× 10.

To assess the computational performance of both methods, CPU time is evaluated in
Table 3. This metric aids in identifying potential trade-offs between solution quality and
computational speed. For small instances ((20× 5), (20× 10), (20× 20), (50× 5)), VNS is
faster than ABC. When the instance size increases, ABC becomes faster with an average
difference of 2915.51 s, which can go up to 5.07 h (for benchmark (200× 20). Moreover,
for the set of instances 500× 20, we were enabled to run the VNS algorithm. For small
instances, the CPU time difference can be explained by the fact that VNS applies its research
process on a single solution at each iteration, while ABC manipulates a whole population,
which makes it slower. For larger instances, exhaustive neighbourhood exploration during
the VNS research process makes it slower, because the neighbourhood size explodes. As a
consequence, when considering the scalability of both methods, we can confirm that the
proposed ABC algorithm is more practical.

Table 3. CPU for ABC and VNS algorithms (in seconds).

Instance CPU ABC CPU VNS

20 × 5 15.94 0.85
20 × 10 22.47 1.97
20 × 20 34.38 5.54
50 × 5 29.56 19.32
50 × 10 50.32 55.93
50 × 20 72.73 198.85
100 × 5 53.2 178.05

100 × 10 103.36 569.9
100 × 20 166.37 2375.4
200 × 10 234.4 10,116
200 × 20 262.61 20,808
500 × 20 1761.34 -

Average 233.89 3149.4

6. Conclusions

This work deals with the integrated scheduling problem of production and predictive
maintenance in permutation flowshops. This problem is characterized by flexible mainte-

Technologies 2024, 12, 45 18 of 21

nance activities scheduled based on PHM outputs. Metaheuristic approaches seem to be the
best and most practical choice to solve such an NP-hard problem. Among a large number of
swarm intelligence-inspired methods, artificial bee colony (ABC), simulating the foraging
behaviour of honey bees, has been successfully applied to different variants of scheduling
problems. Hence, in this study, we develop an ABC algorithm with an efficient search
process, to minimize the total completion time (Makespan) of the schedule. The main idea is
to design adapted search procedures with appropriate structures to balance the exploration
and exploitation of the search. A statistical analysis was used to accurately calibrate the
ABC parameters. Comprehensive experiments were carried out to assess the performance
of the proposed ABC compared to a VNS algorithm from the literature, dealing with the
same problem. Results analysis shows that the proposed ABC is more efficient, providing
better solutions in terms of Makespan minimization, in a shorter computational time.

While the proposed ABC algorithm has demonstrated good results, some improvements
can be considered. One potential enhancement axis involves the integration of a more ro-
bust selection scheme of the neighborhood structures by the employed bees. Moreover, the
hybridization of ABC with other local search methods allows them to leverage their comple-
mentary strengths. Considering the average earliness/tardiness of maintenance interventions,
the proposed ABC seems to be less performant. Indeed, this criterion was not tackled in this
paper. Hence, a promising perspective would be to develop a multi-objective ABC algorithm
where both production and maintenance criteria are simultaneously optimized.

Author Contributions: Conceptualization, A.L. and F.B.-S.T.; methodology, A.L., F.B.-S.T. and A.D.;
software, A.D.; validation, A.L. and F.B.-S.T.; formal analysis, A.L. and F.B.-S.T.; investigation, A.L.
and F.B.-S.T.; resources, A.D.; data curation, A.L., F.B.-S.T., A.D. and M.B.; writing—original draft
preparation, A.L. and F.B.-S.T.; writing—review and editing, A.L., F.B.-S.T. and M.B.; supervision,
A.L., F.B.-S.T. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and code supporting the findings of this study are available
from the corresponding author M. Benbouzid on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial bee colony
CPU Central processing unit
ET Earliness/tardiness
GA Genetic algorithm
MILP Mixed-integer linear programming
MSPP Machine scheduling problem in production
PFSP Permutation flowshop scheduling problem
PHM Prognostics and health management
PM Preventive maintenance
PPD Post prognostic decision
RPD Relative percentage deviation
RUL Remaining useful life
VNS Variable neighborhood search

References
1. Abedinnia, H.; Glock, C.H.; Grosse, E.H.; Schneider, M. Machine scheduling problems in production: A tertiary study. Comput.

