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A Dependable and Low-Cost CCSDS 123
Hyperspectral Image Compressor

Wesley Grignani, Douglas A. Santos, Felipe Viel, Luigi Dilillo, and Douglas R. Melo

Abstract

One of the most critical challenges in applications that use hyperspectral image (HSI) is the demand for compression, which
affects restrictions on the storage capacity and processing in space applications. In addition, these systems that operate in space
are susceptible to faults due to adverse conditions and require the implementation of protection techniques to mitigate these
faults and ensure correct operation. This work aimed to implement a fault-tolerant CCSDS 123 HSI compressor using a Hardware
Description Language (HDL) and fault-tolerant techniques like Triple Modular Redundancy (TMR) and Hamming Error Correcting
Code (ECC). A fault injection campaign verified the reliability of the techniques. Results show that the implementation accelerated
the application by 24x compared to the software solution. The standard solution can process 20.57 MSa/s, and the hardened
solution can process 13.81 MSa/s using 2.2x more Look-Up Tables (LUTs) and 1.4x more Flip-Flops (FFs). The low cost
observed in the results makes this implementation a suitable solution for application in space systems targeting resource-efficient
devices.

Index Terms

Systems-on-Chip, Hardware Accelerator, Hyperspectral Images, CCSDS 123.0-B-2, Fault Tolerance.

I. INTRODUCTION

Space applications that collect information about Earth use remote sensing methods. Among these techniques is hyperspectral
imaging, which proves valuable for Earth image acquisition, climate analysis, and forest environments surveillance [1]. HSIs
(Hyperspectral Images) are essentially three-dimensional arrays of pixels, with each pixel defined within a (x,y, z) coordinate
system. In this context, the z-axis signifies distinct layers corresponding to individual images captured across various parts of
the electromagnetic spectrum.

The large number of bands involved in computing HSIs presents difficulties in storing, processing, and transmitting imagery
to ground stations. To address the high data volume of HSIs and optimize performance in transmission and processing, the
Consultative Committee for Spatial Data Systems developed the CCSDS 123 compression algorithm [2], designed for a low
complexity implementation in hardware with lossless and near-lossless compression in the latest release (B-2).

Space systems operate in harsh conditions with radiation, extreme temperatures, vacuum, and low gravity. These challenges
can cause temporary, permanent, or intermittent faults, impacting computational systems [3]. To enhance the reliability of space
systems, various fault tolerance techniques can be employed to protect them from radiation effects [4].

Some hardware accelerators for lossless HSI compression focus on low resource utilization [5] or high performance [6].
Regarding fault-tolerant solutions, the works [7] and [8] focused on a hardened solution using SG (Space-Grade) FPGAs
(Field Programmable Gate Array), where [8] implements Error Detection and Correction. The work [9] performed a reliability
analysis of the compressor made in [8], protecting the implementation by triplicating the entire compressor.

In this work, we extend our previous project [10], focusing on implementing a low-cost and fault-tolerant CCSDS 123
hardware accelerator for lossless HSI compression. The accelerator was designed with a combination of spatial and information
redundancies to improve the accelerator reliability, including the Hamming ECC (Error Correcting Code) to protect memory
elements and the TMR (Triple Modular Redundancy) to protect the control units.

II. CCSDS 123 ACCELERATOR DESIGN

In our previous project [10], we implemented the compressor in HDL (Hardware Description Language) and HLS (High-
Level Synthesis) using the AXI4-Lite communication bus. This work uses the HDL implementation and hardens the architecture
with fault-tolerance mechanisms. We also improved the SoC (System-on-Chip) communication architecture using an AXI4-
Stream bus. The compression design is based on the lossless part of the CCSDS 123.0-B-2 standard with a predictor and an
encoder component detailed in the specification [2]. Fig. 1 presents an overview of the accelerator.
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The prediction calculation is separated by sub-steps, such as local sum o, 4 ., local difference d. , ., weights W, (t) and
local difference U, (t) vectors, central prediction d. (), high resolution predicted sample &, (t), double resolution predicted
sample §,(¢) and mapped quantizer index ¢, ().

