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Abstract

Given a Graph G = (V, E) and two vertices i, j 2 V, we introduce Confluence(G, i, j), a vertex

mesoscopic closeness measure based on short Random walks, which brings together verti-

ces from a same overconnected region of the Graph G, and separates vertices coming from

two distinct overconnected regions. Confluence becomes a useful tool for defining a new

Clustering quality function QConf(G, Γ) for a given Clustering Γ and for defining a new heuris-

tic Starling to find a partitional Clustering of a Graph G intended to optimize the Clustering

quality function QConf. We compare the accuracies of Starling, to the accuracies of three

state of the art Graphs Clustering methods: Spectral-Clustering, Louvain, and Infomap.

These comparisons are done, on the one hand with artificial Graphs (a) Random Graphs

and (b) a classical Graphs Clustering Benchmark, and on the other hand with (c) Terrain-

Graphs gathered from real data. We show that with (a), (b) and (c), Starling is always able to

obtain equivalent or better accuracies than the three others methods. We show also that

with the Benchmark (b), Starling is able to obtain equivalent accuracies and even some-

times better than an Oracle that would only know the expected overconnected regions from

the Benchmark, ignoring the concretely constructed edges.

1 Introduction

Terrain-Graphs are real world Graphs that model data gathered by field work, in diverse fields

such as sociology, linguistics, biology, or Graphs from the internet. Most Terrain-Graphs con-

trast with artificial Graphs (deterministic or Random) and share four similar properties [1–3].

They exhibit:

p1:. Not many edges : m being O(n.log(n)) (where m is the number of edges and n the number

of vertices);

p2:. Short paths (L, the average number of edges on the shortest path between two vertices is

low);

p3:. A high Clustering rate C ¼ 3 � number of triangles
number of connected triplets (many overconnected local subGraphs

in a globally sparse Graph);

p4:. A heavy-tailed degree distribution (the distribution of the degrees of the vertices of the

Graph can be approximated by a power law).
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Clustering a Terrain-Graph consists of grouping together in Modules vertices that

belong to the same overconnected region of the Graph (property p3), while keeping sepa-

rate vertices that do not (property p1). These groups of overconnected vertices form an

essential feature of the structures of most Terrain-Graphs. Their detection is central in a

wide variety of fields, such as in biology [4], in sociology [5], in linguistics [6] or in com-

puter sciences [7], for many tasks as the grouping of most diverse entities [8–13], the pat-

tern detection in data [14], the prediction of links [15], the model training [16], the label

assignment [17], the recommender Algorithms [18], the data noise removal [19], or the fea-

ture matching [20].

In section 2 we put in context in the state of the art, the methods with which we compare

our results: in section 2.1 we present the Spectral-Clustering, one of the most popular and effi-

cient Graph Clustering methods, in section 2.2.1 Louvain, one of the most used Graph Cluster-

ing method optimizing Modularity the most popular Graph Clustering quality function, and

in section 2.2.2 Infomap, one of the most efficient Graph Clustering method optimizing the

most elegant Graph Clustering quality function.

In section 3 we present the Confluence, a vertex mesoscopic closeness measure and a new

Clustering quality function QConf based on the Confluence. In section 4 we compare optimality

for Modulatity and optimality for QConf. In section 5 we propose to consider a clustering

method, as Binary Edge-Classifier By nodes Blocks (BECBB) trying to classify each pairs of ver-

tices into two classes: the edges and the non-edges. In section 6 we propose a heuristic Starling
for optimizing the objective function QConf.

In section 7, we compare the accuracies as BECBB, of Starling, Louvain, Infomap and Spec-
tral-Clustering. These comparisons are done, on the one hand with artificial Graphs (a) Ran-

dom Graphs and (b) a classical Graphs Clustering Benchmark, and on the other hand with (c)

Terrain-Graphs gathered from real data. We show that with (a), (b) and (c), Starling is always

able to obtain equivalent or better accuracies than the three others methods. We show also that

with the Benchmark (b), Starling is able to obtain equivalent accuracies and even sometimes

better than an Oracle that would only know the expected overconnected regions from the

Benchmark, ignoring the concretely constructed edges that are to be predicted by the Oracle as

BECBB.

In section 8 we discuss the choice of parameters, and conclude in section 9.

2 Previous work

The literature on Graph Clustering is too extensive for a comprehensive review here. We con-

centrate on placing in the state of art, the methods to which we compare our results.

Let G = (V, E) be a Graph with n = |V| vertices and m = |E| edges.

PV
2 : PV

2
¼ fX � V such jX j ¼ 2g;

Degree: The degree of a vertex i in G is dG(i) = |{j 2 V/{i, j} 2 E}|;

Module: A Module γ of G is a non-empty subset of the Graph’s vertices: γ 6¼⌀ and γ� V;

Clustering: A Clustering Γ of G is a set of Modules of G such that
S

γ2Γ γ = V;

Partitional Clustering: If 8gi; gj 2 G; ði 6¼ jÞ ) ðgi \ gj ¼ ⌀Þ, then Γ is a Partitional Clus-
tering of G, where Modules of G are not allowed to overlap. Given such a Γ we can define

an equivalence relation�
G

on the set of vertices:

8u; v 2 V; ðu�G vÞ , ð9g 2 G such that u 2 g and v 2 gÞ.
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2.1 Spectral Graph Clustering

Spectral Graph Clustering is one of the most popular and efficient Graph Clustering Algo-

rithms. It generally use the classical kmeans Algorithm whose original idea was proposed by

Hugo Steinhaus [21]. Spectral Graph Clustering Algorithms work as follows (see [22]):

Algorithm 1 SGC: Spectral Graph Clustering
Input:
G = (V, E) an undirected Graph with |V| = n
k 2 N such 0 < κ ≤ n (κ is the desired number of Modules).

Output: A Partitional Clustering of G with κ Modules

(1) Form the Adjacency Matrix A ¼ ðai;jÞi;j2V with ai;j ¼

(
1 if fi;jg 2 E;

0 otherwise:

(2) Form the Degree Matrix D ¼ ðdi;jÞi;j2V with di;j ¼

(
dGðiÞ if fi ¼ jg;

0 otherwise:
(3) Let L 2 Rn�n the Normalized Graph Laplacian: L = I − D−1A (where I

is the identity matrix 2 Rn�n).
(4) Compute the first κ eigenvectors u1, . . ., uk of L (see [23]).
(5) Let U 2 Rn�k be the matrix containing the vectors u1, . . ., uκ as

columns.
(6) For i = 1, . . ., n, let yi 2 R

k be the vector corresponding to the
i-th row of U.

(7) Cluster the points ðyiÞi¼1;...;n 2 R
k with the k-means Algorithm into κ

clusters C1, . . ., Ck.
(8) For i = 1, . . ., κ, let ci ¼ fjjyj 2 Cig.

Return {c1, . . ., cκ}

We can notice that for Spectral Graph Clustering in Algorithm 1, we need to know κ the

number of groups of vertices in advance in the Input. It is an advantage because it makes it

possible to have a handle on the desired number of Modules, but how to choose κ when one

does not know the structure of the Graph? The choice of the number κ of groups is fundamen-

tal, it is not a simple problem (see [23–31]), and the quality of the results varies greatly depend-

ing on κ, what we confirm in section 7.2.1 with Figs 7 and 8.

2.2 When we don’t know the number of groups in advance

Let G = (V, E) be a Graph and Γ a Partitional Clustering of its vertices.

Clustering quality function: A Clustering quality function Q(G, Γ) is an R-valued function

designed to measure the adequacy of the Modules with the overconnected regions of Ter-
rain-Graphs (property p3).

When we don’t know κ the number of groups of vertices in advance, given a Clustering

quality function Q, in order to establish a good Partitional Clustering for a Graph G = (V, E), it

would be sufficient to build all the possible partitionings of the set of vertices V, and to pick a

partitioning Γ such that Q(G, Γ) is optimal. This method is however obviously concretely

impractical, since the number of partionings of a set of size n = |V| is equal to the nth Bell num-

ber, a sequence known to grow exponentially [32]. Many Graph Clustering methods therefore

consist in defining a heuristic that can find in a reasonable amount of time a Clustering Γ that

tentatively optimises Q(G, Γ) for a given Clustering quality function Q.

With methods optimizing a quality function Q, we do not need to know κ the number of

vertices groups in advance in the input, because κ is then a direct consequence of the quality

function Q: κ will be automatically built by the optimisation of Q.

