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Abstract 

Null crop acreages raise pervasive issues when modelling acreage choices with farm data. We 

revisit these issues and emphasize that null acreage choices arise not only due to binding non-

negativity constraints but also due to crop production fixed costs. Based on this micro-economic 

background, we present a micro-econometric multi-crop model that consistently handles null 

acreage choices and accounts for crop production fixed costs. This multivariate endogenous 

regime switching model allows for specific crop acreage patterns, such as multiple kinks and 

jumps in crop acreage responses to economic incentives that are due to changes in produced 

crop sets. We illustrate the empirical tractability of our modelling framework by estimating a 

random parameter version of our model on a panel dataset of French farmers. The estimated 

model is used to simulate the impacts of area-based subsidies on protein peas, which are 

implemented by the EU for reducing its dependence on imported protein crops. Our results 

suggest that this subsidy scheme is effective, essentially by leading farmers to incorporate or to 

keep protein pea in their crop mix. 
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Modelling corners, kinks and jumps in crop acreage choices: impacts of the UE support 

to protein crops 

Market prices, agricultural policies or climate change impact crop supply through their effects 

on input uses, yield levels and acreage choices. Starting with the pioneering work of Just et al 

(1983), Chambers and Just (1989) and Chavas and Holt (1990), agricultural production 

economists have continuously proposed and developed micro-econometric multi-crop 

(MEMC) models for analyzing and quantifying these effects with farm accountancy data. 

Currently available MEMC models, however, ignore or poorly describe an important decision 

of crop producers: the choice to produce a subset of crops among the set of crops they can 

produce and sell. For instance, many applications of MEMC models with micro data ignore 

null acreages by relying either on crop aggregation eliminating null crop acreages (e.g., Oude 

Lansink and Peerlings, 1996; Serra et al, 2005; Carpentier and Letort, 2012, Koutchadé et al, 

2018) or on specific farm samples (e.g., Just et al, 1983, 1990; Bayramoglu and Chakir, 2016). 

Of course, crop aggregation induces information loss while sample selection prevents 

extrapolation of the estimation results to farmers not producing all the considered crops. 

Ignoring or poorly modelling farmers’ crop set choices also prevents analyzing current agri-

environmental policies. For instance, encouraging the production of protein crops has long been 

part of the European Union (EU) strategy to reduce its dependence on imported soybean (e.g., 

Kuhlman et al, 2014).1 As protein crops are minor crops in the EU, this not only requires 

encouraging farmers already producing these crops to increase their acreages, but also leading 

new farmers to produce protein crops. This last potential effect of EU policies, which requires 

suitably accounting for farmers’ crop choices, motivated our developing the modelling 

framework presented in this article. 

                                                 

1 Furthermore, owing to its fixing atmospheric nitrogen, pea is considered as a crop of particular interest for 

reducing pollutions due to chemical fertilizers as well as greenhouse gas emissions (e.g., Kuhlman et al, 2014). 
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A few recent MEMC models explicitly account for null crop acreages (e.g., Sckokai and Moro, 

2006, 2009; Lacroix and Thomas, 2011; Fezzi and Bateman, 2011; Platoni et al, 2012).2 These 

models are designed as censored regression (CR) systems. CR-MEMC models are typically 

built by adding mass points accounting for null crop acreages to standard MEMC models. They 

rely on reduced form discrete choice models for describing farmers’ production regime choices, 

that is to say the choice of the subset of crops that farmers decide to plant. CR-MEMC models, 

however, have a main limitation, which comes from their relying on censoring mechanisms for 

modelling null acreage choices. They describe the acreage choice of a crop that is produced by 

an acreage choice model that assumes that all crops are produced. But, according standard 

optimization arguments, the optimal acreage level of a crop that is actually produced 

structurally depends on the production regime in which the production of this crop takes place.3 

Admittedly, applications of CR-MEMC models don’t focus either on null acreage choices or 

on crop set choices. By contrast, the main objectives of this article are (i) to revisit the null 

acreage issue in multi-crop models from a theoretical viewpoint, (ii) to propose an original 

MEMC model that accounts for farmers’ crop choices in a way that is consistent from an 

economic viewpoint, together with a suitable estimation approach, and (iii) to show, by means 

of an application focused on protein peas production in France, that considering crop set choices 

significantly enriches micro-econometric analyses of farmers’ crop supply. 

Our MEMC modelling framework is based on an expected profit maximization problem 

considering land as an allocable quasi-fixed input. This problem accounts for the usual crop 

                                                 

2 The studies by Moore and Negri (1992) and Moore et al (1994) being notable, early, exceptions. 

3 For instance, the price of a crop that is not produced cannot impact the acreage levels of the crops that are 

actually planted. More generally, production regimes largely determine how the acreage levels of the crops 

that are actually produced respond to price changes. Accordingly, the acreage choices of a crop that is 

produced should be described by regime specific models. 
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acreage non-negativity constraints but also for production regime fixed costs, which consist of 

unobserved costs – such as unmeasured marketing costs or implicit labor and machinery 

management costs – that depend on the set of crops that are grown but that don’t depend on the 

acreages of these crops. Accordingly, our modelling framework assumes that farmers choose 

the production regime maximizing their expected profit, regime fixed costs included, together 

with the acreage, yield and input use of the produced crops. 

Based on this micro-economic background, we design our MEMC model as an endogenous 

regime switching (ERS) multivariate model with multiple regimes. The core of this endogenous 

regime switching micro-econometric multi-crop (ERS-MEMC) model consists of a 

probabilistic regime choice model coupled with a set of regime specific Multinomial Logit 

(MNL) acreage choice models proposed by Carpentier and Letort (2014). Specific properties 

of MNL acreage choice models actually make them well suited for designing empirically 

tractable ERS-MEMC models, especially when considering regime specific fixed costs. As 

proposed by Koutchadé et al (2018), our ERS-MEMC model also features random parameters 

for accounting for farmers’ unobserved heterogeneity.  

Estimating multivariate ERS models with multiple regimes is challenging because their 

likelihood function involves integration of expectations over the probability distribution of 

multivariate latent error terms (e.g., Pudney, 1989). Furthermore, the likelihood function of our 

ERS-MEMC model needs to be integrated over the probability distribution of its random 

parameters. Our estimation approach combines tools from the micro-econometrics and 

computational statistics literatures. 

Our empirical application is based on a cost accounting panel dataset describing the production 

choices of 808 French arable crop producers from 2007 to 2011. Our estimation results 

demonstrate that our random parameter ERS-MEMC model performs well according to 

standard fit criteria. These results also show that regime specific fixed costs significantly matter 
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in farmers’ crop choices and that the estimated acreage responses to economic incentives exhibit 

patterns that cannot be reproduced by CR-MEMC models. 

We illustrate the point of considering farmers’ crop set choices by using our estimated ERS-

MEMC model for assessing the impacts of area-based payments aimed at fostering the 

production of protein peas in France. Despite decoupling of the Common Agricultural Policy 

(CAP) payments in 2006, pulse production is eligible to area-based payments in many EU 

member states, including France. Yet, pulse acreages remain limited in the EU (e.g., Bues et al, 

2013; Magrini et al 2016). Simulation results based on our estimated ERS-MEMC model 

suggest that both the decision to produce pea and pea acreage levels are responsive to area-

based payments. For instance, removing the protein pea area-based payments would have 

reduced pea acreages by one third in our sample while moderate increases in the pea payments 

could have doubled pea acreages, mostly by leading farmers to incorporate protein pea in their 

crop mix at the expense of other rotation entry crops. 