The encoder design follows the sample-adaptive model. The output form of the variable-length words can change according
to the compressor calculations. To encode a mapped residual ¢, (t), the model calculates the index k,(t) based on the values
of the predictor and the accumulator A,(t) and counter C,(t) memories to generate a Golomb-Power-of-2 word R (5, (t)).
During this process, the memories are updated according to the z-band of the image encoded on the sample.

III. HARDWARE IMPLEMENTATION
A. Design and Implementation Choices

We made some design choices to minimize the use of logic resources. This includes the local sum o, , in column-oriented
mode with BIP (Band Interleaved by Pixel) processing orders, allowing the vector size of local differences U, (t) to be based
only on the number of previous bands defined P., reducing resources compared to other processing orders. The size of weights
vectors W, (t) is based on the number of Nz bands in the image. The size of the sample buffering is based on the dimensions
Nz and Nz of the image according to the BIP order and column-oriented local sum. We used the reduced prediction mode
to avoid the additional calculations and storage of the directional local differences of the full mode [11]. These design choices
focus on low use of resources by choosing low-complexity design steps.

B. Hardware Architecture

The components were designed to work sequentially, and some steps have been parallelized to reduce the number of cycles
needed to process a sample. In addition, as the encoder block only needs the output from the predictor and some image
information to encode a sample, it can work in a pipeline with the predictor block.

The local sum and local difference execute simultaneously. The predicted sample and weights update run together after
double resolution. The new local difference in the vector can be stored at any step after central prediction and was scheduled
to run with the weight update. We created local differences using registers to allow reading all values in a single cycle rather
than sequentially from RAM. The weights vectors were created using block RAMs, each using the default initialization method
considering the P, previous bands. As one sample of each band is processed at a time, the z index drives the selection of the
weight vector that will be used.

C. Fault Tolerance

We applied Hamming ECC to protect each register between the stages in the predictor and the encoder. Hamming ECC
was implemented to the weights and local difference vectors in the predictor and the accumulator and counter vectors in the
encoder block.

Both the predictor and encoder controllers were hardened by using TMR with a simple bit-wise majority voter system,
sufficient to protect against SEUs (Single Event Upsets) affecting a single bit, mitigating most of the errors in memory
elements for radiation environments, as seen in [12]. In Section IV, we present a reliability analysis of the implementation.

IV. RESULTS

Initially, the implementation was validated with the simulation results from a default pattern test image provided by CCSDS.
The final compression result was compared with [13] to validate the accelerator function. Images from different sensors like
Landsat [14], AVIRIS [15], Hyperion [16], and HICO [17] were also used to verify the accelerator performance.

The Xilinx Vivado 2020.1 development tool was used for synthesis and performance results, considering the standard and
the hardened versions of the compressor.
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Fig. 1. Compressor design overview.



A. Synthesis Results

Table I shows the CCSDS 123 parameters used for synthesis and verification analysis. Many of these parameters impact the
image compression rate, except for those parameters that also impact the use of resources (€2, P,, R). A detailed analysis of
the impact of these parameters is given in [11].

TABLE I
CCSDS PARAMETERS USED FOR SYNTHESIS RESULTS.

Parameter  Description Value
D Dynamic Sample size in bits 16
Q Weight Component Resolution (Weight size is Q + 3) 8
VUmin Weight Update Scaling Exponent Initial Parameter 5
VUmaz Weight Update Scaling Exponent Final Parameter 9
tine Weight Update Scaling Exponent Change Interval 26
P, Number of Previous Bands Used in Prediction 3
R Register size 32
Umaz Unary length limit 16
~0 Initial count exponent 1
y* Re-scaling counter size 4
K Accumulator Initialization Constant 5

TABLE II

RESOURCE UTILIZATION AND PERFORMANCE FOR STANDARD AND HARDENED COMPRESSOR.

Fmax Power  Throughput!

