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Abstract—Sparse Direction-of-Arrival estimators depend on
the regularization parameter λ which is often empirically tuned.
In this work, conducted under the vectorized covariance matrix
model, we are looking for theoretical equivalence between the
Maximum Likelihood (ML) and sparse estimators. We show
that under mild conditions, λ can be chosen thanks to the
distribution of the minimum of the ML criterion in the case of
two impinging sources. We derive this distribution under complex
non-circular Gaussian noise. The corresponding λ choice is θ-
invariant, only requiring an upper bound on the number of
sources. Furthermore, it guarantees the global minimum of the
sparse `0-regularized criterion to be the ML solution.

Numerical experiments confirm that, for the proposed λ,
sparse and ML estimators yield the same statistical performance.

Index Terms—DOA estimation, sparse estimation, regulariza-
tion parameter, maximum likelihood

I. INTRODUCTION

Direction-of-Arrival (DOA) estimation is a classical signal
processing problem for which numerous algorithms have been
proposed trough last decades [1]. However, conventional meth-
ods suffer from multiple limitations : Capon’s beamformer [2]
can not separate close sources, MUSIC method [3] achieves
super-resolution but can not handle highly correlated sources
or work with few time samples. To overcome some of the
foregoing issues, the signal processing community has widely
investigated the topic of sparse signal representations [4].

In the field of DOA estimation, the concept of sparse repre-
sentation has first been applied on the Single Measurement
Vector (SMV) model. It aims to recover a sparse vector
x0 ∈ CG which has only M non-zero entries from a single
noisy array snapshot y = Ax0+n where A ∈ CN×G, G� N
denotes an overcomplete basis and n ∈ CN a noise. The sparse
estimation problem can be formulated as the minimization of
the following non-convex constrained objective:

min
x∈CG

‖x‖0 subject to ‖y −Ax‖22 ≤ β (1)

where ‖·‖0 denotes the `0-norm and β > 0 a constraint on the
residuals. Several authors proposed to choose it [5]–[8] as an
upper bound on the noise distribution.

Nonetheless, solving this NP-hard problem requires com-
binatorial optimization. Numerous greedy algorithms such
as matching pursuit and orthogonal matching pursuit have
been developed to solve (1). Aforementioned algorithms are
based on iterative support reconstruction which makes them

extremely sensitive to support error which can not be undone.
Some authors [6]–[9] suggested a convex-`1 relaxation of
(1) to find a good approximate solution since `0 and `1-
formulations are equivalent under the RIP (Restricted Isometry
Property). However, the RIP condition requires low correla-
tions between vectors of A which is rarely verified. Thus,
`0-regularized formulation of (1) is employed:

min
x∈CG

{
J`0(λ,x) =

1

2
‖y −Ax‖22 + λ‖x‖0

}
(2)

where the objective J`0 depends on the regularization param-
eter λ > 0 which balances the reconstruction error against the
sparsity of the solution. Small values of λ lead to non-sparse
solutions whereas larger ones enforce sparsity. Consequently,
the choice of the regularization parameter is of paramount
importance.

In this work, we look for theoretical equivalence between
ML and sparse estimators. We propose to select the regular-
ization parameter thanks to the distribution of the minimum of
the ML criterion which we derive under complex non-circular
Gaussian noise. This yields a θ-invariant choice for λ only
requiring an upper bound on the number of sources. Numerical
experiments show that with the proposed choice for λ, ML and
sparse estimators have equal performance.

II. MAXIMUM LIKELIHOOD ON THE VECTORIZED
COVARIANCE MATRIX MODEL

A. Vectorized covariance matrix model

We consider a scenario of M independent sources of direc-
tions Θ = {θ1, . . . , θM} impinging on an array of N sensors.
Assuming narrowband hypothesis, the array observation is
given by:

x(t) =

M∑
m=1

a(θm)sm(t) + n(t) = A(Θ)sΘ(t) + n(t) (3)

with A(Θ) the array manifold matrix formed by the
steering vectors a(θm) ∈ CN ,m = 1 . . .M , sΘ(t) =
[s1(t), . . . , sM (t)]T ∈ CM a vector containing the complex
envelopes of the emitted signals and n(t) ∈ CN a complex
Gaussian circular noise, independent of s(t), with covariance
E
[
n(t)nH(t)

]
= σ2IN where E [·] is the temporal mean, (·)H

denotes the complex conjugate transpose and IN the identity
matrix of size N .



