Starling: Introducing a mesoscopic scale with Confluence for Graph Clustering
Abstract
Given a Graph G = (V, E) and two vertices i, j ∈ V, we introduce Confluence(G, i, j), a vertex mesoscopic closeness measure based on short Random walks, which brings together vertices from a same overconnected region of the Graph G, and separates vertices coming from two distinct overconnected regions. Confluence becomes a useful tool for defining a new Clustering quality function Q$_{Conf}$(G, Γ) for a given Clustering Γ and for defining a new heuristic Starling to find a partitional Clustering of a Graph G intended to optimize the Clustering quality function Q$_{Conf}$. We compare the accuracies of Starling, to the accuracies of three state of the art Graphs Clustering methods: Spectral-Clustering, Louvain, and Infomap. These comparisons are done, on the one hand with artificial Graphs (a) Random Graphs and (b) a classical Graphs Clustering Benchmark, and on the other hand with (c) Terrain-Graphs gathered from real data. We show that with (a), (b) and (c), Starling is always able to obtain equivalent or better accuracies than the three others methods. We show also that with the Benchmark (b), Starling is able to obtain equivalent accuracies and even sometimes better than an Oracle that would only know the expected overconnected regions from the Benchmark, ignoring the concretely constructed edges.
Origin | Publisher files allowed on an open archive |
---|