
HAL Id: hal-04665983
https://hal.science/hal-04665983v2

Preprint submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

All about Anigma-View
Chang Wook Seo, Jungjin Park, Seonghyeon Kim, Gyeonghun Im,

Myunggyun Seo, Yerim Shin, Kyungmin Cho, Seung Han Song

To cite this version:
Chang Wook Seo, Jungjin Park, Seonghyeon Kim, Gyeonghun Im, Myunggyun Seo, et al.. All about
Anigma-View. 2024. �hal-04665983v2�

https://hal.science/hal-04665983v2
https://hal.archives-ouvertes.fr


All about Anigma-View
Chang Wook Seo

Anigma Technologies Inc.
lgtwins@anigma-ai.com

JungJin Park
Anigma Technologies Inc.
jinpark@anigma-ai.com

Seonghyeon Kim
Anigma Technologies Inc.
okdalto@anigma-ai.com

Gyeonghun Im
Anigma Technologies Inc.
nsoar@anigma-ai.com

Myunggyun Seo
Anigma Technologies Inc.
jonathan@anigma-ai.com

Yerim Shin
Anigma Technologies Inc.
shema117@anigma-ai.com

Kyungmin Cho
Anigma Technologies Inc.
ckm@anigma-ai.com

Seung Han Song
Anigma Technologies Inc.
research@anigma-ai.com
song@anigma-ai.com

ABSTRACT
This article provides a detailed analysis of the functions within
Anigma-View, with each one thoroughly explained. Please cite this
report in your academic papers or manuscripts when referencing
any Anigma-View functions. It’s important to note that this report
focuses on the technical reasoning behind the software’s value
measurement and does not cover specific methods for optimizing
or fine-tuning the functions, such as alignment or segmentation.

CCS CONCEPTS
• Applied computing; • Computing methodologies→ Image
processing;

KEYWORDS
Computer Vision, Medical Image

1 BASE PIPELINES
1.1 Alignment
All input face images to Anigma-View undergo a face alignment
process, which aligns the images to the proper position and angle.
More details about face alignment systems can be found in Jin et
al. [JT17].

1.2 Segmentation
Measurement functions in Anigma-View are processed after seg-
menting the input face image. Anigma-View utilizes the segmented
image to measure facial features. See Figure 1 for an example.

1.3 Measurement&Settings
This technical report is written with the assumption that the coor-
dinate values are based on the OpenCV [Its14] library. In OpenCV,
the x and y coordinates start from the top-left corner rather than

Authors’ addresses: Chang Wook Seo, Anigma Technologies Inc., lgtwins@anigma-
ai.com; JungJin Park, Anigma Technologies Inc., jinpark@anigma-ai.com; Seonghyeon
Kim, Anigma Technologies Inc., okdalto@anigma-ai.com; Gyeonghun Im, Anigma
Technologies Inc., nsoar@anigma-ai.com; Myunggyun Seo, Anigma Technologies Inc.,
jonathan@anigma-ai.com; Yerim Shin, Anigma Technologies Inc., shema117@anigma-
ai.com; Kyungmin Cho, Anigma Technologies Inc., ckm@anigma-ai.com; Seung Han
Song, Anigma Technologies Inc., research@anigma-ai.com, song@anigma-ai.com.

Figure 1: Anigma-View segments the input face image before
measuring the features of the face.

the bottom-left. See Figure 2 for the coordinate system used in
OpenCV.

Default values in Anigma-View are calculated relative to an
assumed iris radius of 11.5 mm. However, these values can be cus-
tomized using size-known objects in the image, particularly a 5
mm sticker. When present in a facial image, this 5 mm sticker is
automatically detected (if exists), allowing Anigma-View to adjust
size values accordingly. In addition to the sticker method, a custom
measurement feature has been implemented, enabling manual scale
setting using any known-size object in the image (e.g., a ruler). See
examples in Figure 3

Compared to ImageJ [SRE12], a well-known image measure-
ment tool that relies on user-defined scaling settings, Anigma-View
shows similar measurement values. We customized the ImageJ
scale by setting the iris radius to 11.5 mm. The results are shown
in Figure 4. The two software tools show only a slight difference in
measurement values. Note that ImageJ’s scaling setting is based on
the user’s manual input for each image, which can introduce slight
errors in the values.