2.2.1 Louvain. The Louvain method proposed in 2008 by Blondel, Guillaume, Lambiotte,

and Lefebvre in [33] is a heuristic for tentatively maximizing the quality function Modularity
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proposed in 2004 by Newman and Girvan [34]. The modularity of a Partitional Clustering for

a Graph G = (V, E) with m = |E| edges is equal to the difference between the proportion of

links internal to Modules of the Clustering, and the same quantity expected in a null model,

where no community structure is expected. The null model is a Random Graph GNull with the

same number of vertices and edges, as well as the same distribution of degrees as G, where the

probability of having an edge between two vertices x and y is equal to
dGðxÞ:dGðyÞ

2m .

Let G = (V, E) be a Graph with m edges and Γ a partitioning of V. The modularity of Γ can

be defined as follows. The definition of modularity given by Newman and Girvan in [34], is

equivalent to that we propose here in Formula 1:

ModularityðG;GÞ ¼
1

2m

X

g2G

X

i;j2g

PedgeðG; i; jÞ � PedgeðGNull; i; jÞ ð1Þ

Where Pedge(G, x, y) is a symmetrical vertex closeness measure equal to the probability of {x, y}

being an edge of G, that is:

PedgeðG; i; jÞ ¼
1 if fi; jg 2 E;

0 otherwise:

(

ð2Þ

PedgeðGNull; i; jÞ ¼
dGðiÞ:dGðjÞ

2m
ð3Þ

In Eq 1, the first term 1

2m is purely conventional, so that the modularity values all live in the

[−1, 1] interval, but plays no role when maximizing modularity, since it is constant for a given

Graph G.

We then define QPedge
as Newman and Girvan’s quality function, to be maximized:

QPedge
ðG;GÞ ¼

X

g2G

X

i;j2g

PedgeðG; i; jÞ � PedgeðGNull; i; jÞ ð4Þ

¼
X

g2G

X

i;j2g

1 �
dGðiÞ:dGðjÞ

2m
if fi; jg 2 E;

�
dGðiÞ:dGðjÞ

2m
otherwise:

8
>><

>>:

ð5Þ

For Louvain, a good Partitional Clustering Γ as per 5 is one that groups in the same Module

vertices that are linked (especially ones with low degrees, but also to a lesser extent ones with

high degrees), while avoiding as much as possible the grouping of non-linked vertices (espe-

cially ones with high degrees, but to a lesser extent ones with low degrees).

However, several authors [35, 36] showed that optimizing Modularity leads to merging

small Modules into larger ones, even when those small Modules are well defined and weakly

connected to one another. To address this problem, some authors [37, 38] defined multiresolu-

tion variants of Modularity, adding a resolution parameter to control the size of the Modules.

For instance [37] introduces a parameter λ 2 R in Eq 5:

Qλ ¼
X

g2G

X

i;j2g

1 � λ:
dGðiÞ:dGðjÞ

2m
if fi; jg 2 E;

� λ:
dGðiÞ:dGðjÞ

2m
otherwise:

8
>><

>>:

ð6Þ

where λ is a resolution parameter: the higher the resolution λ, the smaller the Modules get.
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Nevertheless, in [39], the authors show that “. . . multiresolution Modularity suffers from two
opposite coexisting problems: the tendency to merge small subGraphs, which dominates when the
resolution is low; the tendency to split large subGraphs, which dominates when the resolution is
high. In benchmark networks with heterogeneous distributions of cluster sizes, the simultaneous
elimination of both biases is not possible and multiresolution Modularity is not capable to
recover the planted community structure, not even when it is pronounced and easily detectable
by other methods, for any value of the resolution parameter. This holds for other multiresolution
techniques and it is likely to be a general problem of methods based on global optimization.

[. . .] real networks are characterized by the coexistence of clusters of very different sizes,
whose distributions are quite well described by power laws [40, 41]. Therefore there is no charac-
teristic cluster size and tuning a resolution parameter may not help.”

The Louvain method https://github.com/10XGenomics/louvain is non-deterministic, i.e.

each time Louvain is run on the same Graph, the results may vary slightly. In the rest of this

paper all the results concerning the Louvain method on a given Graph are the result of a single

run on this Graph.

2.2.2 Infomap. The Infomap method is a heuristic for tentatively maximizing the quality

function described in 2008 by Rosvall and Bergstrom [42]. This quality function is based on

the minimum description length principle [43]. It consists in measuring the compression ratio

that a given partitioning Γ provides for describing the trajectory of a Random walk on a

Graph. The trajectory description happens on two levels. When the walker enters a Module,

we write down its name. We then write the vertices that the walker visits, with a notation local

to the Module, so that an identical short name may be used for different vertices from different

Modules. A concise description of the trajectory, with a good compression ratio, is therefore

possible when the Modules of Γ are such that the walker tends to stay in them, which corre-

sponds to the idea that the walker is trapped when it enters a good Module, which is supposed

to be a overconnected region that is only weakly connected to other Modules.

For Infomap, a good Partitional Clustering Γ is then one that groups in same Module

vertices allowing a good compression ratio for describing the trajectory of a Random walker

on G.

However, as we will see in section 7, Infomap only identifies a single Module when the over-

connected regions are only sligthly pronounced.

The Infomap method https://github.com/mapequation/ is non-deterministic, in the rest of

this paper all the results concerning the Infomap method on a given Graph are the result of a

single run on this Graph.

3 Confluence, a vertices mesoscopic closeness measure

The definition of Confluence proposed in this section is an adaptation of these proposed in

[44] to compare the structures of two Terrain-Graphs.
In Eq 5, with regards to a Graph G:

• PedgeðG; i; jÞ ¼
�

1 if fi; jg 2 E;

0 otherwise:
is a local (microscopic) vertices closeness measure relative

to G;

• PedgeðGNull; i; jÞ ¼
dGðiÞ:dGðjÞ

2m is a global (macroscopic) vertices closeness measure relative to G.

To avoid the resolution limits of Modularity described in [35–39], we introduce here Con-
fluence(G, i, j), an intermediate mesoscopic vertices closeness measure relative to a Graph G,

that we define below.
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If G = (V, E) is a reflexive and undirected Graph, let us imagine a walker wandering on the

Graph G: at time t 2 N, the walker is on one vertex i 2 V; at time t + 1, the walker can reach

any neighbouring vertex of i, with a uniform probability. This process is called a simple Ran-

dom walk [45]. It can be defined by a Markov chain on V with an n × n transition Matrix [G]:

½G� ¼ ðgi;jÞi;j2V with gi;j ¼

1

dGðiÞ
if fi; jg 2 E;

0 otherwise:

8
><

>:
ð7Þ

Since G is reflexive, each vertex has at least one neighbour (itself) and [G] is therefore well

defined. Furthermore, by construction, [G] is a stochastic Matrix: 8i 2 V, ∑j2V gi,j = 1. The

probability Pt
Gði⇝jÞ of a walker starting on vertex i and reaching vertex j after t steps is:

P t
Gði⇝jÞ ¼ ð½G�tÞi;j ð8Þ

Proposition 1 Let G = (V, E) be a reflexive Graph with m edges, and Gnull = (V, Enull) its null
model such that the probability of the existence of a link between two vertices i and j is
ei;j ¼

dGðiÞ:dGðjÞ
2m .

8t 2 N∗; 8i; j 2 V; Pt
Gnull
ði⇝jÞ ¼

dGðjÞ
2m

ð9Þ

Proof by induction on t:
(a) True for t = 1:

8i; j 2 V; P1
Gnull
ði⇝jÞ ¼ ei;j :

1

dGðiÞ
¼

dGðiÞ:dGðjÞ

2m
:

1

dGðiÞ
¼

dGðjÞ

2m

(b) If true for t then true for t + 1:

8i; j 2 V; Ptþ1
Gnull
ði⇝jÞ ¼

P
k2V
ðPt

Gnull
ði⇝kÞ:P1

Gnull
ðk⇝jÞÞ

¼
P

k2V Pt
Gnull
ði⇝kÞ:

dG ðjÞ

2m

� �
¼

dGðjÞ
2m

:
X

k2V
Pt

Gnull
ði⇝kÞ

¼
dGðjÞ
2m

:
X

k2V

dGðkÞ
2m

¼
dGðjÞ
2m

(a) & (b)) 9

On a Graph G = (V, E) the trajectory of a Random walker is completely governed by the topol-

ogy of the Graph in the vicinity of the starting node: after t steps, any vertex j located at a

distance of t links or less can be reached. The probability of this event depends on the num-

ber of paths between i and j, and on the structure of the Graph around the intermediary ver-

tices along those paths. The more short paths exist between vertices i and j, the higher the

probability Pt
Gði⇝jÞ of reaching j from i.

On the Graph Gnull the trajectory of a Random walker is only governed by the degrees of the

vertices i and j, and no longer by the topology of the Graph in the vicinity of these to nodes.