Ind. Eng. 2017, 111, 403–416. [CrossRef]
2. Sanlaville, E.; Schmidt, G. Machine scheduling with availability constraints. Acta Inform. 1998, 35, 795–811. [CrossRef]

http://doi.org/10.1016/j.cie.2017.06.026
http://dx.doi.org/10.1007/s002360050143

Technologies 2024, 12, 45 19 of 21

3. Schmidt, G. Scheduling with limited machine availability. Eur. J. Oper. Res. 2000, 121, 1–15. [CrossRef]
4. Ma, Y.; Chu, C.; Zuo, C. A survey of scheduling with deterministic machine availability constraints. Comput. Ind. Eng. 2010,

58, 199–211. [CrossRef]
5. Huo, Y.; Zhao, H. Two machine scheduling subject to arbitrary machine availability constraint. Omega 2018, 76, 128–136.

[CrossRef]
6. Lee, C.Y. Two-machine flowshop scheduling with availability constraints. Eur. J. Oper. Res. 1999, 114, 420–429. [CrossRef]
7. Cassady, C.R.; Kutanoglu, E. Integrating preventive maintenance planning and production scheduling for a single machine. IEEE

Trans. Reliab. 2005, 54, 304–309. [CrossRef]
8. Ruiz, R.; García-Díaz, J.C.; Maroto, C. Considering scheduling and preventive maintenance in the flowshop sequencing problem.

Comput. Oper. Res. 2007, 34, 3314–3330. [CrossRef]
9. Wang, S.; Liu, M. Two-machine flow shop scheduling integrated with preventive maintenance planning. Int. J. Syst. Sci. 2016,

47, 672–690. [CrossRef]
10. Xiao, L.; Song, S.; Chen, X.; Coit, D.W. Joint optimization of production scheduling and machine group preventive maintenance.

Reliab. Eng. Syst. Saf. 2016, 146, 68–78. [CrossRef]
11. Seif, J.; Yu, A.J.; Rahmanniyay, F. Modelling and optimization of a bi-objective flow shop scheduling with diverse maintenance

requirements. Int. J. Prod. Res. 2018, 56, 3204–3225. [CrossRef]
12. Chen, J.S. Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan. Eur.

J. Oper. Res. 2008, 190, 90–102. [CrossRef]
13. Benbouzid-Si Tayeb, F.; Guebli, S.A.; Bessadi, Y.; Varnier, C.; Zerhouni, N. Joint scheduling of jobs and preventive maintenance

operations in the flowshop sequencing problem: A resolution with sequential and integrated strategies. Int. J. Manuf. Res. 2011,
6, 30–48.

14. Bock, S.; Briskorn, D.; Horbach, A. Scheduling flexible maintenance activities subject to job-dependent machine deterioration. J.
Sched. 2012, 15, 565–578. [CrossRef]

15. Vahedi-Nouri, B.; Fattahi, P.; Tavakkoli-Moghaddam, R.; Ramezanian, R. A general flow shop scheduling problem with
consideration of position-based learning effect and multiple availability constraints. Int. J. Adv. Manuf. Technol. 2014, 73, 601–611.
[CrossRef]

16. Benbouzid-Si Tayeb, F.; Belkaaloul, W. Towards an artificial immune system for scheduling jobs and preventive maintenance
operations in flowshop problems. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE),
Istanbul, Turkey, 1–4 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1065–1070.

17. Khatami, M.; Zegordi, S.H. Coordinative production and maintenance scheduling problem with flexible maintenance time
intervals. J. Intell. Manuf. 2017, 28, 857–867. [CrossRef]

18. Detti, P.; Nicosia, G.; Pacifici, A.; de Lara, G.Z.M. Robust single machine scheduling with a flexible maintenance activity. Comput.
Oper. Res. 2019, 107, 19–31. [CrossRef]

19. Wang, H.; Yan, Q.; Zhang, S. Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system
using a reinforcement learning approach. Adv. Eng. Inform. 2021, 49, 101339. [CrossRef]

20. Costa, A.; Fernandez-Viagas, V. A modified harmony search for the T-single machine scheduling problem with variable and
flexible maintenance. Expert Syst. Appl. 2022, 198, 116897. [CrossRef]

21. Yan, Q.; Wu, W.; Wang, H. Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance. Machines
2022, 10, 210. [CrossRef]