2 FUNCTIONS
2.1 Base functions
2.1.1 Circle detection. To detect the coordinates of circle shape
object center (x,y) and radius, we used circle detection function
which is well known from previous studies [DH72]. The detection
process is written below.

(1) Edge Detection: Apply an edge detection algorithm [Can86]
to the input image to highlight the edges.

https://orcid.org/0000-0002-3809-9515
https://orcid.org/0000-0002-3809-9515


Chang Wook Seo, JungJin Park, Seonghyeon Kim, Gyeonghun Im, Myunggyun Seo, Yerim Shin, Kyungmin Cho, and Seung Han Song

Figure 2: Coordinate system in OpenCV

Figure 3: Setting scale based on size-known object in photo
(e.g 5 mm sticker)

(2) Voting in Hough Space: For each edge pixel (𝑥,𝑦), vote
in the Hough parameter space for all possible circles that
could pass through the point. This involves varying the
radius 𝑟 and voting for the center points (𝑎, 𝑏) such that:

𝑎 = 𝑥 − 𝑟 cos(𝜃 )

𝑏 = 𝑦 − 𝑟 sin(𝜃 )
where 𝜃 ranges from 0 to 360 degrees.

(3) Finding Circles: Identify peaks in the Hough parameter
space, which correspond to the most likely circle centers
and radii.

(4) Return: x,y and radius of detected circle.

2.2 Distance
2.2.1 MRD1. To measure MRD1, we detected the UpperEyelid-
Margin coordinate using an algorithm with a segmentation mask
as input. Based on the segmentation mask, the y-coordinates of the
pupil, iris, white area, and upper eyelid crease, whose x-coordinates
correspond to the center of the pupil (estimated via the circle detec-
tion function mentioned above), are extracted and stored as lists.
The initial value of the upper eyelid margin coordinate is set to the
minimum y-coordinate of the iris and pupil (min(IrisYCoords[0],
PupilYCoords[0])). If there are y-coordinates for the white area
(WhiteYCoords), the UpperEyelidMargin is updated to the mini-
mum y-coordinate among the current UpperEyelidMargin and

Figure 4: Comparing measure scale with imageJ, Anigma-
View SW shows only slight differences

the white area (min(UpperEyelidMargin, WhiteYCoords[0])). See
Algorithm 1 for more details.

By calculating the distance between center of pupil and Up-
perEyelidMargin, MRD1 value is measured.

Algorithm 1 Detect Upper Eyelid Margin
1: Input: PupilMask, IrisMask, WhiteAreaMask, UpperEyelid-

Mask
2: Output: UpperEyelidMargin
3: Estimate PupilCenterX via circle detection function
4: Initialize lists PupilYCoords, IrisYCoords, WhiteAreaYCoords,

UpperEyelidYCoords
5: for each row 𝑦 in PupilMask do
6: if PupilMask[𝑦][PupilCenterX] is not 0 then
7: Append 𝑦 to PupilYCoords
8: end if
9: end for
10: for each row 𝑦 in IrisMask do
11: if IrisMask[𝑦][PupilCenterX] is not 0 then
12: Append 𝑦 to IrisYCoords
13: end if
14: end for
15: for each row 𝑦 in WhiteAreaMask do
16: if WhiteAreaMask[𝑦][PupilCenterX] is not 0 then
17: Append 𝑦 to WhiteAreaYCoords
18: end if
19: end for
20: for each row 𝑦 in UpperEyelidMask do
21: if UpperEyelidMask[𝑦][PupilCenterX] is not 0 then
22: Append 𝑦 to UpperEyelidYCoords
23: end if



All about Anigma-View

24: end for
25: Set UpperEyelidMargin←

min(IrisYCoords[0], PupilYCoords[0])
26: if len(WhiteAreaYCoords) > 0 then
27: UpperEyelidMargin←

min(UpperEyelidMargin,WhiteAreaYCoords[0])
28: end if
29: return UpperEyelidMargin

2.2.2 MRD2. We detected the LowerEyelidMargin coordinate
using a segmentation mask as input to measure MRD2. Similar to
theUpperEyelidMargin, the y-coordinate lists from the pupil, iris,
and white area, where the x-coordinates correspond to the center
of the pupil, are stored as lists. Therefore, the LowerEyelidMargin
is detected using these y-coordinate lists with a similar algorithm
to the UpperEyelidMargin, but by finding the maximum value in
this case. See Algorithm 2 for more details.