We want to consider as “close” each pair of vertices {i, j} having a probability of reaching j
from i after a short Random walk in G, greater than the probability of reaching j from i in
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Gnull. We therefore define the t-confluence Conf t(G, i, j) between two vertices i, j on a Graph G
as follows:

Conf tðG; i; jÞ ¼

0 if i ¼ j;

Pt
Gði⇝jÞ � Pt

Gnull
ði⇝jÞ

Pt
Gði⇝jÞ þ Pt

Gnull
ði⇝jÞ

¼
Pt
Gði⇝jÞ �

dG ðjÞ

2m

Pt
Gði⇝jÞ þ

dG ðjÞ

2m

otherwise:

8
><

>:
ð10Þ

Proposition 2 Let G = (V, E) be a reflexive Graph with m edges, and Gnull its null model such
that the probability of the existence of a link between two vertices i and j is ei;j ¼

dGðiÞ:dGðjÞ
2m .

8t 2 N∗
; 8i; j 2 V; Conf tðGNull; i; jÞ ¼ 0 ð11Þ

Proof:

If i ¼ j; the result follows directly from definition 10:

If i 6¼ j;Conf t GNull; i; jð Þ ¼
Pt
GNull
ði⇝jÞ �

dGNull
ðjÞ

2m

Pt
GNull
ði⇝jÞ þ

dGNull
ðjÞ

2m

by definition 10ð Þ

¼
Pt
GNull
ði⇝jÞ �

dG ðjÞ

2m

Pt
GNull
ði⇝jÞ þ

dG ðjÞ

2m

by definition of GNullð Þ

¼

dGðjÞ
2m �

dGðjÞ
2m

dGðjÞ
2m þ

dGðjÞ
2m

by proposition 1ð Þ

¼ 0

To prove that Conf t(G, �, �) is symmetric, we first need to prove proposition 3.

Proposition 3 Let G = (V, E) be a reflexive Graph.

8t 2 N∗
; 8i; j 2 V; Pt

Gði⇝jÞ ¼
dGðjÞ

dGðiÞ
:Pt

G
ðj⇝iÞ ð12Þ

Proof by induction on t:
(a) True for t = 1:

8i; j 2 V; if fi; jg =2E; then P1
Gði⇝jÞ ¼ 0 and P1

G
ðj⇝iÞ ¼ 0;

therefore P1
Gði⇝jÞ ¼

dGðjÞ

dGðiÞ
:P1

G
ðj⇝iÞ ¼ 0

otherwise P1
Gði⇝jÞ ¼

1

dGðiÞ
¼

dGðjÞ

dGðiÞ
:

1

dGðjÞ
¼

dGðjÞ

dGðiÞ
:P1

G
ðj⇝iÞ

(b) If true for t then true for t + 1:

8i; j 2 V; Ptþ1
G ði⇝jÞ ¼

P
k2V
ðPt

G
ði⇝kÞ:P1

G
ðk⇝jÞÞ

¼
P

k2V Pt
Gðk⇝iÞ:

dG ðkÞ

dG ðiÞ
:P1

G
ðk⇝jÞ

� �
¼
P

k2V
Pt

G
ðk⇝iÞ:

dG ðkÞ

dG ðiÞ
:P1

G
ðj⇝kÞ:

dG ðjÞ

dG ðkÞ

� �

¼
P

k2V Pt
Gðk⇝iÞ:P1

G
ðj⇝kÞ:

dG ðjÞ

dG ðiÞ

� �
¼

dG ðjÞ

dG ðiÞ

P
k2V

P1

G
ðj⇝kÞ:Pt

G
ðk⇝iÞ

� �

¼
dGðjÞ
dGðiÞ

:Ptþ1
G ðj⇝iÞ

(a) & (b)) 12
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Proposition 4 Let G = (V, E) be a reflexive Graph.

8t 2 N∗
; 8i; j 2 V;Conf tðG; i; jÞ ¼ Conf tðG; j; iÞ ð13Þ

Proof:

If i ¼ j : it follows directly from definition 10:

If i 6¼ j : Conf
t
ðG; i; jÞ ¼

Pt

G
ði⇝jÞ � Pt

Gnull
ði⇝jÞ

Pt

G
ði⇝jÞ þ Pt

Gnull
ði⇝jÞ

¼
Pt

G
ði⇝jÞ �

dG ðjÞ

2m

Pt

G
ði⇝jÞ þ

dG ðjÞ

2m

¼

dG ðjÞ

dG ðiÞ
:Pt

G
ðj⇝iÞ �

dG ðjÞ

2m

dG ðjÞ
dG ðiÞ

:Pt

G
ðj⇝iÞ þ

dG ðjÞ

2m

¼

dG ðjÞ

dG ðiÞ
:Pt

G
ðj⇝iÞ �

dG ðjÞ

2m

� �
:

dG ðiÞ

dG ðjÞ

dG ðjÞ

dG ðiÞ
:Pt

G
ðj⇝iÞ þ

dG ðjÞ

2m

� �
:

dG ðiÞ

dG ðjÞ

¼
Pt

G
ðj⇝iÞ �

dG ðiÞ

2m

Pt

G
ðj⇝iÞ þ

dG ðiÞ

2m

¼
Pt

G
ðj⇝iÞ � Pt

Gnull
ðj⇝iÞ

Pt

G
ðj⇝iÞ þ Pt

Gnull
ðj⇝iÞ

¼ Conf
t
ðG; j; iÞ

Most Terrain-Graphs exhibit the properties p2 (short paths) and p3 (high Clustering rate).

With a classic distance such as the shortest path between two vertices, all vertices would be close

to each other in a Terrain-Graph (because of property p2). On the contrary, Confluence allows

us to identify vertices living in a same overconnected region of G (property p3):

If i, j are in a same overconnected region:

Pt

G
ði⇝jÞ > Pt

Gnull
ði⇝jÞ; thus Conf ðG; i; jÞ > 0 ð14Þ

If i, j are in two distinct overconnected regions:

P t
G
ði⇝jÞ<Pt

Gnull
ði⇝jÞ; thus Conf ðG; i; jÞ < 0 ð15Þ

Where the notion of region varies according to t:

• When t = 1: Conf tðG; i; jÞ ¼
2m � dGðiÞ:dGðjÞ
2mþ dGðiÞ:dGðjÞ

if fi; jg 2 E;

� 1 otherwise:

8
><

>:
Confluence is a microscopic

vertices closeness measure relative to G. The notion of region in this case has a radius = 1, it

is the notion of neighborhood. Confluence is then independent of the intermediate struc-

tures between the two vertices i and j in G;

• When 1 < t <1: Conf tðG; i; jÞ ¼ PtGði⇝jÞ� dGðjÞ
2m

PtGði⇝jÞþdGðjÞ
2m

, Confluence is a mesoscopic vertices closeness

measure relative to G. The notion of region in this case has a 1 < radius = t <1, it is no

longer a local notion as the notion of neighborhood. Confluence is then sensitive to the t-

intermediate structures (t-mesoscopicity) between the two vertices i and j in G (see 14

and 15);

• When t!1: limt!1 Conft(G, i, j) = 0, and Confluence is no longer sensitive to any

structure in G. (limt!1 Conft(G, i, j) = 0 because we can prove with the Perron-Frobenius

theorem [46] that if G is reflexive and strongly connected, then the Matrix [G] is ergodic

[47], then limt!1 Pt
Gði⇝jÞ ¼ dGðjÞ

2m . So by definition 10 and proposition 1: limt!1 Conf t(G,

i, j) = 0).
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Confluence actually defines an infinity of mesoscopic vertex closeness measures, one for

each Random walk of length 1< t<1. For clarity, in the rest of this paper, we set t = 3 and

define Conf(G, i, j) = Conf3(G, i, j).

3.1 Using a mesoscopic scale with Confluence for a new Clustering quality

function

We propose here Qt
Conf , a new Clustering quality function, which introduces a mesoscopic

scale through Confluence with a resolution parameter τ 2 [0, 1] to promote density of the Mod-

ules:

Q1ðG;ΓÞ ¼
X

g2Γ

X

i6¼j2g

þ1 �
dGðiÞ:dGðjÞ

2m
if fi; jg 2 E;

� 1 �
dGðiÞ:dGðjÞ

2m
otherwise:

8
>><

>>:

ð16Þ

Q0ðG;ΓÞ ¼
X

g2Γ

X

i6¼j2g

ConfðG; i; jÞ ð17Þ

Qt

ConfðG;ΓÞ ¼ t:Q1ðG;ΓÞ þ ð1 � tÞ:Q0ðG;ΓÞ ð18Þ

In Eq 16, with regard to a Graph G, the term

(
þ1 if fi; jg 2 E;

� 1 otherwise:
is a local (microscopic)

vertices closeness measure, and the term
dGðiÞ:dGðjÞ

2m is a global (macroscopic) vertices closeness

measure, when in Eq 17, the term Conf(G, i, j) is an intermediate local/global (mesoscopic)

vertices closeness measure.