22. Penz, L.; Dauzère-Pérès, S.; Nattaf, M. Minimizing the sum of completion times on a single machine with health index and
flexible maintenance operations. Comput. Oper. Res. 2023, 151, 106092. [CrossRef]

23. Jia, Y.; Yan, Q.; Wang, H. Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow
shop scheduling with flexible preventive maintenance. Expert Syst. Appl. 2023, 232, 120837. [CrossRef]

24. Atamuradov, V.; Medjaher, K.; Dersin, P.; Lamoureux, B.; Zerhouni, N. Prognostics and health management for maintenance
practitioners-Review, implementation and tools evaluation. Int. J. Progn. Health Manag. 2017, 8, 1–31. [CrossRef]

25. Iyer, N.; Goebel, K.; Bonissone, P. Framework for post-prognostic decision support. In Proceedings of the 2006 IEEE Aerospace
Conference, Big Sky, MT, USA, 4–11 March 2006; IEEE: Piscataway, NJ, USA, 2006; p. 10.

26. Kubiak, W.; Błażewicz, J.; Formanowicz, P.; Breit, J.; Schmidt, G. Two-machine flow shops with limited machine availability. Eur.
J. Oper. Res. 2002, 136, 528–540. [CrossRef]

27. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

28. Karaboga, D.; Akay, B. A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft
Comput. 2011, 11, 3021–3031. [CrossRef]

29. Aslan, S.; Badem, H.; Karaboga, D. Improved quick artificial bee colony (iqABC) algorithm for global optimization. Soft Comput.
2019, 23, 13161–13182. [CrossRef]

30. Kaya, E.; Gorkemli, B.; Akay, B.; Karaboga, D. A review on the studies employing artificial bee colony algorithm to solve
combinatorial optimization problems. Eng. Appl. Artif. Intell. 2022, 115, 105311. [CrossRef]

31. Lei, D.; Cai, J. Multi-population meta-heuristics for production scheduling: A survey. Swarm Evol. Comput. 2020, 58, 100739.
[CrossRef]

http://dx.doi.org/10.1016/S0377-2217(98)00367-1
http://dx.doi.org/10.1016/j.cie.2009.04.014
http://dx.doi.org/10.1016/j.omega.2017.05.004
http://dx.doi.org/10.1016/S0377-2217(97)00452-9
http://dx.doi.org/10.1109/TR.2005.845967
http://dx.doi.org/10.1016/j.cor.2005.12.007
http://dx.doi.org/10.1080/00207721.2014.900137
http://dx.doi.org/10.1016/j.ress.2015.10.013
http://dx.doi.org/10.1080/00207543.2017.1403660
http://dx.doi.org/10.1016/j.ejor.2007.06.029
http://dx.doi.org/10.1007/s10951-011-0248-7
http://dx.doi.org/10.1007/s00170-014-5841-4
http://dx.doi.org/10.1007/s10845-014-1001-9
http://dx.doi.org/10.1016/j.cor.2019.03.001
http://dx.doi.org/10.1016/j.aei.2021.101339
http://dx.doi.org/10.1016/j.eswa.2022.116897
http://dx.doi.org/10.3390/machines10030210
http://dx.doi.org/10.1016/j.cor.2022.106092
http://dx.doi.org/10.1016/j.eswa.2023.120837
http://dx.doi.org/10.36001/ijphm.2017.v8i3.2667
http://dx.doi.org/10.1016/S0377-2217(01)00083-2
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.asoc.2010.12.001
http://dx.doi.org/10.1007/s00500-019-03858-y
http://dx.doi.org/10.1016/j.engappai.2022.105311
http://dx.doi.org/10.1016/j.swevo.2020.100739

Technologies 2024, 12, 45 20 of 21

32. Framinan, J.M.; Gupta, J.N.; Leisten, R. A review and classification of heuristics for permutation flow-shop scheduling with
makespan objective. J. Oper. Res. Soc. 2004, 55, 1243–1255. [CrossRef]

33. Ruiz, R.; Maroto, C. A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 2005,
165, 479–494. [CrossRef]

34. Pan, Q.K.; Ruiz, R. A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput.
Oper. Res. 2013, 40, 117–128. [CrossRef]