The array covariance matrix is then given by:

Rx = E
[
x(t)xH(t)

]
= A(Θ)RsA

H(Θ) + σ2IN (4)

where Rs = E
[
sΘ(t)sHΘ(t)

]
is the sources covariance matrix.

In practice, the covariance matrix is not available. Instead,
Rx is replaced by its ML estimate R̂x computed using K iden-
tically and independently distributed (i.i.d) array snapshots.
Assuming temporally white noise (∀i 6= j,E

[
nH(ti)n(tj)

]
=

0), R̂x can be written as:

R̂x =
1

K

K∑
k=1

x(tk)xH(tk) = Rx + ∆Rx (5)

where K∆Rx is a Wishart noise due to the finite number
of snapshots [10] since noise samples are independent from
snapshot to snapshot.

Applying the previous model (3) for all K snapshots leads to
a Multi Measurement Vectors (MMV) model which improves
accuracy at the cost of computational efficiency [5]. Thanks
to vectorization, the MMV model can be casted into an SMV
model: the vectorized covariance matrix model [6], [8], [9],
[11]. This model exploits all the K array snapshots while
maintaining a low complexity. Furthermore, it relies on a
virtual array of at most N2−N non-redundant antennas which
has a reduced beamwidth and lower sidelobes compared to the
standard array [12].

Assuming that sources are uncorrelated, applying the vec-
torization operator vec(·) to R̂x − σ2IN yields:

r = vec(R̂x − σ2IN ) =

M∑
m=1

b(θm)γm + δ = B(Θ)γΘ + δ

(6)
where b(θm) = a∗(θm)⊗ a(θm) is the virtual array steering
vector with ⊗ the Kronecker product and (·)∗ the complex
conjugate. The corresponding mixing matrix is referred as
B(Θ) = [b(θ1), . . . ,b(θM )]. γm = E

[
|sm(t)|2

]
denotes

the power of the m-th source and γΘ = [γ1, . . . , γM ]T the
vector of the sources powers. Finally, δ = vec(∆Rx) is the
vectorized noise.

According to [13], the vectorized observation asymptotically
(for K sufficiently large) follows a multivariate complex
Gaussian law CN (µ,Γ,C) with:

µ = E [r] = B(Θ)γΘ

Γ = E
[
(r− µ) (r− µ)

H
]

=
1

K
RT
x ⊗Rx

C = E
[
(r− µ) (r− µ)

T
]

= ΓK

(7)

where C is the second moment at the second order of r and
(·)T denotes the transposition operator. K ∈ RN2×N2

is the
permutation matrix such that vec(MT ) = Kvec(M) for any
square matrix M of size N2.

B. Maximum Likelihood estimation

For additive Gaussian noise a ML estimator of Θ, known
to achieve the Cramér-Rao lower bound at high Signal-to-
Noise Ratio (SNR), can be be easily obtained from (6) [14].

However, for non-diagonal covariance matrices such as (7) this
yields a multi-term log-likelihood function. This objective can
be simplified for diagonal covariance matrices leading us to
apply a pre-whitening step to (6):

y = Ŵr = ŴB(Θ)γΘ + δw (8)

where Ŵ =
√
KR̂

−T/2
x ⊗ R̂

−1/2
x is the estimated whiten-

ing matrix and δw = Ŵδ a spatially white noise with
E
[
δwδ

H
w

]
= IN2 . Applying the ML to (8) yields the fol-

lowing estimator of Θ:

JML(Θ) = tr
(
Π⊥(Θ)yyH

)
= yHΠ⊥(Θ)y

Θ̂ = arg min
Θ∈RM

JML(Θ)
(9)

where Π⊥(Θ) = IN2 − (ŴB(Θ))(ŴB(Θ))# is the noise
projector computed for directions Θ with (·)# the Moore-
Penrose pseudo inverse and tr(·) the trace operator. In what
follows, the optimal value of the ML criterion JML is referred
as:

ε = min
Θ∈RM

JML(Θ) = JML(Θ̂) = yHΠ⊥(Θ̂)y (10)

Nonetheless, the ML is restricted to small numbers of
sources M in practice as it requires an M -dimensional op-
timization. In the next sections, we analyze the equivalence
between ML and sparse estimators. We show that, for proper
values of the regularization parameter, both methods leads to
equal statistical performance.