Our main contributions in this paper are twofold. First, the ERS-MEMC model presented in 

this article accounts for null crop acreages and regime specific fixed costs while relying on a 

consistent micro-economic background and being empirically tractable. Thereby, it provides a 

coherent response to an issue that is pervasive when analyzing crop production with farm level 

data.4 Second, our empirical application shows that suitably modelling corners solutions in 

acreage choices is crucial when the considered crop set includes minor crops, besides its 

demonstrating the responsiveness of protein pea acreages to area-based payments in France. 

The rest of this article is organized as follows. The approach proposed to account for crop 

                                                 

4 To our knowledge, previous ERS models with multiple binding non-negativity constraints were considered for 

demand models, either of consumption goods (e.g., Wales and Woodland, 1983; Lee and Pitt, 1986; Arndt et al, 

1999; Kao et al, 2001; Millimet and Tchernis, 2008) or of production factors (e.g., Lee and Pitt, 1987; Arndt, 

1999: Chakir and Thomas, 2003). None of them consider regime specific fixed costs. 
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choices in micro-economic models of acreage decisions is presented in the first section. The 

structure of the corresponding ERS-MEMC model is described in the second section. The main 

features of our estimation strategy are presented in the third section. The empirical application 

is presented in the fourth section. Finally, we conclude. 

Regime switching in multi-crop acreage models: corners, kinks and jumps 

This section presents the theoretical modelling framework we propose for dealing with null 

crop acreages in micro-econometric acreage choice models. We proceed in two steps. First, we 

present the micro-economic crop acreage choice model underlying our ERS-MEMC model. 

Second, we present the functional form of the crop acreage choice models used in our ERS-

MEMC model. We focus on the ability of these models to cope with corners, kinks and jumps 

in farmers’ acreage choices. 

Crop choices and crop acreages 

We assume that farmers can allocate their fixed cropland area to K crops. Accordingly, set 

{1,..., }K=K  denotes the set of crops that any considered farmer can produce and sell. Farmers’ 

problem consists of optimally choosing a crop acreage share vector ( : )ks k= ∈s K  satisfying 

≥s 0  and 1′ =s ι , term ι  being the dimension K unitary column vector. Set {1,..., }R=R  

denotes the set of feasible production regimes. A production regime is characterized by the 

subset of crops with strictly positive acreages. Let set ( )r+K  denote the subset of crops planted 

in regime r and function ( )ρ s  defines the regime of the acreage share vector s. We assume that 

farmers are risk neutral. In year t farmer i is assumed to choose her/his crop acreages by solving 

the following expected profit maximization problem: 

(1) ( ){ }max ( ) ( )   s.t.    and  1
it it it

C D ρ′ ′− − ≥ =
s

s π s s s 0 s ι . 

Term 
,( : )it k it kπ= ∈π K  is the vector of crop returns expected by farmer i when choosing s in 

year t. Function ( )itC s  is the implicit management cost of acreage s and ( )itD r  is the fixed cost 
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of production regime r incurred by farmer i in t. Acreage management costs ( )itC s  are costs not 

included in the crop gross margins that vary in s. They include unobserved variable input costs. 

They also account for the implicit costs related to constraints on acreage choices due to limiting 

quantities of machinery or labor, or to agronomic factors. These constraints providing motives 

for diversifying crop acreages, function ( )itC s  is assumed to be convex in s. In order to ensure 

that the solution in s to problem (1) is unique, we strengthen this assumption by assuming that 

function ( )itC s  is strictly convex in s.5  

Regime fixed cost terms ( )itD r  introduce discrete elements, and thus salient discontinuities, 

in farmers’ acreage choices. These costs are fixed in the sense that, contrary to acreage 

management costs, they don’t depend on the chosen acreage in a given regime. They only 

depend on the crop set defining this regime. They account for hidden fixed costs incurred by 

the farmer for any acreage choice in the considered regime, such as fixed costs related to the 

marketing process of the crop products or those incurred when purchasing specific variable 

inputs, renting specific machines, seeking crop specific advises, etc. Regime fixed costs may 

also reflect the effects of farmer specific trade-offs. For instance, farmers may decide not to 

produce certain crops due to conflicting schedules with their off-farm activities. 

Smooth acreage management cost function ( )itC s  and discrete regime fixed cost function 

( )( )itD ρ s  are expected to impact farmers’ crop diversification in opposite directions. While 

limiting quantities of quasi-fixed factors impose constraints fostering crop diversification, 

regime fixed costs are expected to foster crop specialization. In particular, regime fixed costs 

are expected to be non-decreasing in the number of produced crops. 

Farmers’ expected profit maximization problem is solved following a standard backward 

induction approach according to which farmers choose their production regime after examining 

                                                 

5 Analogous cost functions are used in the mathematical programming (e.g., Mérel and Howitt, 2014; Heckeleï 

et al, 2012) and econometric literatures (e.g., Heckeleï and Wolff, 2003; Carpentier and Letort, 2012). 
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their expected profit in each possible production regime. First, the acreage choice problem is 

solved for each potential regime. This yields the regime specific optimal acreage shares: 

(2) { }( ; ) arg max ( )  s.t.  ,  1  and 0  if  ( )o

it it it it k
r C s k r+′ ′= − ≥ = = ∉

s
s π s π s s 0 s ι K  

and the regime specific optimal expected profit levels (regime specific fixed costs excluded): 

(3) { }( ; ) max ( )  s.t. , 1 and 0 if ( )o

it it it it k
r C s k r+′ ′Π = − ≥ = = ∉

s
π s π s s 0 s ι K   

for r ∈R . Second, the optimal production regime 
it

r  is determined by comparing the regime 

specific expected profit levels while accounting for the production regime fixed costs. 

Accordingly, the expected profit maximizing production regime 
it

r  is defined as the solution in 

r to a simple discrete maximization problem with: 

(4) ( ){ }arg max ( ; ) ( ( ; ))o o

it r it it it it itr r D rρ∈= Π −π s π
R

. 

Assuming that optimal regime 
it

r  is unique, optimal acreage choice 
it

s  is obtained by combining 

equations (4) and (2), with ( ; )o

it it it itr=s s π . Similarly, equations (4) and (3) yield the optimal 

expected profit level 
it

Π , with ( ; )o

it it it itrΠ = Π π . 

Importantly, regime specific acreage choices ( ; )o

it it rs π  are derived from optimization problems 

that differ from one regime to the other due to nullity constraints on crop acreages. These 

constraints significantly impact how the acreage choices of the produced crops respond to 

market conditions. For instance, crop acreages are expected to be more responsive to economic 

incentives in regimes containing numerous crops, substitution opportunities being more limited 

within regimes containing only a few crops. This dependence of acreage choices on their 

production regimes implies that regime switches may induce kinks in the responses of acreage 

choices to economic incentives. 