Therefore in Eq 18, Qt
Conf ðG;GÞ gives a weight of τ to the microscopic and macroscopic

structure of Γ with regards to the Graph G and a weight of (1 − τ) to the mesoscopic structure.

The closer the τ 2 [0, 1] parameter is to 1, the less Confluence is taken into account.

4 Optimality

A Partitional Clustering Δ is optimal for a quality function Q iff for all partitioning Γ of V, Q
(G, Δ))≧ Q(G, Γ)). Computing a Δ that maximizes QPedge

ðG;DÞ is NP � complete [48], and the

same holds for computing a Clustering that maximizes Qt
Conf . However, when the number of

vertices of a Graph G = (V, E) is small, the problem of maximizing the modularity can be

turned into a reasonably tractable Integer Linear Program (see [48]): We define n2 decision

variables Xij 2 {0, 1}, one for each pair of vertices {i, j} 2 V. The key idea is that we can build an

equivalence relation on V (i* j iff Xij = 1) and therefore a partitioning of V. To guarantee that

the decision variables give rise to an equivalence relation, they must satisfy the following

constraints:

Reflexivity: 8i 2 V, Xii = 1;

Symmetry: 8i, j 2 V : Xij = Xji;

Transitivity: 8i; j; k 2 V :

8i; j; k 2 V : Xij þ Xjk � 2:Xik � 1;

8i; j; k 2 V : Xik þ Xij � 2:Xjk � 1;

8i; j; k 2 V : Xjk þ Xik � 2:Xij � 1:

8
><

>:
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With the following objective functions to maximize:

For QPedge
:
X

i;j2V

Xij

1 �
dGðiÞ:dGðjÞ

2m
if fi; jg 2 E;

�
dGðiÞ:dGðjÞ

2m
otherwise:

8
>>><

>>>:

ð19Þ

For Qt

Conf
:
X

i6¼j2V

Xij:

ð1 � tÞ:Conf ðG; i; jÞ þ t � t:
dGðiÞ:dGðjÞ

2m
if fi; jg 2 E;

ð1 � tÞ:Conf ðG; i; jÞ � t � t:
dGðiÞ:dGðjÞ

2m
otherwise:

ð20Þ

8
>><

>>:

The method SGC described in Algorithm 1 do not optimize a quality function, and the

quality function used by Infomap can not be expressed as
X

g2G

X

i;j2g

simðG; i; jÞ, with sim(G, ., .)

an R-valued symmetric similarity measure between vertices of G. We therefore left out this

functions in our study of optimality, not having the ability to define their corresponding objec-

tive function to maximize in a similar fashion to what was done for QPedge
and Qt

Conf with the

formulas 19 and 20. In Fig 1, on a small artificial Graph G1
toy, we compare the optimal Cluster-

ings D
G1
toy

QPedge
, D

G1
toy

Q0:00
Conf

, D
G1
toy

Q0:25
Conf

and D
G1
toy

Q0:50
Conf

(with the Graph G1
toy, if 0.50 < x< 1 then D

G1
toy

Qt¼xConf
¼ D

G1
toy

Q0:50
Conf

)

where:

• Δ
G1
toy

QPedge
¼

�

d
1

QPedge
¼ f0; 2; 6; 7; 8g, d

2

QPedge
¼ f1; 3; 4; 5; 9g,

d
3

QPedge
¼ f10; 11; 12; 13; 14; 15g

�

;

• Δ
G1
toy

Q0:0
Conf
¼

�

d
1

Q0:0
Conf
¼ f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g, d

2

Q0:0
Conf
¼ f10; 11; 12g, d

3

Q0:0
Conf
¼ f13; 14; 15g

�

;

• Δ
G1
toy

Q0:25
Conf
¼

�

d
1

Q1:0
Conf
¼ f0; 2; 6; 7; 8g, d

2

Q1:0
Conf
¼ f1; 3; 4; 5; 9g, d

3

Q1:0
Conf
¼ f10; 11; 12g,

d
4

Q1:0
Conf
¼ f13; 14; 15g

�

;

• Δ
G1
toy

Q0:50
Conf
¼

�

d
1

Q0:50
Conf
¼ f0; 2; 4g, d

2

Q0:50
Conf
¼ f1; 3; 5; 9g, d

3

Q0:50
Conf
¼ f6; 7; 8g, d

4

Q0:50
Conf
¼ f10; 11; 12g,

d
5

Q0:50
Conf
¼ f13; 14; 15g

�

.

We can already notice that growing τ does not imply a simple splitting of the Modules (an

approach that would be hierarchical), which we can see by going from τ = 0.25 to τ = 0.50

where there is no dQ0:25
Conf

such that d
1

Q0:50
Conf
¼ f0; 2; 4g � dQ0:25

Conf
.

5 Binary edge-classifier by nodes blocks

What metric to use to estimate the accuracy of the four Clusterings in Fig 1? Much literature

addresses this fundamental question [49–51]. Here we propose the definition of Binary Edge-
Classifier By nodes Blocks (BECBB). To measure the quality of a Clustering Γ on a Graph G =

(V, E), an intuitive, simple and efficient approach is to consider a Clustering Γ (with or witout
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overlaps), as a BECBB trying to predict the edges of a Graph: classifying each pairs of vertices

into two classes, the PositiveEdge and the NegativeEdge.
Definition: A BECBB is a pairs of nodes binary classifier trying to predict the edges of a

Graph. It is not allowed to give two complementary sets of pairs of nodes, one for its predic-

tions as PositiveEdge and its complementary set for its predictions as NegativeEdge, but is

forced to provide its predictions in the form of nodes blocks Bi� V: classifying as PositiveEdge
a pair {x, y} if 9i such x, y 2 Bi else classifying it as NegativeEdge. If blocks are allowed to over-

lap then it is a BECBBOV else it is a BECBBNO.

Let Γ a Clustering (with or witout overlaps) of a Graph G = (V, E)

PairsðGÞ ¼
[

g2G

Pg

2
; ð21Þ

PairsðGÞ
T

E ¼ TPðΓ;EÞ are the True Postives of Γ according to E;

PairsðGÞ
S

E ¼ TNðΓ;EÞ are the True Negatives;

PairsðGÞ
T

E ¼ FPðΓ;EÞ are the False Postives;

PairsðGÞ
T

E ¼ FNðΓ;EÞ are the False Negatives.

Fig 1. Optimal Clusterings for QPedge
and QConf on G1

toy . If two vertices have same color, then they are in a same

Module, with hP, R, Fi where P ¼ PrecisionðPairsðGÞ; EÞ, R ¼ RecallðPairsðGÞ; EÞ, F ¼ FscoreðPairsðGÞ; EÞ.

https://doi.org/10.1371/journal.pone.0290090.g001
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We can then measure the Γ’s accuracy with the classical measures in diagnostic binary Clas-

sification [52, 53]:

PrecisionðPairsðGÞ; EÞ ¼
jTPðG; EÞj
jPairsðGÞj

2 ½0; 1�; ð22Þ

RecallðPairsðGÞ; EÞ ¼
jTPðG; EÞj
jEj

2 ½0; 1�; ð23Þ

FscoreðPairsðGÞ; EÞ ¼ 2:
PrecisionðPairsðGÞ; EÞ:RecallðPairsðGÞ; EÞ
PrecisionðPairsðGÞ; EÞ þ RecallðPairsðGÞ; EÞ

2 ½0; 1�: ð24Þ

We can use these three measures indifferently on Clusterings with or without overlaps,

because the Eq 21 makes sense with Clusterings with or without overlaps.

BECBBOV: For any Graph G = (V, E), the set of all edges Γ = E can be considered as a

BECBBOV. Then Γ = E is optimal because: Prec(Γ = E, E) = 1 (Γ does not include any non-edge

in its Modules) and Rec(Γ = E, E) = 1 (Γ include all the edges in its Modules). It is also true for

Γ = The set of all the maximal cliques.
BECBBNO: The metric PrecisionðPairsðG ¼ MethodðGÞÞ; EÞmeasures the ability of a

Method not to include non-edges in the Modules it returns, whereas the metric

RecallðPairsðG ¼ MethodðGÞÞ; EÞmeasures its ability to include the edges in the Modules it

returns. For a BECBBNO, a good Precision and a good Recall are two ability that oppose each

other (because a BECBBNO is forced to provide its classifications in the form of blocks Bi with-

out overlaps) but are simultaneously bothtogether desirable for a good Clustering method.