III. SPARSE ESTIMATION

A. Sparse modeling

Under the hypothesis that DOAs lie within a predefined grid
of directions Φ = {ϕ1, . . . , ϕG} (Θ ⊂ Φ), sparsity can be
introduced in (8) using an overcomplete dictionary B(Φ) =
[b(ϕ1), . . . ,b(ϕG)] ∈ CN2×G with G� N2. Thus, we obtain
the following sparse model for the observation y:

y = ŴB(Φ)γ0 + δw (11)

where γ0 is a sparse vector which has exactly M non-zeros
entries corresponding to the sources powers. Thereafter, γ0 is
referred as the sparse spectrum.

B. Sparse problem formulation

The aim of DOA estimation is to find the directions of the
impinging signals from the observation y which corresponds,
in the sparse model (11), to the non-zeros entries of γ0. Thus,
we need to estimate the sparse spectrum γ0 in order to provide
an estimate of Θ. This problem is ill-posed since G � N2.
Hence, sparsity of γ0 is exploited to ensure the uniqueness of
the solution leading to the following constrained optimization
problem:

min
γ∈CG

‖y − ŴB(Φ)γ‖22 subject to ‖γ‖0 ≤M (12)



Following Delmer’s work [11], the solution of (12) can be ob-
tained through the minimization of the `0-regularized objective
function given by:

min
γ∈CG

{
J`0(λ,γ) =

1

2
‖y − ŴB(Φ)γ‖22 + λ‖γ‖0

}
(13)

with a suitable regularization parameter λ > 0. This choice is
discussed in section IV.

C. Use of an oracle grid

As mentioned in section III-A, DOA sparse estimates cor-
respond to grid directions whose sparse spectrum components
are non-zeros. Therefore, the sparse estimates are conditioned
by the grid choice. Given that this paper focuses on the
equivalence between ML and sparse methods, an oracle grid
containing the ML estimates is employed.

IV. INFLUENCE OF THE REGULARIZATION PARAMETER

The choice of λ in (13) is of utmost importance since it
controls the trade-off between estimation error and sparsity.
Several authors [5], [7], [8], [15] proposed to fix λ using
the noise level for `1-norm. In [6], an optimal value for
λ is derived using the Lagrangian. Additionally, one can
use the L-curve [16] to choose λ. However, the dictionary
ŴB(Φ) has high mutual coherence which makes the RIP
condition unverified. Therefore, `1-norm can not be employed
and neither the previous techniques.

Regarding the `0-framework, λ is generally empirically
tuned given that few results are available. Recently, Delmer
[11] et al. proposed to choose λ so that J`0 has a global
minimum in γ̂ ie.:

λ > 0 | ∀γ ∈ CG, J`0(λ, γ̂) ≤ J`0(λ,γ) (14)

where γ̂ is the sparse spectrum, in the neighboring of γ0,
obtained using the ML DOA estimate Θ̂ (9). For a given
observation y, the values of λ that achieves condition (14) are
within a stochastic admissible interval IM (y) =

[
λ−M , λ

+
M

]
.

This interval ensures the global minimizer of (13) to be the
ML solution which is an M -sparse vector.

For the case M = 2, the corresponding interval is I2(y) =[
λ−2 , λ

+
2

]
where:

λ−2 ≈
c2(y)− c3(y)

2
and λ+2 ≈

c1(y)− c2(y)

2
(15)

with ck(y) = inf{‖y − ŴB(Φ)γ‖22, ‖γ‖0 = k} the ML
criterion optimal value for a prescribed sparsity level k. Note
that we have c3(y) ≤ c2(y) ≤ c1(y). In the following, I2 is
assumed non-empty (ie. c1(y) > c3(y)).