Regime fixed costs may induce discontinuities in the responses of acreage choices to 

economic incentives at points characterized by regime switches. For instance, regime fixed 

costs may include crop production fixed costs. As these costs cannot be covered by infinitesimal 

crop acreages, the acreage of a crop jumps from zero to some non-marginal acreage level as 
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soon as this crop becomes sufficiently profitable for covering its production fixed costs. More 

generally, regime fixed costs may add jumps to the kinks in the responses of acreage choices to 

economic incentives at any point characterized by regime switches, whether these regime 

switches correspond to binding non-negativity constraints or not.6 

Regime fixed costs considered in regime choice problem (4) are defined by ( )( ( ; ))o

it it it
D rρ s π  

rather than by ( )
it

D r . The production regime of ( ; )o

it it rs π  may not be r because non-negativity 

constraints involved in maximization problem (3) may bind at ( ; )o

it it rs π . Unfortunately, 

solutions to optimization problems involving non-negativity constraints are rarely obtained in 

analytical closed forms and require numerical solution approaches, as in the leading case where 

cost function ( )
it

C s  is quadratic in s. Overcoming these issues for empirical purposes requires 

specific modelling approaches and/or specific functional forms for cost function ( )
it

C s . 

For instance, choosing ( )
it

C s  to be quadratic in s would allow obtaining an empirically tractable 

ERS-MEMC model by adapting the approach proposed by Wales and Woodland (1983).7 The 

resulting ERS-MECM model would be based on the Karush-Kuhn-Tucker conditions 

describing the solutions in s to expected profit maximization (1). Similarly, currently available 

MEMC models, which often feature flexible function forms, could be transformed into 

empirically tractable ERS-MEMC model following the virtual price approach proposed by Lee 

and Pitt (1986). Yet, considering regime specific fixed costs in these models would raise 

particularly challenging specification and estimation issues. 

MNL acreage choice models, null acreages and regime specific fixed costs 

                                                 

6 Acreage choice responses to economic incentives of CR-MEMC models display at most one kink, and 

potentially a jump, at the point where farmers decide to produce a crop. 

7 Britz and Arata (2019) recently proposed an original estimation approach for quadratic multi-crop models. It 

allows accounting for null acreages but ignores the self-selection issues induced by farmers’ crop set choices. 
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The ERS-MEMC model considered in this article is derived by choosing the cost function 

( )
it

C s  to be a member of the family of entropic cost functions that underlies the MNL acreage 

choice models proposed by Carpentier and Letort (2014). As will be seen below, the main virtue 

of entropic cost functions lies in the fact that they yield regime specific crop acreage choice 

models ( ; )o

it it rs π  and profit functions ( ; )o

it it rΠ π  in smooth analytical closed forms. In what 

follows we present (a simplified version of) the acreage choice model that is at the core of the 

ERS-MEMC model considered in our application.8 This acreage choice model can be 

interpreted as an extension of the MNL acreage choice models aimed to suitably account for 

null acreages and production regime fixed costs. 

As discussed in Carpentier and Letort (2014), arable crops can often be grouped according to 

their competing for the use of quasi-fixed factors or according to their agronomic 

characteristics. Nested MNL (nMNL) acreage choice models, the specification of which relies 

on hierarchical partitions of the considered crop set, take advantage of these features of arable 

crops. The acreage choice model considered in our application is based on a 3 level nMNL 

acreage choice model. Albeit relatively simple, the specification of this model requires a 

relatively large amount of notations. We consider here a simpler a 2 level nMNL acreage choice 

model for demonstrating how a MNL acreage choice model can be extended for accounting for 

null acreages and production regime fixed costs.9 

Accordingly, let assume that crop set K  is partitioned into G  mutually exclusive groups of 

crops. Term {1,..., }G=G  defines the considered group set and group h∈G  defines the crop 

subset ( )hK . Crops belonging to a same group are assumed to share similar agronomic 

characteristics and to compete more for farmers’ limiting quantities of quasi-fixed factors than 

                                                 

8 Other advantages and limits of MNL acreage choice models are discussed in Carpentier and Letort (2014). 

9 Extending a 2 level nNML model to a 3 level one significantly increases the flexibility of the considered model 

while being straightforward from a conceptual viewpoint as shown in Online Supplementary Appendix A1. 
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they compete with crops of other groups. The corresponding acreage management cost function 

is given by: 

(5) 1 1

, ( ) ( ) ( ) ( ), |( ) |( )1 ( )
( ) ( ) ln ( ) ln

Gs s s

it k k it i h h h h i m h m hk h h m h
C s s s s s sβ α α− −

∈ = ∈ ∈
= + +   s

K G K
 

where ( )hs  denotes the acreage share of group g and |( )m hs  that of crop m in the acreage of group 

h. Terms 
s

iα  and ( ),

s

h iα  are farm specific parameters determining the flexibility of farmers’ 

acreage choices. The larger they are, the more acreage choices respond to economic incentives 

(because the less management costs matter). Condition ( ), 0
s s

h i iα α≥ >  is sufficient for cost 

function ( )
it

C s  to be strictly convex in s.10 Importantly, function ( )
it

C s  is well-defined when s 

contains null elements despite its involving elements of ln s .11 

Let function ( )g k  define the group of crop k and let function ( )kj r  indicate whether crop k 

belongs to regime r or not; with ( ) 1kj r =  if ( )k r+∈K  and ( ) 0kj r =  otherwise. Based on the 

entropic cost function (5) and these notations, solving the per regime expected profit 

maximization problems considered in equations (2) or (3) yields the following regime specific 

crop acreage share functions 

(6)   
( )

( )

1
( ( )),

( ( )), ( ( )),

1
( ),

( ),

( ) 1

, , , ,( ( ))

, ( )

, ,( )

( ) exp( ) ( ) exp( )
( ; )

( ) exp( )

s s
s s i g k i
g k i g k i

s s
s i h i
h i

s s

k k it k it it itgo

k it it

s

it ith h

j r j r
s r

j r

α α
α α

α α
α

π β π β

π β

−

−

−

∈

∈ ∈

− −
=

−



 
π

ℓ ℓ ℓℓ ℓ

ℓ ℓ ℓℓG

K

K

 

and regime specific (indirect expected) profit functions 

(7) ( )
1

( ),
( ),

( )
1

, ,( )
( ; ) ( ) ln ( ) exp( )

s s
s i h i
h io s s

it it i it ith h
r j r

α α
αα π β

−

−
∈ ∈

Π = − π
ℓ ℓ ℓℓG K

. 

Acreage choice models ( ; )o

it it rs π  and profit functions ( ; )o

it it rΠ π  display properties of special 

interest for designing empirically tractable ERS-MEMC models. First, they are defined in 

analytical closed forms. Second, they are smooth in their parameters and arguments. Third, it is 

easily seen that , ( ; ) (0,1)
o

k it its r ∈π  if ( )k r+∈K  while , ( ; ) 0
o

k it its r =π  otherwise, implying that 

                                                 

10 Constraint ( ),

s s

h i iα α=  is imposed if group h contains a single crop. 

11 The continuous extension property ensures that the domain of function ( ) lnf s s s=  is +
ℝ  with (0) 0f = . 
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the regime of ( ; )o

it it rs π  is r. 

Equation (6) underlies the regime specific acreage choice models of our ERS-MEMC model. 