The whole point of a good Clustering method, as BECBBNO, is therefore to favor Precision
without disfavoring Recall too much or even favoring Recall without disfavoring the Precision
too much, that is what the metric FscoreðPairsðG ¼ MethodðGÞÞ; EÞmeasures (it is the har-

monic mean of Precision and Recall).

5.1 Properties

As showed in [51], it is better that a metric σ(Γ), to estimate the accuracy of a Clustering Γ, has

the Homogeneity and Completeness [50] properties (see Fig 2 inspired by Figs 1 and 3 in [51]).

Fig 2. Homogeneity and Completeness: {x, y} 2 E iff x and y have same color.

https://doi.org/10.1371/journal.pone.0290090.g002
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• A metric σ to estimate the accuracy of Clusterings, has the Homogeneity property iff:

TPðPairsðG1Þ;EÞ ¼ TPðPairsðG2Þ; EÞ

and

FPðPairsðG1Þ; EÞ > FPðPairsðG2Þ;EÞ

) sðG1Þ < sðG2Þ

9
>>>=

>>>;

ð25Þ

• A metric σ to estimate the accuracy of Clusterings, has the completeness property iff:

TPðPairsðG1Þ;EÞ < TPðPairsðG2Þ; EÞ

and

FPðPairsðG1Þ; EÞ ¼ FPðPairsðG2Þ;EÞ

) sðG1Þ < sðG2Þ

9
>>>=

>>>;

ð26Þ

It is clear that the metric FscoreðPairsðGÞ; EÞ has these two properties, for any Clustering Γ
with or without overlaps. Moreover the metric FscoreðPairsðGÞ; EÞ is independent of any

extrinsic expectation to the Graph, we only need to trust the Graph itself. It is a good objective

way to evaluate and compare Clusterings. So, to estimate the accuracy of Clustering methods

Methodi and compare them on a Graph G = (V, E), we will use the three metrics:

Precision(Methodi(G = (V, E)), E): Measuring the ability of the Methodi not to include non-

edges in the Modules it returns;

Recall(Methodi(G = (V, E)), E): Measuring its ability to include the edges in the Modules it

returns;

Fscore(Methodi(G = (V, E)), E): Measuring the harmonic mean of its Precision and Recall.

Fig 1 shows the accuracy of D
G1
toy

QPedge
, D

G1
toy

Q0:00
Conf

, D
G1
toy

Q0:25
Conf

and D
G1
toy

Q0:50
Conf

considering these Clusterings as

BECBB.

6 Starling, a heuristic for maximizing Qt

Conf

In this section we describe Starling, a heuristic for tentatively maximizing Qt
Conf . Confluence

gives us an ordering on the edges of the Graph G = (V, E), in particular, sorting the edges {i, j}

Fig 3. Binary classifiers of nodes pairs by nodes blocks.

https://doi.org/10.1371/journal.pone.0290090.g003
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2 E by descending Confluence, forms the basis of a new Module merging strategy, described in

Algorithm 2, intended to optimize Qt
Conf .

Algorithm 2 Starling: Graph Partitional Clustering
Input:
G = (V, E) an undirected Graph
τ 2 [0, 1]

Output: Cout a Partitional Clustering of G
X↢ ffi;jg 2 E such i 6¼ jg
for i 2 V do ▸ Initialization
modi ↢ {i} ▸ One vertex per Module
Mi ↢ i ▸ Vertex i is in Module i

U ↢ ⌀
While U 6¼ X do
fi;jg↢ arg max

fx;yg2X� U

ConfðG; x; yÞ ▸ Line 1: Strategy based on Confluence

U ↢ U [ {{i, j}}
if Mi 6¼ Mj then ▸ modi and modj have not yet been merged together

profit↢
X

u2modi

X

v2modj

ð1 � tÞ:ConfðG;u;vÞ þ t: þ1 �
dGðuÞ:dGðvÞ

2m

� �

if fu;vg 2 E;

ð1 � tÞ:ConfðG;u;vÞ þ t: � 1 �
dGðuÞ:dGðvÞ

2m

� �

otherwise:

8
>>><

>>>:

if 0 ≤ profit then
modi ↢ modi [ modj ▸ modj merge with modi in modi
modj ↢ ⌀ ▸ modj is dead
for k 2 V do ▸ Updating the membership list
if Mk = j ▸ Vertex k was in modj
Mk ↢ i ▸ Vertex k is now in modi

Cout ↢ ⌀
for i 2 V do
if modi 6¼ ⌀ ▸ modi is alive
Cout ↢ Cout [ {modi}

return Cout
Different edges {i1, j1} 2 E and {i2, j2} 2 E might happen to have the exact same Confluence

value (Conf(G, i1, j1) = Conf(G, i2, j2)), making the process (in Line 1) non-deterministic in

general, because of its sensitivity on the order in which the edges with identical Confluence val-

ues are processed. A simple solution to this problem is to sort edges by first comparing their

Confluence values and then using the lexicographic order on the words i1j1 and i2j2 when Con-
fluence values are strictly identical.

We coded this Algorithm in C++ and in the following we used this program to analyze Star-
ling’s results. With G1

toy, Starlingðt;G
1
toyÞ find the optimal Clusterings for Qt

Conf :

Starlingð0:00;G1
toyÞ ¼ D

G1
toy

Q0:00
Conf

, Starlingð0:25;G1
toyÞ ¼ D

G1
toy

Q0:25
Conf

, Starlingð0:50;G1
toyÞ ¼ D

G1
toy

Q0:50
Conf

.

7 Performance

In this section we estimate the accuracy of Starling and compare it with the methods Louvain,

Infomap and SGC. We can Estimate the accuracy of Clustering Algorithms on:

Real Graphs: A set of Terrain-Graphs built from real data;

A BenchmarkB: A set of computer-generated Graphs and its gold standard GB its expected

Modules as expected overconnected regions.

Because we do not need to know κ the number of vertex groups in advance in the input

of Louvain and Infomap, whereas we need it with SGC, for greater clarity, we compare on
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the one hand Starling versus Louvain, and Infomap, and on the other hand Starling versus

SGC.

7.1 Starling versus Louvain and Infomap

7.1.1 Performance on Real Terrain-Graphs. In this section we estimate the accuracy of

Algorithms with three Terrain-Graphs:

• GEmail: The Graph was generated using email data from a large European research institu-

tion [54, 55]. The Graph contains an undirected edge {i, j} if person i sent person j at least

one email https://snap.stanford.edu/data/email-Eu-core.html.

• GDBLP: The DBLP computer science bibliography provides a comprehensive list of research

papers in computer science [56]. Two authors are connected if they have published at least

one paper together https://snap.stanford.edu/data/com-DBLP.html.

• GAmazon: A Graph was collected by crawling the Amazon website. It is based on the Custom-
ers Who Bought This Item Also Bought feature of the Amazon website [56]. If a product i is

frequently co-purchased with product j, the Graph contains an undirected edge {i, j} https://

snap.stanford.edu/data/com-Amazon.html.

Table 1 illustrates the pedigrees of these Terrain-Graphs and Table 2 shows the accuracies

of Louvain, Infomap and Starling Considering each Clustering as a BECBB. We show also the

number of Modules, the Length of the biggest Module and the computation time in seconds

(All times are based on computations with a Quad Core Intel i5 and 32 Go RAM).

• Louvain: This is the fastest method, however its Precision is small, producing very few Mod-

ules, one of which is very large;

• Infomap: It gets a good Fscore, higher than this of Louvain.

• Starlingτ: 9τ 2 [0, 1] such that Starling(G, τ) gets the highest Fscore. By default τ = 0.25 is a

good compromise to obtain at the same time a good Precision and a good Recall. If we want

to promote Recall (more edges in Modules) then we can decrease τ, and if we want to pro-

mote Precision (less non-edges in Modules) then we can increase τ.

7.1.2 Performance on BenchmarkER. BenchmarkER is the class of Random Graphs stud-

ied by Erdös and Rényi [57, 58] with parameters N the number of vertices and p the connec-

tion probability between two vertices. Random Graphs do not have a meaningful group

structure, and they can be used to test if the Algorithms are able to recognize the absence of

Modules. Therefore, we set N = 128, and we will study the accuracy of the methods with Bench-
markER according to p.