Sensor Nx Ny Nz Config. LUTs FFs DSPs  BRAMs (MHz) (mW) (MSas)
y standard 1167 507 4 6 9869 119 1974
Landsat 1024 1024 6 hardened 2567 (+120%) 687 (+36%) 4 8 (+33%) 7020 144 14.04 (-29%)
standard 1314 511 5 82 10049 146 20.09
AVIRIS 680 512 224 dened 2018 (+122%) 722 (+41%) 5 107 (431%) 6654 176 13.31 (:33%)
) standard 1294 519 4 34 10289 129 20.57
Hyperion 256 3242 242 Gened 2845 (+120%) 710 (+437%) 4 43 (+27%) 69.05 147  13.81 (-32%)
standard 1274 501 5 34 10098 124 20.19

HICO 500 2000 87

w

hardened 2819 (+121%) 714 (+42%) 44 (+29%) 7332 156 14.66 (-27%)

1 A Sample represents one pixel of the image.

Table II presents the compressor resource utilization and performance for different sets of images. The configurations are
referred to as "hardened’, representing the compressor with TMR and Hamming hardening, and ’standard’, without hardening.
The values of LUTs and FFs change because the sizes Nx, Ny, and Nz of the image change the register width to control the
image index internally. The biggest difference in resource use between the images concerns using BRAM:s.

The use of BRAMs increases according to the Nx and Nz size of the image according to the necessary buffering for
BIP processing order. Between the standard implementations, the Landsat image configuration required the lowest resources,
especially because of the lowest number of bands. On the other hand, the AVIRIS image presented the highest use of BRAMs
and LUTs compared to other standard implementations; in particular, AVIRIS showed 13 x the use of BRAMs and 1.13x the
use of LUTs when compared with Landsat.

The compressor takes 5 cycles to process one sample. The highest throughput achieved in the standard implementations was
20.57 MSa/s for the Hyperion configuration. As the compressor architecture does not change with different image configurations,
the number of cycles to process a sample remains the same. Therefore, the difference in throughput is due to the maximum
frequency according to the synthesis tool for each image, where the Performance_ExploreWithRemap strategy was set.

In the hardened version, resource utilization increases in all image configurations by an average of 120% in LUTs, 39%
in FFs, and 30% in BRAMs. This results from applying TMR in the controllers and Hamming to all the compression stages.
In addition, the throughput decreased by an average of 30% since the maximum frequency of the circuit also decreased.
This frequency drop is mainly due to additional Hamming encoding and decoding logic that increased the critical path in the
compression stages.

B. SoC Results

The compressor was tested on the Zyng-7020 SoC (XC7Z2020-CLG484) with AXI DMA to measure the acceleration of
the compression application. The system was initially configured to perform image compression only by the ARM Cortex-A9
processor in a software solution. Then, the ARM processor generates the image header and configures the DMA to send the
samples to the compressor.

The accelerators were configured based on image size and maximum frequency from AVIRIS. The HSI compression
application was accelerated by an average of 24x in the standard versions and by 16X in the hardened ones compared
to the ARM processor running at 667 MHz. The solution accelerates the application by moving the routines from software to
dedicated hardware, and the standard version accelerates even more because of its frequency and throughput.



C. Reliability analysis

We used a simulation method to conduct the fault injection campaign using an AVIRIS image cropped into 4 sizes. We
performed 1000 simulations for each image configuration, where a single fault was injected in a random memory element
at a random time within the simulation time. Results were compared against a golden run conducted without fault injection.
Table III presents the simulation results.

TABLE III
SIMULATION RESULTS FOR DIFFERENT IMAGE SIZES.

Nx Ny Nz  Standard Sim. time  Hardened Sim. time

20 20 20 541 10min 0 31min
20 20 224 727 1h40min 0 4h52min
128 128 20 512 6h07min 0 19h29min
128 128 112 654 34h56min 0 103h44min

Results show that the standard configuration presents several errors that vary according to the image dimensions. This can be
explained by the weight size and buffer memories growing accordingly. They represent most memory elements in the system,
thus becoming the most probable target of fault injection. Considering the error propagation, we observed that any bit-flip
in the weight value directly affects the result because its value is recalculated constantly, propagating each error to the next
samples. On the other hand, the buffer has its values overwritten by new samples at every iteration. This reduces the error
propagation but can still cause errors if the fault is injected before the sample is used.