35. Yenisey, M.M.; Yagmahan, B. Multi-objective permutation flow shop scheduling problem: Literature review, classification and
current trends. Omega 2014, 45, 119–135. [CrossRef]

36. Fernandez-Viagas, V.; Ruiz, R.; Framinan, J.M. A new vision of approximate methods for the permutation flowshop to minimise
makespan: State-of-the-art and computational evaluation. Eur. J. Oper. Res. 2017, 257, 707–721. [CrossRef]

37. Zaied, A.N.H.; Ismail, M.M.; Mohamed, S.S. Permutation flow shop scheduling problem with makespan criterion: Literature
review. J. Theor. Appl. Inf. Technol 2021, 99, 830–848.

38. Zhai, S.; Kandemir, M.G.; Reinhart, G. Predictive maintenance integrated production scheduling by applying deep generative
prognostics models: Approach, formulation and solution. Prod. Eng. 2022, 16, 65–88. [CrossRef]

39. Varnier, C.; Zerhouni, N. Scheduling predictive maintenance in flow-shop. In Proceedings of the IEEE 2012 Prognostics and
System Health Management Conference (PHM-2012 Beijing), Beijing, China, 23–25 May 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 1–6.

40. Ecoretti, A.; Ceschia, S.; Schaerf, A. Local Search for Integrated Predictive Maintenance and Scheduling in Flow-Shop. In
Proceedings of the Metaheuristics International Conference, Syracuse, Italy, 11–14 July 2022; Springer: Cham, Switzerland, 2022;
pp. 260–273.

41. Ladj, A.; Benbouzid-Si Tayeb, F.; Varnier, C. Tailored genetic algorithm for scheduling jobs and predictive maintenance in a
permutation flowshop. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), Turin, Italy, 4–7 September 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 1, pp. 524–531.

42. Safari, E.; Jafar Sadjadi, S.; Shahanaghi, K. Scheduling flowshops with condition-based maintenance constraint to minimize
expected makespan. Int. J. Adv. Manuf. Technol. 2010, 46, 757–767. [CrossRef]

43. Safari, E.; Sadjadi, S.J. A hybrid method for flowshops scheduling with condition-based maintenance constraint and machines
breakdown. Expert Syst. Appl. 2011, 38, 2020–2029. [CrossRef]

44. Ladj, A.; Benbouzid-Si Tayeb, F.; Varnier, C.; Dridi, A.A.; Selmane, N. A hybrid of variable neighbor search and fuzzy logic for the
permutation flowshop scheduling problem with predictive maintenance. Procedia Comput. Sci. 2017, 112, 663–672. [CrossRef]

45. Ladj, A.; Benbouzid-Si Tayeb, F.; Varnier, C. Hybrid of metaheuristic approaches and fuzzy logic for the integrated flowshop
scheduling with predictive maintenance problem under uncertainties. Eur. J. Ind. Eng. 2021, 15, 675–710. [CrossRef]

46. Touafek, N.; Benbouzid-Si Tayeb, F.; Ladj, A. A Reinforcing-Learning-Driven Artificial Bee Colony Algorithm for Scheduling Jobs
and Flexible Maintenance under Learning and Deteriorating Effects. Algorithms 2023, 16, 397. [CrossRef]

47. Azab, E.; Nafea, M.; Shihata, L.A.; Mashaly, M. A machine-learning-assisted simulation approach for incorporating predictive
maintenance in dynamic flow-shop scheduling. Appl. Sci. 2021, 11, 11725. [CrossRef]

48. Kan, A.R. Machine Scheduling Problems: Classification, Complexity and Computations; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

49. Pinedo, M.L. Scheduling; Springer: Berlin/Heidelberg, Germany, 2012; Volume 29.
50. Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
51. Rabadi, G. Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling; Springer: Berlin/Heidelberg, Germany,

2016; Volume 236.
52. Cuevas, E.; Fausto, F.; González, A.; Cuevas, E.; Fausto, F.; González, A. An introduction to nature-inspired metaheuristics

and swarm methods. In New Advancements in Swarm Algorithms: Operators and Applications; Springer: Cham, Switzerland, 2020;
pp. 1–41.

53. Dragoi, E.N.; Dafinescu, V. Review of metaheuristics inspired from the animal kingdom. Mathematics 2021, 9, 2335. [CrossRef]
54. Peres, F.; Castelli, M. Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development.