Table 1. Pedigrees: n and m are the number of vertices and edges, hki is the mean degree of vertices, C is the Clustering coefficient of the Graph, Llcc is the average

shortest path length between any two nodes of the largest connected component (largest subGraph in which there exist at least one path between any two nodes)

and nlcc the number of vertices of this component, λ is the coefficient of the best fitting power law of the degree distribution and r2 is the correlation coefficient of

the fit, measuring how well the data is modelled by the power law.

Graph n m hki C Llcc(nlcc) λ(r2)

GEmail 1005 16064 31.97 0.27 2.59(986) −1.02(0.81)

GDBLP 317080 1049866 6.62 0.31 6.79(317080) −2.71(0.95)

GAmazon 334863 925872 5.53 0.21 11.95(334863) −2.81(0.93)

https://doi.org/10.1371/journal.pone.0290090.t001
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Let GER ¼ ðVGER
;EGERÞ a Random Graph built by BenchmarkER, ΓER = {V} with only one

Module, and OracleER(GER) = ΓER = {V} the Oracle’s method who knows ΓER. Fig 4 shows the

accuracy of the methods according to p considering each Clustering as a BECBB. We can see

that:

• OracleER knows ΓER, but does not know the concretely constructed edges EGER . Its number of

Modules is always = 1. Its Precision increases when p increases, because density increases. Its

Recall is always = 1. Its Fscore increase;

Table 2. Graph Clustering as BECBBs: With hP,R,Fi where : P ¼ PrecisionðPairsðGÞ;EÞ, R ¼ RecallðPairsðGÞ;EÞ, F ¼ FscoreðPairsðGÞ;EÞ, with [N, M] where N is

the Number of Modules of Γ, M the Length of the biggest Module of Γ, and with (T) the computation time in seconds of Γ.

Graph G = GEmail G = GDBLP G = GAmazon

Louvain h0.11, 0.62, 0.18i h0.00, 0.84, 0.00i h0.00, 0.94, 0.00i

[26, 334] (0s) [212, 22422] (12s) [237, 12810] (6s)
Infomap h0.13, 0.60, 0.21i h0.13, 0.72, 0.22i h0.11, 0.82, 0.20i

[43, 319] (0s) [16997, 811] (2165s) [17265, 380] (1567s)

Starling0.000 h0.16, 0.57, 0.24i h0.08, 0.70, 0.15i h0.10, 0.80, 0.18i

[63, 213] (9s) [20044, 433] (752s) [20479, 486] (160s)
Starling0.125 h0.18, 0.51, 0.27i h0.10, 0.70, 0.17i h0.11, 0.80, 0.20i

[72, 140] (5s) [21809, 396] (714s) [22400, 435] (147s)
Starling0.250 h0.26, 0.45, 0.33i h0.12, 0.69, 0.20i h0.13, 0.78, 0.23i

[102, 98] (2s) [24852, 296] (584s) [25906, 374] (134s)
Starling0.375 h0.36, 0.40, 0.37i h0.16, 0.67, 0.26i h0.17, 0.76, 0.28i

[154, 84] (1s) [29545, 252] (465s) [31374, 308] (121s)
Starling0.500 h0.49, 0.35, 0.41i h0.25, 0.63, 0.36i h0.26, 0.72, 0.38i

[235, 72] (1s) [40905, 171] (347s) [44597, 199] (108s)
Starling0.625 h0.63, 0.29, 0.40i h0.61, 0.52, 0.56i h0.52, 0.59, 0.55i

[284, 52] (1s) [87286, 116] (298s) [80104, 32] (101s)
Starling0.750 h0.69, 0.27, 0.38i h0.83, 0.45, 0.58i h0.70, 0.49, 0.57i

[319, 47] (1s) [121392, 116] (252s) [115637, 19] (78s)
Starling0.875 h0.75, 0.23, 0.35i h0.87, 0.43, 0.58i h0.75, 0.45, 0.56i

[327, 30] (0s) [124338, 113] (246s) [121999, 16] (74s)
Starling1.000 h0.77, 0.22, 0.35i h0.94, 0.40, 0.56i h0.86, 0.38, 0.52i

[378, 30] (0s) [142371, 113] (239s) [153712, 13] (68s)

https://doi.org/10.1371/journal.pone.0290090.t002

Fig 4. Performance with BenchmarkER. Each point (x, y) is the average over 100 Graphs with p = x.

https://doi.org/10.1371/journal.pone.0290090.g004
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• The best Precisions are done with Starlingτ=0.25 (but with a lot of Modules);

• The best Recalls are done with Infomap;

• The best Fscores are done with Infomap, except while p<� 0.2, then it is with Starlingτ=0.25;

7.1.2.1 Starling detects the slightly-overconnected regions. To observe more closely the behav-

ior of Starling, we draw at Random one of the 100 Graphs with p = 0.25 which made it possible

to construct the Fig 4. This Graph has a number of vertices n = 128, a number of edges

m = 2077, a mean degree of vertices hki = 32.45, a density d = 0.26, a Clustering coefficient

C = 0.27, and a average shortest path length between any two nodes L = 1.74.

In this Random Graph with (n = 128, d = 0.26), Starlingτ=0.00 finds four Modules δ1 with (n1

= 51, d1 = 0.33), δ2 with (n2 = 39, d2 = 0.35), δ3 with (n3 = 31, d3 = 0.34), δ4 with (n4 = 7, d4 =

0.76), where ni are their number of vertices and di are their edge density. So, the four Modules

δi found by Starlingτ=0.00 have a density greater than the one of the entire Graph, specially for

δ4: d4 = 0.76> d = 0.26.

The phenomenon of overconnected regions is particulary clear in Terrain-Graphs, but also

occur in Erdős-Rényi Random Graphs. Indeed such Graphs are not completely uniform, they

present an embryo of structure with slightly-overconnected regions resulting from Random

fluctuations (for exemple the Module δ4 which is clearly overconnected in this Graph).

It is these slightly-overconnected regions present in Random Graphs that are exploited and

amplified in [59] to transform a Random Graph into a shaped-like Terrain-Graph and that

Starling detects in a Random Graph, and so accepts as Modules (especially if τ increases). This

is why in the Fig 4 the Precision of Starling is greater than that of OracleER. It is because the

densities of the Modules found by Starling are greater than the density of the single Module V
of OracleER (which increases with p). However the number of edges between the Modules

found by Starling remains large, this is why the Recall of Starling stays small (especially if τ
increases).

7.1.2.2 Behavior.

(i) Infomap usually returns Γ = {V}. Which means: Infomap identify the absence of strong

structures;

(ii) Starlingτ returns Modules which have a density greater than the one of the entire Graph,

the slightly-overconnected regions (especially if τ increases). Which means: Starlingτ iden-

tifies the presence of weak structures.

7.1.3 Performance on BenchmarkLFR. In most Terrain-Graphs, the distribution of

degrees is well approximated by a power law. Similarly, in most Terrain-Graphs, the distribu-

tion of community sizes is well approximated by a power law [40, 60]. Therefore, in order to

produce artificial Graphs with a meaningful group structure similar to most Terrain-Graphs,
Lancichinetti, Fortunato and Radicchi proposed BenchmarkLFR [61] (Code to generate Bench-
markLFR Graphs can be downloaded from Andrea Lancichinetti’s homepage https://sites.

google.com/site/andrealancichinetti/home). The Graphs in BenchmarkLFR are parameterized

with:

• N their number of vertices;

• k their average degree;

• γ the power law exponent of their degree distribution;
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• β the power law exponent of their community sizes distribution;

• μ 2 [0, 1] their mixing parameter: Each vertex shares a fraction 1 − μ of its links with the

other vertices of its community and a fraction μ with the other vertices of the Graph.

With BenchmarkLFR, when the mixing parameter μ is weak, the overconnected regions are

well separated from each other, and when μ increases, the overconnected regions are less clear.

Therefore, we set N = 1000, and k = 15 or k = 25, and (γ = 2, β = 1) or (γ = 2, β = 2) or (γ = 3, β
= 1) and for each of these six configurations, we will study the accuracy of the methods accord-

ing to μ.

Let GLFR ¼ ðVGLFR
;EGLFR

Þ a Graph built by BenchmarkLFR, GGLFR
its expected Modules as

expected overconnected regions, and OracleLFRðGLFRÞ ¼ GGLFR
the Oracle’s method which

knows the GGLFR
of each GLFR.