The set of equations , , ( ; )
o

k it k it it its s r= π  for ( )itk r+∈K  defines the system of nMNL acreage 

choice models corresponding to the crops that famer i decided to produce in year t. Due to the 

effects of the selection functions ( )
k it

j r  featured in functions , ( ; )
o

k it its rπ , the functional form 

of , ( ; )
o

k it it its rπ  structurally depends on regime 
it

r . 

Term ( ; )o

it it rΠ π  gives the optimal expected profit level achieved by farmer i would this 

farmer choose production regime r in year t. The choice of regime 
it

r  by farmer i in year t is 

described by equation (4). Given that the production regime of ( ; )o

it it rs π  is r with MNL acreage 

choice models, optimal regime choice 
it

r  can also be defined as  

(8) arg max { ( ; ) ( )}
o

it r it it itr r D r∈= Π −π
R . 

Problem (8) shows that farmers’ regime choice problem is a basic discrete choice problem. It 

consists in choosing the profit maximizing (regime fixed costs included) production regime 

among a finite set of production regimes. As will be shown below, standard probabilistic 

discrete choice models can be derived from equation (8) by suitably specifying regime specific 

fixed costs ( )
it

D r . The regime choice model of the ERS-MEMC model considered in our 

application is a random parameter Multinomial Logit discrete choice model (e.g., Train, 2009). 

The core model of the ERS-MEMC model considered in our application is the ERS-nMNL 

acreage choice model composed of the probabilistic discrete regime choice model derived from 

equation (8) and of the regime specific nMNL acreage choice models given by 

, , ( ; )
o

k it k it it its s r= π  for ( )itk r+∈K . This ERS-nMNL acreage choice model can be estimated 

directly when expected crop returns 
it
π  are observed. In our ERS-MEMC model, terms 

it
π  are 

built from elements estimated in crop yield supply and variable input demand models that 
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complete the core ERS-nMNL acreage choice model.12 

ERS-MEMC model with regime specific fixed costs: micro-economic structure 

This section presents the structure of the ERS-MEMC model considered in the empirical 

application. This random parameter model is composed, on the one hand, of yield supply 

equations, variable input demand equations and acreage choice equations for each produced 

crop, and on the other hand, of a probabilistic production regime choice model. This ERS-

MEMC model is an extension to an ERS framework with null acreages and regime fixed costs 

of the model proposed by Koutchadé et al (2018). Farmers’ production choice parameters, 

including those driving their responses to economic incentives, are assumed to be farm specific, 

which allows accounting for farmers’ and farms’ unobserved heterogeneity. Accordingly, the 

main aim of the estimation procedure is to recover their probability distribution across the 

farmers’ population represented by the considered sample. In order to ease its overall analysis, 

we present the model in its entirety first. Then we discuss its components following its recursive 

three-part structure. 

Our ERS-MEMC model is composed of a system of yield supply and input demand models 

(9) 

2 2

, , ,0 , , , , ,

1

, , ,0 , , , , ,

( ) 1/

 

2

( )

y y y x y

k it k i k k it k i k it k it k it

x x x x x

k it k i k k it k i k it k it k it

y w p

x w p

β α ε

β α ε

−

−

′ = + − × +


′= + − + δ

δ c

c
  for  k ∈K , 

of a system of regime specific acreage choice models 

(10) 
( )

( )

1
( ( )),

1
( ),

( ) 1

, , , , , ,( ( ))

, ( )

, , ,( )

( ; ) ( ; )

( ; )

s s
i g k i

s s
i h i

s s

k it k it k it it it it it itg

k it
s

it it it ith h

v r v r
s

v r

α α

α α

π β π β

π β

−

−

−

∈

∈ ∈

− −
=

−



 

ℓ ℓ ℓℓ ℓ

ℓ ℓ ℓℓG

K

K

  for  k ∈K , 

and of a probabilistic regime choice model 

(11) 1

, ,( )
arg max { ( ; ) }o c

it r it it k i i r itk r
r r eβ σ+

−
∈ ∈

= Π − −πR K
 

where 

                                                 

12 ERS-MNL acreage choice models display unique features regarding null acreages. Null acreages can only 

result from the production regime choice in these models. They cannot be standard corner solutions at 0 

because non-negativity constraints involved in problems (1) or (2) never bind with MNL acreage choice models. 
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(12) ( ), , , ( ( )), , ,
( ; ) ( ) exp ( )s s s

k it k it k it k g k i k it k it
v r j rπ β α π β− = −   for  k ∈K  and r ∈R , 

(13) ( ) ( ) 2 1

, , , ,0 , , , ,0 , , , ,
( ) ( ) 1/ 2y y ys x x xs x

k it k it k i k k it k it k i k k it k i k it k it
p w w pπ β β α −′ ′= + − + + ×δ c δ c   for  k ∈K , 

(14) , , ,0 , ,( )s s s s s

k it k i k k it k itβ β ε′= + +cδ   for  k ∈K  

and 

(15) ( )
1

( ),( )
1

, , ,( )
( ; ) ( ) ln ( ; )

s s
i h i

o s s

it it i it it ith h
r v r

α α
α π β

−

−
∈ ∈

Π = − π
ℓ ℓ ℓℓG K

  for  r ∈R . 

Yield supply and variable input demand models, and expected crop returns 

Terms ,k itx  and ,k ity  respectively denote the variable input use and yield levels of crop k for 

farmer i in period t and terms ,k itp  and ,k itw  corresponding expected output and input prices. The 

yield supply and variable input demand models (9) are presented in detail in Carpentier and 

Letort (2014) and in Koutchadé et al (2018). We briefly present their background and their main 

components. Farmers are assumed to produce crops from a variable input aggregate under a 

quadratic technological constraint. Assuming that they maximize the expected return to variable 

input uses of each crop allows deriving the demands for the variable input and the yield supply 

levels described in equation (9). Terms ,

y

k itc  and ,

x

k itc  are observed variable vectors used to 

control for effects of observed heterogeneous factors (farm size and capital endowment) and 

climatic events. Terms ,

y

k iβ  and ,

x

k iβ  are farmer specific parameters aimed at capturing 

unobserved heterogeneity across farms and farmers. Parameter ,

x

k iα  determines the extent to 

which the yield supply and the input demand of crop k respond to the input and crop prices. It 

is required to be (strictly) positive for the production function to be (strictly) concave in ,k itx . 

Terms ,

y

k itε  and ,

x

k itε  are standard error terms aimed to capture the effects of stochastic events 

(e.g., climatic conditions, and pest and weed problems). We assume that farmer i is aware of 

the content of ,

x

k itε  when deciding ,k itx . 

Assuming that the expectations of ,

y

k itε  and ,

x

k itε  of farmer i are null at the beginning of cropping 

season t, farmer i expected return of crop k is given by ,k it
π  when she/he chooses her/his acreage 

shares. As shown by equation (13), crop returns ,k it
π  are obtained from elements that appear in 
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the crop yield supply and input demand models. Vector , ,( , )
ys xs

k it k itc c  is defined by replacing in 

vector , ,( , )
y x

k it k itc c  the climatic variables by their expectations. 

We recall here that 
,k its  is null if crop k doesn’t belong to regime 

it
r . Accordingly, yield level 

,k ity  and variable input use 
,k itx  are not observed if crop k doesn’t belong to regime 

it
r . Yet, 

defining these counterfactual variables is necessary. Estimates of the expected returns of the 

crops not produced in regime 
it

r  are needed as inputs of the regime specific profit levels 

( ; )o

it it rΠ π  that appear in regime choice model (11). 