The results also show that the hardened implementation could detect and correct faults. This demonstrates that the Hamming
ECC and TMR techniques can protect the circuit against SEUs consisting of single-bit flips. In addition, the applied techniques
resulted in a lower overhead when compared to triplicating the entire core.

TABLE IV
SYNTHESIS AND PERFORMANCE RESULTS IN COMPARISON WITH RELATED WORKS.
T 2 2
Work Hardened FPGA LUTs FFs DSPs BRAMs g;[“]j:) }()r(:"v,j)r Th(rﬁ‘sga*}g" tfrﬁ:) E‘E:Jg)y

K] No Zynq-7000 2244 630 3 - 142.00 106 2040  49.02 522

(6] No Zyng-7020 3012 2528 6 84 147.00 295 147.00  6.80 2.00

(71 SG FPGA  Virtex-5 EX130T 9462 9990 6 83 213.00 - 21300  4.69 -

(8] Partially Zyng-7035 4619 2765 8 74 151.10 - 151.10  6.62 -

[9] DMR Zyng-7020 12878 7327 12 21 63.00 69 63.00  15.87 1.09

[9] TMR Zyng-7020 19580 10986 18 31 62.80 144 6280 1592 2.29
This work No Zyng-7020 1294 519 4 34 102.89 129 2057 4861 6.24
This work ~ TMR + Ham Zynq-7020 2845 710 4 43 69.05 147 13.81 72.41 11.48

L A Sample represents one pixel of the image. 2 Execution time and maximum estimated energy consumed to process 1MSa.

D. Comparison with Related Works

Table IV presents the results of the standard and hardened versions with related works. The standard implementation has the
lowest resource utilization of any other related work. Compared to standard works, our implementation uses 1.7 x fewer LUTs
and 1.2x fewer FFs than [5], which only implements the compression prediction step. On the other hand, our implementation
uses 2.3x fewer LUTs and 4.8x fewer FFs than [6], but they have a throughput 7 higher than this work.

Compared to hardened works, our solution uses 3.3x fewer LUTs and 14x fewer FFs than [7] and 1.6x fewer LUTs and
3.8x fewer FFs than [8]. These works have a higher throughput due to the pipelined and parallelized architecture. Moreover,
the work [7] does not present hardened circuitry while [8] implements EDAC (Error Detection And Correction) in some internal
memories to protect from SEUs.

The work [9] uses the DMR (Dual Modular Redundancy) and the TMR technique to implement the hardened solution.
Our work presents a resource utilization of about 4.5x less LUTs and 10x less FFs in the DMR version and uses 6% less
LUTs and 15x less FFs in the TMR version. While our work applies fault tolerance internally to compression components,
the techniques applied in [9] duplicate and triplicate the entire core and significantly increase resource utilization.

Due to the high throughput, the related works have a lower execution time than this work, except for [5], which presents a
similar performance compared with the standard solution.

This work focuses on fault-tolerant and low-cost implementation, and it does not have higher throughput than related works.
However, despite a decrease in throughput, it is worth mentioning that the resource reduction, especially in FFs, represents
a valuable result regarding reliability facing SEUs since memory elements are considered one of the most sensitive parts of
circuits in the space environment [4].

V. CONCLUSION

This paper presents an implementation of a CCSDS 123 lossless HSI compressor described in HDL. The implementation
was hardened to be fault-tolerant and low-cost.



The compressor does not implement optimization techniques, so it does not present the best performance results. On the
other hand, the implementation presents the lowest cost compared to the related works, which is ideal for resource-constrained
devices for space systems.

We compared the achieved performance with standard implementations and works that implemented protection. Unlike the
related works, we applied fault tolerance techniques to all internal memories and control units in the hardened version. The
results show good resilience against SEUs because of lower resource utilization.

For future work, we plan to extend the fault injection campaign with different images and perform an experimental analysis
in particle accelerators. We also intend to improve the execution time performance of the compressor by implementing a
pipelined architecture and integrating dependable multi-core systems.
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