Appl. Sci. 2021, 11, 6449. [CrossRef]
55. Darvishpoor, S.; Darvishpour, A.; Escarcega, M.; Hassanalian, M. Nature-Inspired Algorithms from Oceans to Space: A

Comprehensive Review of Heuristic and Meta-Heuristic Optimization Algorithms and Their Potential Applications in Drones.
Drones 2023, 7, 427. [CrossRef]

56. Godinho Filho, M.; Barco, C.F.; Tavares Neto, R.F. Using Genetic Algorithms to solve scheduling problems on flexible manufac-
turing systems (FMS): A literature survey, classification and analysis. Flex. Serv. Manuf. J. 2014, 26, 408–431. [CrossRef]

57. Liu, S.; Wang, P.; Zhang, J. An improved biogeography-based optimization algorithm for blocking flow shop scheduling problem.
Chin. J. Electron. 2018, 27, 351–358. [CrossRef]

58. Marichelvam, M.; Geetha, M.; Tosun, Ö. An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling
problems with the effect of human factors—A case study. Comput. Oper. Res. 2020, 114, 104812. [CrossRef]

59. Neto, R.T.; Godinho Filho, M. Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines
for implementation and directions for future research. Eng. Appl. Artif. Intell. 2013, 26, 150–161. [CrossRef]

http://dx.doi.org/10.1057/palgrave.jors.2601784
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1016/j.cor.2012.05.018
http://dx.doi.org/10.1016/j.omega.2013.07.004
http://dx.doi.org/10.1016/j.ejor.2016.09.055
http://dx.doi.org/10.1007/s11740-021-01064-0
http://dx.doi.org/10.1007/s00170-009-2151-3
http://dx.doi.org/10.1016/j.eswa.2010.07.138
http://dx.doi.org/10.1016/j.procs.2017.08.120
http://dx.doi.org/10.1504/EJIE.2021.117325
http://dx.doi.org/10.3390/a16090397
http://dx.doi.org/10.3390/app112411725
http://dx.doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.3390/math9182335
http://dx.doi.org/10.3390/app11146449
http://dx.doi.org/10.3390/drones7070427
http://dx.doi.org/10.1007/s10696-012-9143-6
http://dx.doi.org/10.1049/cje.2018.01.007
http://dx.doi.org/10.1016/j.cor.2019.104812
http://dx.doi.org/10.1016/j.engappai.2012.03.011

Technologies 2024, 12, 45 21 of 21

60. Shao, Z.; Pi, D.; Shao, W. Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in
distributed environment. Expert Syst. Appl. 2020, 145, 113147. [CrossRef]

61. Marichelvam, M.; Prabaharan, T.; Yang, X.S.; Geetha, M. Solving hybrid flow shop scheduling problems using bat algorithm. Int.
J. Logist. Econ. Glob. 2013, 5, 15–29. [CrossRef]

62. Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop
scheduling cases. IEEE Access 2018, 6, 26231–26240. [CrossRef]

63. Zhang, B.; Pan, Q.K.; Gao, L.; Zhang, X.L.; Sang, H.Y.; Li, J.Q. An effective modified migrating birds optimization for hybrid
flowshop scheduling problem with lot streaming. Appl. Soft Comput. 2017, 52, 14–27. [CrossRef]

64. Li, J.Q.; Pan, Q.K. Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity. Appl. Soft
Comput. 2012, 12, 2896–2912. [CrossRef]

65. Zahmani, M.H. An adaptation of the galaxy-based search algorithm for solving the single machine total weighted tardiness
problem. Int. J. Manuf. Res. 2021, 16, 399–413. [CrossRef]

66. Jeet, K.; Dhir, R.; Singh, P. Hybrid black hole algorithm for bi-criteria job scheduling on parallel machines. Int. J. Intell. Syst. Appl.
2016, 8, 1–17. [CrossRef]

67. Hart, E.; Ross, P.; Corne, D. Evolutionary scheduling: A review. Genet. Program. Evolvable Mach. 2005, 6, 191–220. [CrossRef]
68. Branke, J.; Nguyen, S.; Pickardt, C.W.; Zhang, M. Automated design of production scheduling heuristics: A review. IEEE Trans.