Acreage share choice models 

Acreage share equation (10) is obtained from the regime specific acreage share model given in 

equation (6) by observing that , , ( ; )
o

k it k it it its s r= π . Once again, the functional form of these 

acreage choice models are presented in details in Carpentier and Letort (2014) and in Koutchadé 

et al (2018). We just focus on the elements that are useful for interpreting our empirical results. 

Terms 
s

iα  and ( ),

s

g iα  are farm specific parameters determining the flexibility of farmers’ acreage 

choices. Parameter s

iα  drives the land allocation to crop group acreages while parameters ( ),

s

g iα  

drive the allocation of the crop group acreages to crop acreages. The linear terms of the nMNL 

cost function given in equation (5), ,

s

k itβ , are defined in equation (14).13 Terms ,

s

k itc  are 

explanatory variable vectors used to control for the effects of observed heterogeneous factors 

(farm size and capital endowment) and climatic events. Terms ,

s

k iβ  are farm specific parameters 

accounting for unobserved heterogeneity effects. Error terms ,

s

k itε  capture the effects on 

management costs of factors such as soil state at planting. Farmers are assumed to know terms 

,

s

k itε  when choosing their acreages.  

Production regime choice model 

                                                 

13 These terms being identified only up to an additive constant term, normalization constraint , 0s

itβ =
ℓ

 needs 

to be imposed for some crop ℓ  (winter wheat in our application). 



16 

 

The discrete choice problem described in equation (11) is a probabilistic regime choice model. 

It relies on regime fixed cost models defined by 
1

, ,( )it r i i r itD r d eσ −= −  with , ,( )

c

r i k ik r
d β+∈

= K
. 

Let us ignore for the moment the second equation. Terms 
,r id  are farm specific parameters 

aimed to capture the effects of unobserved factors affecting the regime fixed costs. Error terms 

,r ite  aim to capture the effects of stochastic factors and define the regime choice model as a 

probabilistic discrete choice model. Scale parameter 
i

σ  determines the extent to which regime 

expected profit levels ,( ; )o

it it r ir dΠ −π  explain the production regime choice as regards to the 

effects of the ,r ite  idiosyncratic terms. The higher parameter 
i

σ , the more the expected profit 

levels impact the observed regime choices. Transaction costs and labor requirements related to 

a given production regime being increasing in the number of crops produced in this regime, 

regime fixed costs 
,r id  are expected to increase in the number of produced crops. Term 

,

c

k iβ  

being defined as crop k fixed cost, equation , ,( )

c

r i k ik r
d β+∈

= K
 enforces this idea by defining 

the fixed cost of regime r as the sum of the fixed costs of the crops composing this regime. The 

fixed costs of the crops that are always produced (wheat and barley in our application) can be 

normalized to zero since they cannot be identified. 

The “crop fixed cost” version of the production regime choice model is of special interest 

for empirical purposes. The number of regimes being generally larger that the number of crops, 

the “crop fixed cost” version of the model is more parsimonious. Also, estimating regime fixed 

costs suppose that the considered regimes are sufficiently frequently adopted. Similarly, 

estimating crop fixed costs suppose that the considered crops are sufficiently frequently, yet not 

always, produced. The identification conditions of the regime fixed costs are more demanding 

than those of the crop fixed costs. We use the “crop fixed cost” version of the production regime 

model in our application for these reasons. 

Overall structure of the ERS-MEMC model 

The set of dependent variables of our ERS-MEMC model contains the yield levels, input use 
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levels and acreage shares of each crop that are produced by farmer i in year t. These are collected 

in vector ( , , )it it it it

+ + + +=w y x s . Production regime 
it
r  completes the dependent variable vector of 

the model. The set of explanatory variables contains crop prices, variable input prices and the 

control variable vectors used in the crop yield supply, input demand and acreage share 

equations. These exogenous variables are collected in vector 
it

z , which defines the information 

set of the model. 

The sole fixed parameters appearing in the ERS-MEMC model equations are the coefficients 

of the control variables. These parameters are collected in vector 
0
δ . The ERS-MEMC model 

contains two main subsets of random components: a vector of random parameters and a vector 

of error terms. Random parameter vector 
i
γ  collects the farm specific parameters of the model, 

with ( , , )
i i i i

σ=γ β α . Vector 
i
β  collects the farm specific potential yield parameters ( ,

y

k iβ ), the 

input requirement parameters ( ,

x

k iβ ), the cost function linear parameters ( ,

s

k iβ ) and the crop 

fixed costs parameters ( ,

c

k iβ ). Vector 
i
α  collects the input use flexibility parameters ( ,

x

k iα ) and 

the acreage choice flexibility parameters (
s

iα  and ( ),

s

h iα ). Finally, 
i
γ  contains the scale 

parameter, 
i

σ , of the regime choice model. 

In error term vector ( , )yx s

it it it=ε ε ε , sub-vector 
yx

itε  collects the error terms of the crop yield 

supply and input demand equations while sub-vector 
s

itε  collects those of the acreage share 

equations. Finally, vector 
it

e  collects the error terms of the regime choice model. 

ERS-MEMC model with regime specific fixed costs: estimation strategy 

This section presents the main features of the estimation strategy adopted for estimating the 

ERS-MEMC model described above. As this model involves multiple endogenous regimes, 

considers numerous interrelated production choices and features random parameters, we 

impose parametric distributional assumptions on its random components (i.e. error terms and 

random parameters) for ensuring its empirical tractability. We also impose simplifying 

assumptions regarding the dynamics of farmers’ choices and the multi-crop production 
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technology. These assumptions are presented and discussed first. Then, we present how the 

main parameters of interest of our ERS-MEMC model are recovered from the data. Finally, we 

briefly present the main estimation issues that we face when estimating this model and the 

approaches we have chosen for overcoming these issues. A detailed description of our 

estimation procedure is provided in Online Supplementary Appendix A. 

Probabilistic assumptions 

We assume that terms ( , )
is is
ε e , 

i
γ  and 

it
z  are independently distributed for any pair ( , )t s . This 

implies that the explanatory variables vector, 
it

z , is assumed to be (i) strictly exogenous with 

respect to the error term vectors and (ii) independent of the random parameters 
i
γ . We further 

assume that error term ( , )
it it
ε e  vectors are independently distributed across time. Combined 

with the fact that vector 
it

z  doesn’t contain any lagged endogenous variable, this serial 

independence assumption implies that our MEMC model can be interpreted as a reduced form 

model regarding the dynamic features of the modelled choices. Indeed, we hypothesize that 

random parameters 
i
γ  capture the effects on farmers’ production choices and performances of 

the stable crop rotation schemes these farmers rely on. Finally, we assume that the error term 

vectors 
yx

itε , 
s

itε  and 
it

e  are mutually independent.14 

Distributional assumptions 

Random parameter vectors 
i
γ  are assumed independent across farms. For sake of 

simplification, we assume here that these random parameter vectors are normally distributed, 

with 
0 0

( , )
i
γ μ Ω∼ N . Various transformations of elements of 

i
γ  actually allow for other 

distribution choices for these elements while keeping the multivariate structure of the 

probability distribution of 
i
γ  (e.g., Stanfield et al, 1996). For example, considering log-

transformations of 
i
α  and 

i
σ  in 

i
γ  implies that these random parameters, which are required 

                                                 

14 Relaxing this independence assumption for 
yx

itε  and 
s

itε  significantly increases the estimation burden. 
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to be positive, are jointly log-normally distributed. We used this log-transformation in the ESR-

MEMC model used for our empirical application. Robustness checks demonstrated that other 

probability distribution choices have a limited impact on the main results.15 We make the usual 

assumptions stating that error term vectors 
it
ε  are independent across farms (and years) and 

normally distributed, with 
0

( , )
it
ε 0 Ψ∼N . 