We show in Figs 5 and 6 the accuracy of the methods according to μ, considering each Clus-

tering as a BECBB. We can see that:

• OracleLFR knows the GGLFR
of each GLFR, but does not know their concretely constructed

edges EGLFR . Its number of Modules is always jGGLFR
j. Its Precision decreases when μ increase,

because there are more and more non-edges in the expected Modules, but OracleLFR does

not know it. Its Recall decreases when μ increase, because there are more and more edges

outside the expected Modules, but OracleLFR does not know it. Its Fscore decreases when μ
increase, because its Precision and its Recall decreases;

• The best Precisions are done with Starlingτ=0.25, but with a lot of Modules when the overcon-

nected regions are less clear (because here again (see section 7.1.2.2) Starling identifies the

presence of the large number of small slightly-overconnected regions as Modules present in

these Graphs);

• The best Recalls are done with Infomap, but with very few Modules, and often only one,

when the overconnected regions are less clear (because there is no way to compress the

description of the path of a Random walker in these Graphs);

• The best Fscores are done with Infomap and Starlingτ=0.25 except when the overconnected

regions are less clear, then it is with Starlingτ=0.25.

7.2 Starling versus SGC

7.2.1 Performance on Real Terrain-Graphs. In this section, we compare Starling(G, τ)

with respect to SGC(G, κ), κ varying, on three little Terrain-Graphs:

• GEmail: The Graph seen in section 7.1.1;

• Gdblp811
: The subGraph of Gdblp on the vertices of the larger Module of Infomap(Gdblp) which

has 811 vertices;

• Gamazon380
: The subGraph of Gamazon on the vertices of the larger Module of Infomap(Gamazon)

which has 380 vertices;

Table 3 illustrates the pedigrees of these Terrain-Graphs.
The dataset describing GEmail contains “ground-truth” community memberships of the

nodes C : VGEmail
! D. Each individual belongs to exactly one of 42 departments D = {d1,

. . .d42} at the research institute from which the emails are extracted. Let ΓDep the Gold-
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Standart partition of VGEmail
such:

GDep ¼
[

di2D

ffj; such CðjÞ ¼ digg

We can therefore evaluate the quality of a Clustering by partition on GEmail according to two

kinds of truths:

Intrinsic-Truth: The edges of GEmail as we did in the previous sections with Precision, Recall,
Fscore respectively defined by the formulas 22, 23 and 24;

Extrinsic-Truth: PairsðGDepÞ by replacing E by PairsðGDepÞ in the three formulas 22, 23 and 24.

Fig 5. Performance with BenchmarkLFR (k = 15). Each point (x, y) is the average over 100 Graphs with μ = x. Fig 5

(a)–5(c) are zooms on the Fscores when the overconnected regions are less clear (i.e. when we can no longer trust

OracleLFRðGLFRÞ ¼ GGLFR
).

https://doi.org/10.1371/journal.pone.0290090.g005
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Fig 6. Performance with BenchmarkLFR (k = 25). Each point (x, y) is the average over 100 Graphs with μ = x. Fig 6

(a)–6(c) are zooms on the Fscores when the overconnected regions are less clear (i.e. when we can no longer trust

OracleLFRðGLFRÞ ¼ GGLFR
).

https://doi.org/10.1371/journal.pone.0290090.g006

Table 3. Pedigrees: The notations are identical to those of Table 1.

Graph n m hki C Llcc(nlcc) λ(r2)

GEmail 1005 16064 31.97 0.27 2.59(986) −1.02(0.81)

Gdblp811
: 811 3774 9.31 0.19 3.33(811) −1.35(0.91)

Gamazon380
380 959 5.06 0.06 2.92(380) −1.11(0.66)

https://doi.org/10.1371/journal.pone.0290090.t003
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Fig 7 shows the performances of SGC(GEmail, κ), one hand according to the Intrinsic-Truth
EGEmail in Fig 7(a), and on the other hand according to the Extrinsic-Truth PairsðGDepÞ ¼
S

g2GDep
Pg

2
in Fig 7(b). We can see that:

• According to the Intrinsic-Truth EGEmail
in Fig 7(a): Starling(GEmail, τ = 0.25), with 102 Mod-

ules, gets Precision = 0.26, Recall = 0.45, Fscore = 0.33. The maximum Fscore of SGC is geted

for κ = 54 with Precision = 0.36, Recall = 0.30, Fscore = 0.33. On the other hand for τ 2 {0.50,

0.75, 1.00}, Starling gets a beter Fscore than the best Fscore of SGC.

As BECBB: 9τ 2 [0, 1] such Starling gets a beter Fscore than the best Fscore of SGC.

• According to the Extrinsic-Truth PairsðGDepÞ in Fig 7(b): Starling(GEmail, τ = 0.25) gets Preci-
sion = 0.51, Recall = 0.61, Fscore = 0.56. The maximum Fscore of SGC is geted for κ = 24 with

Precision = 0.46, Recall = 0.60, Fscore = 0.52.

According to PairsðGDepÞ: 9τ 2 [0, 1] such Starling gets a beter Fscore than the best Fscore of

SGC.

Fig 8 shows the performances as BECBBs of SGCðGdblp811
; kÞ and SGCðGamazon380

; kÞ, accord-

ing to their Intrinsic-Truth respectively EGdblp811
and EGamazon380

. We can see that: 9τ 2 [0, 1] such

Starling gets a beter Fscore than the best Fscore of SGC.

7.2.1.1 Extrinsic-Truth according to Intrinsic-Truth of GEmail. Because

PrecisionðPairsðGDepÞ;EGEmail
Þ ¼ 0:23, RecallðPairsðGDepÞ;EGEmail

Þ ¼ 0:34,

Fig 7. Performance of SGC(GEmail ¼ ðVGEmail
;EGEmail

Þ, κ), κ varying. According to the intrinsic truth EGEmail
in Fig 7(a),

and in Fig 7(b) according to the extrinsic truth PairsðGDepÞ ¼ [g2GDepP
g

2
.

https://doi.org/10.1371/journal.pone.0290090.g007
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FscoreðPairsðGDepÞ; EGEmailÞ ¼ 0:27, as BECBB, ΓDep is less efficient than Starling(GEmail, τ =

0.25) or SGC(GEmail, κ = 54) the best BECBB of SGC.

That is to say that Gold-Standards are not always the best BECBBs, we can not always trust

Gold-Standards provided by Benchmarks or built using human assessors, which as showed in

[62], generaly do not always agree with each other, even when their judgements are based on

the same protocol.

In our present example with GEmail, we can think that two individuals from the same

department can communicate in real life more often than two individuals from different

departments: Two individuals from the same department do not necessarily need to communi-
cate more by email than two individuals from different departments.

7.2.2 Performance on BenchmarkER. Because we need to know κ the number of groups

of vertices in advance in the Input of SGC, to be able to compare Starling with SGC we define:

SGCτ(G) = SGC(G, κ = |Starling(G, τ)|).

Let GER ¼ ðVGER
;EGERÞ a Random Graph built by BenchmarkER, ΓER = {V} with only one

Module, and OracleER(GER) = ΓER = {V} the Oracle’s method who knows ΓER.

Fig 8. Performance of SGC(G = (V,E), κ) according to the intrinsic truth E, κ varying.

https://doi.org/10.1371/journal.pone.0290090.g008

Fig 9. Performance with BenchmarkER. Each point (x, y) is the average over 100 Graphs with p = x.

https://doi.org/10.1371/journal.pone.0290090.g009
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Fig 9 shows the accuracy of the methods according to p considering each Clustering as a

BECBB. We can see that: 8τ 2 {0.00, 0.25, 1.00} on these Figures, the Fscores geted by Starling
(G, τ) are always equal or greater than the Fscores geted by SGCτ(G).

7.2.3 Performance on BenchmarkLFR. Let GLFR ¼ ðVGLFR
; EGLFRÞ a Graph built by Bench-

markLFR, GGLFR
its expected Modules as expected overconnected regions, and

OracleLFRðGLFRÞ ¼ GGLFR
the Oracle’s method which knows the GGLFR

of each GLFR.

We show in Figs 10 and 11 the accuracy of methods SGCτ(G) and Starling(G, τ) according

to μ, considering each Clustering as a BECBB. We can see that 8τ 2 {0.00, 0.25, 1.00} on these

Figures, the Fscores geted by Starling(G, 0.25) are always equal or greater than the Fscores
geted by SGCτ(G).

Fig 10. Performance with BenchmarkLFR (k = 15). Each point (x, y) is the average over 100 Graphs with μ = x. Fig 10

(a)–10(c) are zooms on the Fscores when the overconnected regions are less clear (i.e. when we can no longer trust

OracleLFRðGLFRÞ ¼ GGLFR
).

https://doi.org/10.1371/journal.pone.0290090.g010
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8 Discussion

8.1 Choosing the τ parameter of Starling

When using a Benchmark B to evaluate the performance of methods on a Graph

GB ¼ ðVGB
;EGB
Þ, the Oracle’s method OracleB knows the expected overconnected regions GGB

but do not knows the concretely constructed edges EGB
. Therefore, when the overconnected

regions are less clear, as BECBB (with Gold ¼ EGB
, Intrinsic-Truth), some methods may out-

perform the OracleB method. This happens especially with the Starlingτ method if the τ param-

eter has been chosen appropriately.