Evol. Comput. 2015, 20, 110–124. [CrossRef]
69. Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems.

In Proceedings of the International Fuzzy Systems Association World Congress, Cancun, Mexico, 18–21 June 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 789–798.

70. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.
[CrossRef]

71. Brajevic, I.; Tuba, M. An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J. Intell. Manuf.
2013, 24, 729–740. [CrossRef]

72. Pan, Q.K.; Tasgetiren, M.F.; Suganthan, P.N.; Chua, T.J. A discrete artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem. Inf. Sci. 2011, 181, 2455–2468. [CrossRef]

73. Tasgetiren, M.F.; Pan, Q.K.; Suganthan, P.; Oner, A. A discrete artificial bee colony algorithm for the no-idle permutation flowshop
scheduling problem with the total tardiness criterion. Appl. Math. Model. 2013, 37, 6758–6779. [CrossRef]

74. Pan, Q.K.; Wang, L.; Li, J.Q.; Duan, J.H. A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling
problem with makespan minimisation. Omega 2014, 45, 42–56. [CrossRef]

75. Li, H.; Li, X.; Gao, L. A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling
problem. Appl. Soft Comput. 2021, 100, 106946. [CrossRef]

76. Zuo, Y.; Fan, Z.; Zou, T.; Wang, P. A novel multi-population artificial bee colony algorithm for energy-efficient hybrid flow shop
scheduling problem. Symmetry 2021, 13, 2421. [CrossRef]

77. Zuo, Y.; Wang, P.; Li, M. A Population Diversity-Based Artificial Bee Colony Algorithm for Assembly Hybrid Flow Shop
Scheduling with Energy Consumption. Appl. Sci. 2023, 13, 10903. [CrossRef]

78. Li, H.; Gao, K.; Duan, P.Y.; Li, J.Q.; Zhang, L. An improved artificial bee colony algorithm with q-learning for solving permutation
flow-shop scheduling problems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 2684–2693. [CrossRef]

79. Gong, D.; Han, Y.; Sun, J. A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop
scheduling problems. Knowl.-Based Syst. 2018, 148, 115–130. [CrossRef]

80. Baysal, M.E.; Sarucan, A.; Büyüközkan, K.; Engin, O. Artificial bee colony algorithm for solving multi-objective distributed fuzzy
permutation flow shop problem. J. Intell. Fuzzy Syst. 2022, 42, 439–449. [CrossRef]

81. Nawaz, M.; Enscore Jr, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

82. Ruiz, R.; Maroto, C.; Alcaraz, J. Two new robust genetic algorithms for the flowshop scheduling problem. Omega 2006, 34, 461–476.
[CrossRef]

83. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2019.113147
http://dx.doi.org/10.1504/IJLEG.2013.054428
http://dx.doi.org/10.1109/ACCESS.2018.2833552
http://dx.doi.org/10.1016/j.asoc.2016.12.021
http://dx.doi.org/10.1016/j.asoc.2012.04.012
http://dx.doi.org/10.1504/IJMR.2021.119640
http://dx.doi.org/10.5815/ijisa.2016.04.01
http://dx.doi.org/10.1007/s10710-005-7580-7
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1007/s10845-011-0621-6
http://dx.doi.org/10.1016/j.ins.2009.12.025
http://dx.doi.org/10.1016/j.apm.2013.02.011
http://dx.doi.org/10.1016/j.omega.2013.12.004
http://dx.doi.org/10.1016/j.asoc.2020.106946
http://dx.doi.org/10.3390/sym13122421
http://dx.doi.org/10.3390/app131910903
http://dx.doi.org/10.1109/TSMC.2022.3219380
http://dx.doi.org/10.1016/j.knosys.2018.02.029
http://dx.doi.org/10.3233/JIFS-219202
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/j.omega.2004.12.006
http://dx.doi.org/10.1016/0377-2217(93)90182-M

	Introduction
	Related Works
	Problem Statement
	Proposed ABC-Based Solving Approach
	Solution Representation, Objective Function and Initialization Procedure
	Employed Bees Phase
	Onlooker Bees Phase
	Scout Bees Phase

	Computational Results
	Data Benchmarks for the Integrated Scheduling Problem
	Statistical Analysis for ABC Parameters Tuning
	ABC Performance Analysis

	Conclusions
	References