Finally, we assume that the regime choice model error terms ,r ite  are independent across 

regimes and distributed according to a type I extreme value distribution for r ∈R . This 

assumption implies that the considered regime choice model is a standard random parameter 

Multinomial Logit discrete choice model. The corresponding probability function of the 

observed regime choices is given by: 

(16) 
( )

( )
,( )

0

,( )

exp ( ) )
( | , , ; )

exp ( ) )

it

o c

i it it k ik rs

it it it i
o c

i it k ir k r

r
P r

r

σ β

σ β

+

+

∈

∈ ∈

 Π −  =
 Π −
 



 
ε z γ δ

K

R K

. 

This probability is defined as a function of 0( , , ; )s

it it iε z γ δ  because regime specific expected 

profit levels ( )o

it rΠ  functionally depend on all elements of vector 0( , , ; )s

it it iε z γ δ , scale 

parameter 
i

σ  and crop fixed costs ,

c

k iβ  excepted. 

Identification 

Under the considered assumptions the probability distribution of farmers’ responses to 

economic incentives, 
i
α , are identified through two main channels. Identification of the 

probability distribution of variable input use flexibility parameters ,

x

k iα  mostly relies on the 

variations of the corresponding input to crop price ratios. Identification of the probability 

distribution of acreage choice flexibility parameters 
s

iα  and ( ),

s

g iα  mainly relies on the 

variations of the expected crop returns itπ . Importantly, the expected crop returns are defined 

                                                 

15 In the considered alternative specifications we assumed the 
i
β  parameters to be log-normally distributed 

and/or the 
i
α  parameters to follow a bounded Johnson distribution (e.g., Stanfield et al, 1996). 



20 

 

as functions of random parameters (i.e., ,

y

k iβ , ,

x

k iβ  and ,

x

k iα ) that may be correlated with the 

acreage choice flexibility parameters (i.e., 
s

iα  and ( ),

s

g iα ). The unrestricted variance-covariance 

matrix of the joint probability distribution of the random parameters 
i
γ  takes into account these 

potential correlations.  

Scale parameter 
i

σ , which is the random coefficient associated to the regime specific 

expected profit levels ( )o

it rΠ  in the regime choice model, is mainly identified by the variations 

in these variables. The joint probability distribution of the identifiable crop fixed costs ,

c

k iβ

vector is mainly identified by the variations in the differences in the regime specific expected 

profit levels ( )o

it rΠ  across the production regimes. Potential correlations between, on the one 

hand, the random parameters that are part of the expected profit levels and, on the other hand, 

the crop fixed costs and the scale parameter are taken into account in the distribution of 
i
γ . 

Estimation issues and procedure 

The considered ERS-MEMC model being fully parametric, we use a Maximum Likelihood 

(ML) estimator for efficiently estimating its parameters. These parameters are collected in 

vector 
0 0 0 0 0

( , , , )=θ δ Ψ μ Ω . Contribution of farmer i to the likelihood function of the model 

corresponds to the probability density function of her/his sequence of production choices 

conditional on the set of exogenous variables characterizing this choice sequence. Let function 

( | ; )f u v η  generically denote the probability distribution function of 
it

u  conditional on 
it

=v v  

at 
it

=u u  parameterized by η, and let function ( ; )ϕ u Ω  denote the density function of ( , )0 ΩN  

at u. Given the probabilistic assumptions defining the considered random parameter ERS-

MEMC model, contribution of farmer i to the likelihood function at θ is given by: 

(17) ( )1
( ) ( , | , ; , ) ( ; )

T

i it it itt
f r dϕ+

=
= −∏θ w z γ δ Ψ γ μ Ω γℓ . 

Likelihood function ( )
i
θℓ  can be obtained neither analytically nor numerically due to its 

integration over the probability distribution of random parameter 
i
γ . Micro-econometricians 

generally solve this problem by integrating ( )
i
θℓ  via direct simulation methods for computing 
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simulated ML (SML) estimators of 
0
θ  (e.g., Keane, 2009). Yet, implementing this approach is 

particularly challenging here due to the dimension of 
0
θ  and the complexity of the probability 

distribution function ( , | , ; , )it it itf r+w z γ δ Ψ . Instead, we compute the ML estimator of 
0
θ  by 

devising a Stochastic Approximate Expectation-Maximization (SAEM) algorithm. SAEM 

algorithms are extensions of the Expectation-Maximization algorithms proposed by Dempster, 

Laird and Rubin (1977). They were proposed by Delyon et al (1999) for computing ML 

estimators of models featuring continuous random parameters. They appear to use simulations 

more efficiently than competing alternatives (e.g., McLachlan and Krishnan, 2007; Lavielle, 

2014), which is a particularly relevant property when considering large samples, large 

multivariate models and/or large random parameter vectors.  

Decomposing probability distribution function ( , | , ; , )it it itf r+w z γ δ Ψ  demonstrates that the 

issues related to its functional form are twofold: 

(18) ( , | , ; , ) ( | , , ; , ) ( | , ; , )it it it it it it it itf r f r f+ + +=w z γ δ Ψ s z γ δ Ψ w z γ δ Ψ . 

Function ( | , ; , )it itf +w z γ δ Ψ  is the likelihood of crop level choice vector 
it

+w  conditional on 

( , )
it i

=z γ γ . Its functional form is that of a Gaussian Seemingly Unrelated Regression (SUR) 

system with missing observations, the missing observations being the yield levels, input uses 

and acreages of the crops that are not produced. Based on Ruud’s (1991) insights we devised 

an EM type approach for updating the estimates of 
0 0( , )δ Ψ  within our SAEM algorithm. 

Function ( | , , ; , )it it itf r +s z γ δ Ψ  is the probability function of regime 
it
r  conditional on 

( , , )it it i

+ =s z γ γ . Given the structure of our MEMC model, this probability function can be 

defined as a function of the error terms of the acreage share equations. Let vector 
,s

it

+
ε  collect 

the error terms of the acreage share models of the crops produced in regime 
it
r  and vector 

,0s

itε  

collect those of the crops that are not produced in this regime. The residual term of the acreage 

share model, denoted here by 
,ˆ ( , )s

it

+
ε γ δ , provides an estimate of vector 

,s

it

+
ε . Vector 

,0s

itε  must 

be considered as a missing variable because it cannot be recovered by combining the model and 
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the data. The structure of our MEMC model and equation (11) imply that: 

(19) ,0 , ,0ˆ( | , , ; , ) ( | , , ; ) ( | ( , ); , )s s s s

it it it it it it it it itf r P r f d+ += s z γ δ Ψ γ z ε δ ε ε γ δ δ Ψ ε  

where 
,0 ,ˆ( | ( , ); , )s s

it itf +
ε ε γ δ δ Ψ  denotes the density of 

,0s

itε  conditional on 
, ,ˆ ( , )s s

it it

+ +=ε ε γ δ  and 

probability function 
0( | , , ; )s

it it it iP r ε z γ δ  is given in equation (16). Following Harding and 

Hausman (2007), we use Laplace approximates of regime choice probability functions 

( | , , ; , )it it itf r +s z γ δ Ψ  in order to reduce the computing cost of our ML estimator. 