We have seen in Formula 17 that the closer the τ 2 [0, 1] parameter is to 1, the less Conflu-
ence is taken into account in Qt

Conf . With Terrain-Graphs, we propose using τ = 0.25 as a first

Fig 11. Performance with BenchmarkLFR (k = 25). Each point (x, y) is the average over 100 Graphs with μ = x. Fig 11

(a)–11(c) are zooms on the Fscores when the overconnected regions are less clear (i.e. when we can no longer trust

OracleLFRðGLFRÞ ¼ GGLFR
).

https://doi.org/10.1371/journal.pone.0290090.g011
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approach by default, then decreasing τ if we want to promote Recall (because it has the effect

of decreasing the number of Modules and of increasing their sizes) or increasing τ if we want

to promote Precision (because it has the effect of increasing the number of Modules and of

decreasing their sizes).

8.2 Length of Random walks

For clarity and simplicity, we restricted the Random walks of Pt
Gði⇝jÞ to a length of t = 3. A

first study of the impact of the length of those Random walks to transform a Random Graph

into a shaped-like Terrain − Graph was done in [59], but a deeper one should be carried to

understand how the length influences the mesoscopicity of Confluence and its effect on QConf

and Starling.
For example we can build the Graph G2$

toy from G2
toy by inserting a new vertex in the middle

of each edge. Fig 12 illustrates the optimal Clusterings on G2
toy and on G2$

toy for Q0:0
Conf with t = 3

and also with t = 6, allowing us to see that:

On G2$
toy with t = 6:

d
$1

Conf ¼ f0; 4; 5; 6; cutð0=4Þ; cutð0=5Þ; cutð0=6Þ; cutð4=5Þ; cutð4=6Þ; cutð5=6Þg;

d
$2

Conf ¼ f1; 2; 3; cutð0=1Þ; cutð0=2Þ; cutð0=3Þ; cutð1=2Þ; cutð1=3Þ; cutð2=3Þg;

d
$3

Conf ¼ f7; 8; cutð7=8Þ; cutð3=7Þ; cutð4=7Þ; cutð2=8Þ; cutð5=8Þg.

On G2
toy with t = 3:

d
1

Conf ¼ f0; 4; 5; 6g � d
$1

Conf ;

d
2

Conf ¼ f1; 2; 3; g � d
$2

Conf ;

d
3

Conf ¼ f7; 8g � d
$3

Conf .

The length of Random walks t could be advantageously chosen taking into account L, the

average number of edges on the shortest path between two vertices.

Fig 12. Optimal Clusterings for Q0:0
Conf with t = 3 and with t = 6: Shapes describe an optimal Clustering for Q0:0

Conf

with t = 3, colors describe an optimal Clustering for Q0:0
Conf with t = 6.

https://doi.org/10.1371/journal.pone.0290090.g012
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8.3 Directed graphs

If G is a positively weighted Graph by W = {wi,j such {i, j} 2 E}, then we can apply QConf and

Starling by replacing Eqs 7 and 10 by 27 and 28 respectively:

½G� ¼ ðgi;jÞi;j2V with gi;j ¼

wi;j
P

k2Vwi;k
if fi; jg 2 E;

0 otherwise:

8
><

>:
ð27Þ

Conf tðG; i; jÞ ¼

0 if i ¼ j;

Pt
Gði⇝jÞ �

P
k2V

wk;jP
w2W

w

Pt
Gði⇝jÞ þ

P
k2V

wk;jP
w2W

w

otherwise:

8
>>>><

>>>>:

ð28Þ

If G is a directed Graph, one can also consider using a variant of page rank [63–65] in place

of Eq 8.

9 Conclusions and perspectives

In this paper, we defined Confluence, a mesoscopic vertex closeness measure based on short

Random walks, which brings together vertices from the same overconnected region, and sepa-

rates vertices coming from two distinct overconnected regions. Then we used Confluence to

define Qt
Conf , a new Clustering quality function, where the τ 2 [0, 1] parameter is a handle on

the Precision & Recall, the size and the number of Modules. With a small toy Graphs, we

showed that optimal Clusterings for Qt
Conf improve the Fscore of the optimal Clusterings for

Modularity.

We then introduced Starling(G, τ), a new heuristic based on the Confluence of edges

designed to optimize Qt
Conf on a Graph G. On the same little toy Graph, we showed that Star-

ling(G, τ) finds an optimal Clustering for Qt
Conf .

Comparing Starling(G, τ) to SGC(G, κ), Infomap, and Louvain we show that:

• Performance with the Terrain-Graphs studied in this paper:

Louvain(G): Returns Clusterings with a low Fscore, caused by a to much low Precision despite

a large Recall;

Infomap(G): Tends to favor Recall with good Fscore;

SGC(G, κ): Returns Clusterings with a good Fscore if we know the good number of groups of

vertices κ in advance;

Starling(G, τ): Tends to favor Precision with good Fscore. 9τ 2 [0, 1] (usually around τ�
0.25) such that the Fscore of the Clusterings returned by Starling is greater than the Fscores
of the Clusterings returned by Infomap and greater than the best Fscores of the Clusterings

returned by SGC.

• Performance with BenchmarkER:

SGC(G, κ = |Starling(G, τ)|): Fscore(SGC(G, κ = |Starling(G, τ)|), {V})� Fscore(Starling(G,

τ), {V});

(i) Infomap usually returns Γ = {V}. Which means: Infomap identify the absence of strong

structures;
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(ii) Starlingτ returns Modules which have a density greater than the one of the entire Graph,

the slightly-overconnected regions (especially if τ increases). Which means: Starlingτ identi-

fies the presence of weak structures.

• Performance with BenchmarkLFR:

• When the overconnected regions are clear: On the one hand, Starling(G, τ = 0.25) gets

equivalent Fscores than these of Infomap (see Figs 6 and 7). On the other hand Starling(G,

τ) gets equivalent or greater Fscores than these of SGC(G, κ = |Starling(G, τ)|) (see Figs 10

and 11);

• When the overconnected regions become less clear, Starling favors Precision while Infomap
favor Recall:

(1) On the one hand, Starling(G, τ = 0.25) gets then greater Fscores than these of Infomap
(see Figs 5(a)–5(c) and 6(a)–6(c)). That’s because even in Non Erdös and Rényi Graphs,

Starlingτ identifies the presence of weak structures thanks to its (ii) behavior, whereas Info-
map identify the absence of strong structures because its (i) behavior.

On the other hand, Starling(G, τ = 0.25) gets then equivalent or greater Fscores than these of

SGC(G, κ = |Starling(G, τ = 0.25)|) (see Figs 10(a)–10(c) and 11(a)–11(c)).

(2) Often (τ dependent) Starling(G, τ), thanks to its (ii) behavior, is able to get larger Fscores
than these of Oracles that would only knows their expected overconnected regions (con-

cretely slightly-overconnected), ignoring E their concretely constructed edges. SGC(G, κ = |

Starling(G, τ = 0.25)|) can also succeed (see Fig 10(a) and 10(c)), but still weaker than Star-
ling(G, τ = 0.25), whereas Infomap can never succeed, because its (i) behavior.

To sum up: If we know the good number of groups of vertices κ in advance then we can

use SGC. If we do not know it, then we can use Infomap on the one hand with Starling on the

other hand wich are complementary:

Infomap tend to favor Recall with good Fscore and is able to identify the absence of strong

structures;

Starlingτ=0.25 by default tends to favor Precision with good Fscore and is able to identify the pres-

ence of weak structures. Then if we want to promote Recall with a smaller number of larger

Modules, we can decrease τ, and if we want to promote Precision with a greater number of

smaller Modules, we can increase τ.

Our follow-up work: We will focus on the role on the ouputs of Starling, played by the

length of the Random walks in computing Confluence, as well as the development of a Cluster-

ing method based on Confluence able to detect Clustering in Graphs accounting for edge direc-

tions and edge weights, its returns communities possibly overlapping.
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58. Erdös P, Rényi A. On the evolution of random graphs. Publ Math Inst Hungary Acad Sci. 1960; 5:17–

61.

59. Gaum B, Mathieu F, Navarro E. Building Real-World Complex Networks by Wandering on Random

Graphs. vol. 10. Revue I3—Information Interaction Intelligence, Cepadues; 2010. p. 73–91.
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