By calculating the distance between center of pupil and Low-
erEyelidMargin, MRD2 value is measured.

Algorithm 2 Detect Lower Eyelid Margin
1: Input: PupilMask, IrisMask, WhiteAreaMask
2: Output: LowerEyelidMargin
3: Estimate PupilCenterX via circle detection function
4: Initialize lists PupilYCoords, IrisYCoords, WhiteAreaYCoords
5: for each row 𝑦 in PupilMask do
6: if PupilMask[𝑦][PupilCenterX] is not 0 then
7: Append 𝑦 to PupilYCoords
8: end if
9: end for
10: for each row 𝑦 in IrisMask do
11: if IrisMask[𝑦][PupilCenterX] is not 0 then
12: Append 𝑦 to IrisYCoords
13: end if
14: end for
15: for each row 𝑦 in WhiteAreaMask do
16: if WhiteAreaMask[𝑦][PupilCenterX] is not 0 then
17: Append 𝑦 to WhiteAreaYCoords
18: end if
19: end for
20: LowerEyelidMargin←

max(IrisYCoords[−1], PupilYCoords[−1])
21: if len(WhiteAreaYCoords) > 0 then
22: LowerEyelidMargin←

max(LowerEyelidMargin,WhiteAreaYCoords[−1])
23: end if
24: Set UpperEyelidMargin←

min(IrisYCoords[0], PupilYCoords[0])
25: return LowerEyelidMargin

2.2.3 PFH. PFH is measured by calculating the distance between
value of UpperEyelidMargin and LowerEyelidMargin.

2.2.4 DH. To measure DH, we detected the DoubleEyelidMar-
gin coordinates by using the detected UpperEyelidMargin value
and the double eyelid area from the segmentation mask. The y-
coordinate list from the double eyelid area, where the x-coordinates

correspond to the UpperEyelidMargin, is stored as lists. There-
fore, theDoubleEyelidMargin is determined by using the smallest
value from this list. See Algorithm 3 for more details.

By calculating the distance between the DoubleEyelidMargin
and the UpperEyelidMargin, the DH value is measured.

Algorithm 3 Detect DoubleEyelidMargin
1: Input: DoubleEyelidMask, UpperEyelidMargin
2: Output: DoubleEyelidMargin
3: Initialize list DoubleEyelidYCoords
4: if DoubleEyelidMask exists then
5: for each row 𝑦 in PupilMask do
6: if DoubleEyelidMask[𝑦][UpperEyelidMarginX] is not 0

then
7: Append 𝑦 to DoubleEyelidYCoords
8: end if
9: end for
10: Set DoubleEyelidMargin← min(DoubleEyelidYCoords)
11: return DoubleEyelidMargin
12: end if

2.2.5 IPD. Based on the pupil area in the segmentation mask, we
detected the center of the pupil coordinates using a circle detection
function. Therefore, the IPD is measured by calculating the distance
between the centers of each pupil.

2.2.6 ICD. Based on the detected medial canthus in the segmen-
tation mask, ICD is measured by calculating the distance between
the medial canthus of each eye.

2.2.7 PFW. Based on detected medial canthus and lateral canthus
in the segmentation mask, PFW is measured by calculating the
distance between medial canthus and lateral canthus.

2.2.8 HL. Based on detected medial canthus and lateral canthus in
the segmentation mask, HL is measured by calculating the x-axis
distance between medial canthus and lateral canthus.

2.2.9 VL. Based on detected lateral canthus in the segmentation
mask, VL is measured by calculating the y-axis distance between
LowerEyelidMargin and lateral canthus.

2.2.10 Pupil to canthus. Based on detected medial canthus in the
segmentation mask, Pupil to canthus is measured by calculating
the distance between medial canthus and center of pupil.

2.2.11 Sup border, Inf border and Mid-portion. Based on the de-
tected medial canthus of both eyes, draw a straight line to establish
the base height of the eye border. By calculating the distance from
points in the eyebrow (upper and lower), the Sup and Inf border
values are measured. The Mid-portion value is calculated from the
median point between the upper and lower eyebrow area points.
The eyebrow points are detected based on the segmentation map in
the order of A, C, F, and G, named according to Asaad et al. [AKJ+19].
The X-axis of these points are aligned based on the medial canthus
(A), pupil (C), and lateral canthus (F). Point G is not aligned to a
specific point from the eye part. See Figure 5 for a detected example



Chang Wook Seo, JungJin Park, Seonghyeon Kim, Gyeonghun Im, Myunggyun Seo, Yerim Shin, Kyungmin Cho, and Seung Han Song

Figure 5: Detected and aligned points of eyebrow area (upper
and lower). Points are named in order of A,C,F and G.