Empirical application: impacts of area-based subsidies on protein peas in France  

This section presents an empirical application focused on protein pea production in France. The 

objectives of this application are twofold. First, it aims at illustrating the empirical tractability 

of our modelling approach as well as to demonstrate the role of crop set choices in analyzes of 

farmers’ crop production choices. Second, production of protein crops has benefited from public 

support for a long time in the EU in order to reduce the European dependence on imported 

soybean meal (e.g., Kuhlman et al 2014; Magrini et al, 2016). For instance, area-based 

payments were implemented for promoting protein pea production in France. To our 

knowledge, the efficiency of this support scheme has not been assessed until now. We show 

how the estimated version of our ERS-MEMC model can be used for assessing the effects of 

the support scheme to protein pea implemented in France. 

We present our sample and the estimated ERS-MEMC model first. Then, we present results 

illustrating how this model works. Finally, we use the simulation model calibrated at the farm 

level obtained from our estimated ERS-MEMC model for analyzing the public support to 

protein pea production in France. 

Data and model specification details 

The ERS-MEMC model presented above is estimated on an unbalanced panel data set 

containing 3,453 observations of 808 French grain crop producers in the North and North-East 
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of France, over the years 2007 to 2011. This sample has been extracted from data provided by 

an accounting agency located in the French territorial division La Marne. It contains detailed 

information about crop production for each farm (acreages, yields, input uses and crop prices 

at the farm gate). We consider seven crops: sugar beet, alfalfa, protein pea, rapeseed, winter 

wheat, corn and spring barley, which represent more than 80% of the total acreage in the 

considered area. 

The variable input aggregate accounts for the use of fertilizers, pesticides and seeds. Our 

data report the expenditures of these inputs at the farm level. The corresponding aggregate price 

index is computed as a standard Tornqvist index from the fertilizer, pesticide and seed price 

indices issued by the French Department of Agriculture at the country level. When a farmer 

doesn’t produce a crop, the corresponding output price and input price index are unobserved. 

These missing prices are approximated by the yearly average of the corresponding observed 

prices. All prices are deflated by the hired production services price index (base 1 in 2007) 

obtained from the French department of Agriculture. This aggregated price index mainly 

depends on the price indices of machinery, fuel and hired labor. These are the main inputs 

implicitly involved in the acreage management cost function. Climatic variables are provided 

at the municipality level by Météo France, the French national meteorological service. Farmers’ 

crop price expectations are defined by the corresponding lagged prices, according to a naïve 

anticipation scheme.16 

Figure 1 depicts the three levels nesting structure adopted for the considered seven crop set. In 

a first level we distinguish a cereal group composed of wheat, corn and barley, and a group of 

rotation entry crops composed of sugar beet, alfalfa, peas and rapeseed. This structure is 

intended to reflect the basic rotation scheme of grain and industrial crop producers in France.  

                                                 

16 Robustness checks demonstrate that anticipation scheme choices mostly impact estimates of the probability 

distribution of input use flexibility parameters ,

x

k iα , with very limited effects on our main results. 
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Figure 1. Nesting structure of the acreage choice model 

In a second level, the cereal group is split into two subgroups: winter cereals on the one hand 

and spring cereals on the other hand, in order to account for the differences in planting seasons. 

The ‘rotation entry crop’ group is split into an ‘oilseeds and protein crops’ subgroup and a 

subgroup including only sugar beet (the only root crop considered here). Wheat, which is the 

only winter cereal, is used as the benchmark crop. The 15 most frequently observed regimes, 

out of 78 regimes present in the original dataset, were considered for selecting our estimation 

sample, which corresponds to 87% of observations included in the original dataset. 

 

All farmers grow wheat and barley and most of them (95.9%) grow at least two additional crops. 

The most frequent regimes (regimes 2, 3 and 5) include five or six crops. Table 1 provides 

descriptive statistics concerning the production regimes observed in the data. Most farmers 

adopt different production regimes over the 6 years of our sample: only 8 out of 808 farmers 

have not changed their production regime. The average gross margins associated to each regime 

are reported in the last column of table 1. Interestingly, the most frequent regimes are not the 

ones that yield the highest average gross margin per hectare. For instance, regime 13 is 

characterized by the highest observed gross margin on average, but has been adopted in only 

2.4% of the observations. This comes to illustrate the fact that farmers’ production choices are 
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driven by factors other than gross returns, such as acreage management and regime fixed costs. 

Our data configuration illustrates an important advantage of specifying regime fixed cost as 

the sum of the fixed costs of the crops produced in the considered regime. According to table 

1, the less frequently produced crop (i.e., protein peas) is produced in at least 28% of our 

observations while 7 production regimes out of 15 are adopted in less than 3% of our 

observations, regime 15 being adopted in less than 0.4% of our observations. The probability 

distribution of regime specific fixed costs could not be estimated accurately with our dataset on 

a pure per regime basis whereas that of crop fixed costs can be. 

Our ERS-MEMC model describes 20, actual or counterfactual, production choices. It features 

80 exogenous variables, 37 farm specific random parameters and 20 error terms.17 Its 786 

parameters are estimated based on the 52,611 production choices reported in our dataset. Our 

estimation results are comprehensively presented in Online Supplementary Appendix B. We 

just discuss their main features in what follows. 

 

  

                                                 

17 Excluding those of the regime choice model, their probability distribution being known by assumption. 
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Table 1. Descriptive Statistics 

Regime 

number 

Regime  

crop number 

Average crops acreage shares per regime 
Regime 

frequency 

Average gross 

margin (€/ha)b 

Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 
Rapeseed 

  

1 7 0.32 0.07 0.21 0.12 0.09 0.06 0.13 04.3% 998 

2 

6 

0.33  0.20 0.15 0.11 0.06 0.15 13.8% 1071 

3 0.32 0.07 0.23 0.14 0.10  0.14 09.0% 980 

4 0.40 0.09 0.19 0.11  0.07 0.14 02.4% 1009 

5 

5 

0.32  0.25 0.17 0.11  0.15 37.7% 1058 

6 0.40 0.13 0.20 0.11   0.17 05.4% 1023 

7 0.40 0.17 0.18   0.07 0.17 02.6% 940 

8 0.40  0.20 0.14  0.07 0.19 02.6% 1077 

9 0.30  0.23 0.22 0.15 0.10  00.8% 1069 

10 

4 

0.50 0.14 0.14    0.22 06.3% 881 

11 0.38  0.28 0.15   0.19 06.6% 1051 

12 0.42  0.26   0.09 0.24 01.6% 873 

13 0.30  0.28 0.26 0.16   02.4% 1150 

14 
3 

0.44  0.26    0.30 04.1% 841 

15 0.50  0.28 0.22    00.4% 1115 

Production frequency 100% 30.0% 100% 85.4% 67.9% 28.1% 96.4%  
 

Average acreage sharea 
0.35 

(0.09) 