For arrays presenting robustness against second order am-
biguities for M = 2 sources with equal power, the relation
c2(y) � c1(y) holds. Thus, the following inequality can be
easily proven:

λ−2 ≤
1

2
c2(y) ≤ λ+2 (16)

A suitable choice for λ satisfying (16) is then:

λ =
1

2
c2(y) (17)

To perform an off-line choice for λ, the distribution of c2(y)
must be known. In the next section, we derive the distribution
c2(y) which is also the minimum of the ML criterion ε (10).
We prove this distribution to depend only on N and M
leading to a θ-invariant regularization parameter as opposed
to previous works that are θ-dependent [11].

V. DISTRIBUTION OF THE ML CRITERION MINIMUM

In this section, we derive the distribution of the minimum of
the ML criterion under complex Gaussian non-circular noise.
We proove the following theorem:

Theorem 1: Let us assume that K is sufficiently large so
that:
H1) The estimated whitening matrix is close to its asymptotic

equivalent Ŵ ≈W.
H2) The global minimum of JML is reached for Θ̂ which lies

in the neighborhood of Θ such that γ̂ ≈ γ0. Therefore,
ε can be approximated:

ε = yHΠ⊥(Θ̂)y ≈ yHΠ⊥(Θ)y = ε̃ (18)

where Π⊥(Θ) is the noise projector computed using
both true directions and whitening matrix.

Then, the distribution of ε can be approximated by the distri-
bution of ε̃ which follows a χ2 law with N2 −M degrees of
freedom.

To prove theorem 1, let us first introduce the following
properties of the permutation matrix K:

Property 1: For any square matrices M1,M2 of size N2

K satisfies [17]:

KT = K,K2 = IN2 ,K−1 = K

K (M1 ⊗M2) = (M1 ⊗M2) K−1 = (M1 ⊗M2) K
(19)

Proof of theorem 1: To derive the distribution of ε, let
us first transform y into a real random vector by separating
its real and imaginary parts. The corresponding real vector z
has size 2N2 and is given by:

z =

[
<{y}
= {y}

]
= H

[
y
y∗

]
(20)

where
H = Q⊗ IN2 and Q =

1

2

[
1 1
−j j

]
(21)

Using the properties of the permutation matrix (19) and the
Hermitian symmetry of R̂x − σ2IN , we have: y∗ = Ky
leading to:

z = H

[
IN2

K

]
y = HUy = B̃(Θ)γ0 + HUδw (22)

where B̃(Θ) = HUWB(Θ). The noise in (22) is now a real
random vector of law N (02N2×1,Σ) with covariance matrix:

Σ = E
[
(HUδw) (HUδw)

H
]

= HUUHHH (23)

since E
[
δwδ

H
w

]
= IN2 (7, 8). Using (19), we have:

HU = (Q⊗ IN2)

[
IN2

K

]
=

1

2

[
I2N + K

j(K− IN2)

]
(24)



and inserting (24) in (22) leads to:

Σ =
1

2

[
IN2 + K 0N2

0N2 IN2 −K

]
(25)

It can easily be verified that Σ is idempotent (Σ2 = Σ) and
has Hermitian symmetry. Hence, Σ is an orthogonal projection
of rank N2. Given that its eigenvalues are 0 and 1 with multi-
plicity N2, the Eigenvalue Decomposition (EVD) of Σ gives
Σ = EsE

T
s where Es contains the eigenvectors extracted from

the N2 non-null eigenvalues of Σ. Consequently, the noise
HUδw in (22) can be rewritten using a white Gaussian noise
vector ñ ∼ N (0N2×1, IN2 ):

z = B̃(Θ)γ0 + Esñ (26)

Projecting z on the columns of Es yields:

zs = ET
s z = ET

s B̃(Θ)γ0 + ñ (27)

since Es is a semi-orthogonal matrix.
Finally, ε̃ is obtained as the the square norm of the pro-

jection of zs on the orthogonal subspace of B̃(Θ). The
corresponding projector is denoted Π⊥(EsB̃(Θ)) and has
rank N2 − M since WB(Θ) has rank M and H,U,Es

are full rank matrices. EVD yields Π⊥(EsB̃(Θ)) = IN2 −
(EsB̃(Θ))#(EsB̃(Θ)) = FsF

T
s with Fs the semi-orthogonal

matrix containing eigenvectors associated to N2−M non-null
eigenvalues. Using that the non-null eigenvalues are all equal
to one, we have:

ε̃ = zTs Π⊥(EsB̃(Θ))zs = (Fsñ)
T

(Fsñ) =

N2−M∑
m=1

ñ2m (28)

Given that ε̃ is a sum of N2 − M i.i.d Gaussian random
variables, we conclude that ε̃ ∼ χ2

N2−M which is a θ-invariant
distribution.

VI. NUMERICAL EXPERIMENTS

We consider an array of N = 6 antennas with 5 antennas
distributed around a circle of radius 0.8λ0 where λ0 denotes
the wavelength and one central sensor. M = 2 sources of
directions θ1 = 180°, θ2 = 200° and SNR = 0 dB impinge on
this array. In simulations, `0-norm in problem (13) is replaced
by the Continuous Exact `0 (CEL0) functional [18] to alleviate
some of the optimization issues inherent to the `0-norm. The
corresponding criterion has less local minimums while having
the same global minimum as J`0 . Hence, the previous value of
λ remains valid for the CEL0 criterion. Finally, (13) is solved
using the Forward-Backward Splitting (FBS) algorithm [19].

A. Distribution of ε

We first investigate the validity of theorem (1). The Cu-
mulative Distribution Function (CDF) of ε is estimated for
K = 103 (referred as an asymptotic case where Ŵ ≈W and
Π⊥(Θ̂) ≈ Π⊥(Θ)), K = 30, 100 and K = 200. The ML
estimate Θ̂ of the DOA is computed using the Gauss-Newton
method [14] applied on (8). Results are represented on Fig.1.
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Fig. 1. Estimated CDF of ε for K = 103 (asymptotic case), K = 30, 100
and K = 200.

In asymptotic conditions (K = 103), the estimated CDF
matches with the χ2 CDF validating the results of theorem 1.
Lowering K degrades the estimates of W and Θ which shifts ε
distribution towards larger values. For K = 30, the minimum
of JML is reached for Θ̂ 6= Θ which gives larger values
of JML. Moreover, in this specific case y is not Gaussian.
Increasing K makes Θ̂ closer to Θ. Hence, ε decreases till it
is approximately equal to ε̃ leading to F̂ε ≈ Fχ2(N2−M) for
K ≥ 200. Thus, hypothesis H1 and H2 are valid leading to
Π⊥(Θ̂) ≈ Π⊥(Θ) for K ≥ 200. In what follows, we set the
number of samples to K = 200.

B. Influence of λ

As proposed in section IV, λ could be chosen using the
CDF of ε such that condition (14) holds. We propose:

λ = 1
2F
−1
ε (η) (29)

where F−1ε (η) is the inverse CDF of ε evaluated for probability
η. To choose η, the sparsity of the estimated spectrum is
evaluated for multiple λ values through a Monte-Carlo sim-
ulation. To compute sparsity, `0-norm is approximated by a
thresholding function with a threshold of 10−6. The left plot of
Fig.2 depicts the theoretical CDF of λ and the estimated CDF
of λ−2 and λ+2 on 10000 independent experiments. Using this
figure, we choose η so that λ−2 (0.95) ≤ λ ≤ λ+2 (0.05) where
λ−2 (0.95) and λ−2 (0.05) are respectively upper and lower
bounds on the distributions of (15). Additional simulations
show that λ+2 (0.05) remains approximately constant while
λ+2 (0.05) decreases for smaller values of ∆θ = |θ1 − θ2|.
Hence, we propose to pick η = 0.05 which leads gives λ
close λ−2 (0.95). This choice is then robust for several values
of ∆θ.

On the the right plot of Fig.2, we represented the sparsity
of the sparse spectrum estimate γ̂ through the FBS algorithm
as a function of λ. The proposed choice for λ belongs to the
admissible interval I2 [11] and leads to 2-sparse solutions.