2.3 Angle
2.3.1 ES. Based on the detected medial canthus and lateral can-
thus in the segmentation mask, we created another point using
the x-value from the medial canthus and the y-value from the lat-
eral canthus. Using this newly created point and the existing two
canthus, we measured the ES angle value.

2.4 Ratio
2.4.1 CER. To measure the Cornea Exposure Ratio (CER), we de-
tected the pupil and iris coordinates using circle detection on the
segmented image. We combined the pupil and iris masks to create
a cornea mask. For the exposed eye mask, we combined the cornea
mask with the white area mask. We then initialized a boolean mask
of the same shape as the cornea mask to create the full iris mask,
setting each pixel to True if it lies within the iris radius from the
center coordinates of the iris. Subsequently, we updated the cornea
mask by performing a logical AND operation with the full iris mask
and the exposed eye mask. We computed the areas of the full iris
and the cornea by counting the non-zero elements in their respec-
tive masks. Finally, we calculated the Cornea Exposure Ratio (CER)
as the ratio of the cornea area to the full iris area, multiplied by 100.
See Algorithm 4 for details.
Algorithm 4 Measuring Cornea Exposure Ratio (CER)

1: Input: pupil coordinates (𝑝𝑢𝑝𝑖𝑙𝑥 , 𝑝𝑢𝑝𝑖𝑙𝑦, 𝑝𝑢𝑝𝑖𝑙𝑟 ), iris coordi-
nates (𝑖𝑟𝑖𝑠𝑥 , 𝑖𝑟𝑖𝑠𝑦, 𝑖𝑟𝑖𝑠𝑟 ), PupilMask, IrisMask, WhiteAreaMask

2: 𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎 ←𝑚𝑎𝑠𝑘_𝑝𝑢𝑝𝑖𝑙 ∨𝑚𝑎𝑠𝑘_𝑖𝑟𝑖𝑠
3: 𝑚𝑎𝑠𝑘_𝑒𝑥𝑝𝑜𝑠𝑒𝑑_𝑒𝑦𝑒 ←𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎 ∨𝑚𝑎𝑠𝑘_𝑤ℎ𝑖𝑡𝑒_𝑎𝑟𝑒𝑎
4: Initialize𝑚𝑎𝑠𝑘_𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠 as a boolean array of the same shape

as𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎
5: for each pixel (𝑥,𝑦) in𝑚𝑎𝑠𝑘_𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠 do
6: if (𝑥 − 𝑖𝑟𝑖𝑠𝑥 )2 + (𝑦 − 𝑖𝑟𝑖𝑠𝑦)2 < 𝑖𝑟𝑖𝑠2𝑟 then
7: 𝑚𝑎𝑠𝑘_𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠 [𝑦, 𝑥] ← True
8: end if
9: end for

10: 𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎 ←𝑚𝑎𝑠𝑘_𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠 ∧𝑚𝑎𝑠𝑘_𝑒𝑥𝑝𝑜𝑠𝑒𝑑_𝑒𝑦𝑒
11: 𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠_𝑎𝑟𝑒𝑎 ← count_nonzero(𝑚𝑎𝑠𝑘_𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠)
12: 𝑐𝑜𝑟𝑛𝑒𝑎_𝑎𝑟𝑒𝑎 ← count_nonzero(𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎)
13: 𝐶𝐸𝑅 ← 𝑐𝑜𝑟𝑛𝑒𝑎_𝑎𝑟𝑒𝑎

𝑓 𝑢𝑙𝑙_𝑖𝑟𝑖𝑠_𝑎𝑟𝑒𝑎 × 100
14: return CER

2.4.2 MWR. To measure the Medial White Area Ratio (MWR), we
calculated the ratio of the Medial White Area (MWA) to the total
area, multiplied by 100. To find the MWA, we counted the non-
zero elements in the white area mask to the left of the pupil center
(:pupil_x), if the eye is the left eye (eye_is_left is True), W . If the eye
is the right eye (eye_is_left is False), count the non-zero elements
in the white area mask to the right of the pupil center (pupil_x:).
The total area is defined by the sum of the non-zero elements in
the white area mask and the cornea mask. Check Algorithm 5 for
more details.
Algorithm 5 Measuring Medial White Area Ratio (MWR)