C. Statistical performance

Finally, we verify that, for λ = 1
2F
−1
χ2(34)(0.05) ML and

sparse methods lead to the same statistical performance. For
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that, we conducted 10000 independent Monte-Carlo experi-
ments for SNR values between −20 dB and 20 dB. The
sources are considered resolved if two peaks are detected and
max

{
|θ̂1 − θ1|, |θ̂2 − θ2|

}
< 10° where 10° corresponds to

the half beamwidth of the virtual array. The corresponding
number of correct detections is denoted Q. The Root Mean
Square Error (RMSE) is computed for each direction on the
correct detections as RMSE(θ) = 1

Q

√∑Q
q=1(θ̂m,q − θm)2.

Results are represented on Fig.3. For SNR ≥ −4 dB, ML and
sparse estimators have the same performance which confirms
that the chosen λ ensure the equivalence between both meth-
ods.
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Fig. 3. Probability of detection (top) and RMSE (bottom). Given that the two
sources have the same power, results are only represented for direction θ1.

VII. CONCLUSION

In this paper, we performed a theoretical analysis of equiv-
alence between ML and sparse DOA estimators. We proposed
to choose the regularization parameter λ using the distribution
of the minimum of ML criterion. For that, the proposed λ
is independent of the sources directions. It only requires an
upper bound on the number of sources. Numerical simulations
confirmed that under an oracle grid, the ML and sparse method
have equal performance. For a practical implementation of the
ML through sparse methods, off-grid techniques must be used.
Moreover, our analysis should be extended to M > 2 with
potentially correlated sources. This is an ongoing work.

REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal processing
research: The parametric approach,” Signal Processing Magazine, IEEE,
vol. 13, pp. 67 – 94, 08 1996.

[2] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[3] G. Bienvenu and L. Kopp, “Optimality of high resolution array process-
ing using the eigensystem approach,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 31, no. 5, pp. 1235–1248, 1983.

[4] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-of-
arrival estimation,” 2017.

[5] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[6] M. Atashbar and M. H. Kahaei, “Direction-of-arrival estimation using
amlss method,” IEEE Latin America Transactions, vol. 10, no. 5, pp.
2053–2058, 2012.

[7] Z. He, Q. Liu, L. Jin, and S. Ouyang, “Low complexity method for
doa estimation using array covariance matrix sparse representation,”
Electronics Letters, vol. 49, no. 3, pp. 228–230, 2013.

[8] W. Cui, T. Qian, and J. Tian, “Enhanced covariances matrix sparse
representation method for doa estimation,” Electronics Letters, vol. 51,
no. 16, pp. 1288–1290.

[9] J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse
representation of array covariance vectors,” IEEE Transactions on Signal
Processing, vol. 59, no. 9, pp. 4489–4493, 2011.

[10] N. R. Goodman, “Statistical analysis based on a certain multivariate
complex gaussian distribution (an introduction),” The Annals of mathe-
matical statistics, vol. 34, no. 1, pp. 152–177, 1963.

[11] A. Delmer, A. Ferréol, and P. Larzabal, “On regularization parameter
for l0-sparse covariance fitting based doa estimation,” in ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 4552–4556.

[12] P. Chevalier, L. Albera, A. Ferreol, and P. Comon, “On the virtual array
concept for higher order array processing,” IEEE Transactions on Signal
Processing, vol. 53, no. 4, pp. 1254–1271, 2005.

[13] M. Mahot, F. Pascal, P. Forster, and J.-P. Ovarlez, “Asymptotic properties
of robust complex covariance matrix estimates,” IEEE Transactions on
Signal Processing, vol. 61, no. 13, pp. 3348–3356, 2013.

[14] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, Exact and Large
Sample Maximum Likelihood Techniques for Parameter Estimation and
Detection in Array Processing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 99–151.

[15] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 09 1994.

[16] P. C. Hansen, The L-Curve and Its Use in the Numerical Treatment of
Inverse Problems, 01 2001, vol. 4, pp. 119–142.

[17] J. Magnus and H. Neudecker, “The commutation matrix: Some proper-
ties and applications,” Annals of Statistics, vol. 7, no. 2, pp. 381–394,
1979, pagination: 14.
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