1: Input: pupil coordinates (𝑝𝑢𝑝𝑖𝑙𝑥 , 𝑝𝑢𝑝𝑖𝑙𝑦, 𝑝𝑢𝑝𝑖𝑙𝑟 ), WhiteArea-
Mask,𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎 (from Algorithm 4)

2: if eye_is_left then
3: 𝑀𝑊𝐴← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 [:, : 𝑝𝑢𝑝𝑖𝑙_𝑥])
4: else
5: 𝑀𝑊𝐴← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 [:, 𝑝𝑢𝑝𝑖𝑙_𝑥 :])
6: end if
7: 𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 ← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘) +

count_nonzero(𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎)
8: 𝑀𝑊𝑅 ← 𝑀𝑊𝐴

𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 × 100
9: return MWR

2.4.3 LWR. To measure the Lateral White Area Ratio (LWR), we
calculated the ratio of the Lateral White Area (LWA) to the total
area, multiplied by 100. To find LWA, we counted the non-zero
elements in the white area mask from the pupil center to the right
edge (:pupil_x), if the eye is the left eye (eye_is_left is True), W .
If the eye is the right eye (eye_is_left is False), count the non-zero
elements in the white area mask from the left edge to the pupil
center (pupil_x:). The total area is defined by the sum of the non-
zero elements in the white area mask and the cornea mask. Check
Algorithm 6 for more details.

Algorithm 6 Measuring Lateral White Area Ratio (LWR)

1: Input: pupil coordinates (𝑝𝑢𝑝𝑖𝑙𝑥 , 𝑝𝑢𝑝𝑖𝑙𝑦, 𝑝𝑢𝑝𝑖𝑙𝑟 ), WhiteArea-
Mask,𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎 (from Algorithm 4)

2: if eye_is_left then
3: 𝐿𝑊𝐴← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 [:, 𝑝𝑢𝑝𝑖𝑙_𝑥 :])
4: else
5: 𝐿𝑊𝐴← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘 [:, : 𝑝𝑢𝑝𝑖𝑙_𝑥])
6: end if
7: 𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 ← count_nonzero(𝑊ℎ𝑖𝑡𝑒𝐴𝑟𝑒𝑎𝑀𝑎𝑠𝑘) +

count_nonzero(𝑚𝑎𝑠𝑘_𝑐𝑜𝑟𝑛𝑒𝑎)
8: 𝐿𝑊𝑅 ← 𝐿𝑊𝐴

𝑡𝑜𝑡𝑎𝑙_𝑎𝑟𝑒𝑎 × 100
9: return LWR

2.4.4 EER. Eyeball Exposure Area Ratio (EER) is calculated by the
ratio of Based on Eyeball Exposure Area (EEA) to the whole area,
multiplied by 100. See Figure 6 for segmentation of EER and whole
area.



All about Anigma-View

Figure 6: The segmented image is used for measuring EER.
The yellow segmented area represents the EEA, while the
combined red and yellow areas represent the whole area.

REFERENCES
[AKJ+19] Malke Asaad, Ahmad Beshr Kelarji, Cham Shaban Jawhar, Joseph Banuelos,

Editt Taslakian, Waseem Wahood, Krishna S Vyas, and Basel Sharaf. Eye-
brow height changes with aging: a systematic review and meta-analysis.
Plastic and Reconstructive Surgery–Global Open, 7(9):e2433, 2019.

[Can86] John Canny. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, (6):679–698, 1986.

[DH72] Richard O Duda and Peter E Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[Its14] Itseez. The OpenCV Reference Manual, 2.4.9.0 edition, April 2014.
[JT17] Xin Jin and Xiaoyang Tan. Face alignment in-the-wild: A survey. Computer

Vision and Image Understanding, 162:1–22, 2017.
[SRE12] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image

to imagej: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.


	Abstract
	1 Base pipelines
	1.1 Alignment
	1.2 Segmentation
	1.3 Measurement&Settings

	2 Functions
	2.1 Base functions
	2.2 Distance
	2.3 Angle
	2.4 Ratio

	References