0.03 

(0.07) 

0.23 

(0.09) 

0.13 

(0.08) 

0.08 

(0.06) 

0.02 

(0.03) 

0.16 

(0.07) 
 

 

Average acreage share if 

produceda 

0.35 

(0.09) 

0.11 

(0.09) 

0.23 

(0.09) 

0.15 

(0.07) 

0.11 

(0.04) 

0.06 

(0.03) 

0.17 

(0.07) 
 

 

Average gross margin 

(€/ha)a,b 

944 

(327) 

957 

(452) 

985 

(321) 

1747d 

(393) 

553 

(286) 

823 

(275) 

891 

(271) 
 

 

Average yield (t/ha)a 
8.55 

(1.02) 

9.31 

(1.78) 

8.46 

(0.96) 

93.77 

(13.80) 

12.59 

(2.08) 

4.70 

(1.26) 

3.82 

(0.67) 
 

 

Average price (€/t)a 
155 

(31) 

133 

(34) 

147 

(35) 

25c 

(3) 

72 

(15) 

196 

(25) 

321 

(64) 
 

 

Average production costsa 
438 

(97) 

308 

(76) 

316 

(80) 

545 

(130) 

350 

(129) 

241 

(74) 

407 

(88) 
 

 

A Empirical standard deviation in parentheses, B Area-based coupled payments are included in crop gross margins (see Table 2). 
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Estimation results 

The parameter estimates of the yield, input demand, acreage shares and regime choice equations 

are reported in tables 2 to 4. As shown in table 2, the means of the random parameters 

representing potential yields, ,

y

k iβ , are precisely estimated (table 1). More importantly, the 

variances of these parameters are also statistically different from zero for all crops. These 

parameters thus significantly vary across farms, despite the fact that we control for observed 

factors characterizing farm heterogeneity (land and capital endowments and climatic 

conditions), which illustrates the importance of unobserved farm heterogeneity in our sample. 

The parameter estimates of the input demand equations, also reported in table 2, confirm this 

result: the probability distribution of their farm specific parameters is precisely estimated and 

displays significant heterogeneity. This is true for the random intercepts ,

x

k iβ  (the input use 

requirement) but also for the random slope parameters, ,

x

k iα , which represents the effects of 

changes in netput prices on crop input uses and target yield levels. 

Turning to the acreage share equations in table 3, again, the expectations and variances of 

the random parameters are precisely estimated. They show significant heterogeneity in acreage 

choice patterns across farms. Also, conditions 
|( ), ( ), 0s s s

k h i h i iα α α≥ ≥ >  hold on average, 

indicating that the estimated acreage model is well-behaved. Parameters 
|( ),

s

k h iα  define the 

flexibility of the crop acreage choices within the crop subgroups considered in the 3 level nMNL 

acreage choice model that is part of the estimated ERS-MEMC model. 

Finally, as shown in table 4, the probability distribution of crop fixed costs ,

c

k iβ  and scale 

parameter iσ  are relatively precisely estimated in the regime choice model. The estimated 

variability across crops and farms of the crop fixed costs confirms their being significant drivers 

of farmers’ regime choices. It is worth noting that the estimated mean fixed cost of alfalfa is 

significantly lower than those associated to other crops. Two main reasons might explain this 

result. First, alfalfa is planted for at least two years and requires farmers’ intervention mostly at 
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planting and harvesting. Second, in the Marne region, the alfalfa downstream (dehydration) 

industry generally takes on harvest operations, which comes to decrease farmers’ workload 

significantly. 

Table 2. Selected Parameter Estimates of Yield Supply and Input Demand Modelsa 

 Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape-

seed 

Yield supply model        

Error term ,

y

k itε   
 
        

Std dev 0.85* 

(0.01) 

1.76* 

(0.04) 

0.79* 

(0.01) 

12.15* 

(0.15) 

2.08* 

(0.02) 

1.17* 

(0.03) 

0.57* 

(0.01) 

Potential yield 
,

y

k iβ
 

      

Mean 8.68* 

(0.01) 

8.89* 

(0.03) 

8.48* 

(0.01) 

93.61* 

(0.25) 

13.08* 

(0.02) 

4.50* 

(0.02) 

3.91* 

(0.01) 

Std dev 0.33* 

(0.05) 

0.60* 

(0.10) 

0.34* 

(0.05) 

6.32* 

(0.78) 

0.39* 

(0.08) 

0.40* 

(0.06) 

0.17* 

(0.02) 

Input demand model       

Error term ,

x

k itε          

Standard deviation 
0.62* 

(0.01) 

0.57* 

(0.01) 

0.54* 

(0.01) 

0.93* 

(0.01) 

0.97* 

(0.02) 

0.63* 

(0.02) 

0.65* 

(0.01) 

Input requirement 
,

x

k iβ
 

      

Mean 
4.54* 

(0.02) 

3.30* 

(0.02) 

3.03* 

(0.01) 

6.11* 

(0.03) 

3.83* 

(0.04) 

2.74* 

(0.02) 

4.73* 

(0.02) 

Standard deviation 
0.35* 

(0.06) 

0.36* 

(0.05) 

0.26* 

(0.03) 

0.63* 

(0.08) 

0.85* 

(0.12) 

0.41* 

(0.06) 

0.39* 

(0.05) 

Input use flexibility ,

x

k iα
   

      

Mean 0.65* 

(0.01) 

0.49* 

(0.03) 

0.19* 

(0.01) 

0.24* 

(0.00) 

0.51* 

(0.084) 

0.85* 

(0.02) 

1.67* 

(0.02) 

Std dev 0.15* 

(0.03) 

0.34* 

(0.08) 

0.07* 

(0.01) 

0.06* 

(0.01) 

0.69* 

(0.28) 

0.29* 

(0.06) 

0.38* 

(0.06) 

A Estimated standard errors of the ML estimator are in parentheses.  Note: Asterisk (*) denotes a statistically 

significant parameter at the 5% level. 
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Table 3. Selected Parameter Estimates of the Acreage Share Modelsa 

Crop level random terms 
Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape- 

seed 

Error term ,

s

k it
ε           

Standard deviation 0 
6.41* 

(0.16) 

6.14* 

(0.09) 

4.86* 

(0.07) 

5.22* 

(0.08) 

6.37* 

(0.17) 

5.53* 

(0.06) 

Acreage share shifters 
,

s

k iβ
 

 

Mean 0 
8.66* 

(0.11) 

3.58* 

(0.07) 

18.14* 

(0.12) 

4.83* 

(0.09) 

11.79* 

(0.07) 

5.73* 

(0.10) 

Standard deviation 0 
2.28* 

(0.31) 

1.57* 

(0.27) 

2.91* 

(0.38) 

2.03* 

(0.27) 

1.56* 

(0.26) 

2.38* 

(0.35) 

Acreage choice flexibility 

parameters 
Level 1 s

iα  Level 2 (groups) ( ),

s

g i
α  Level 3 (subgroups) |( ),

s

n g i
α  

  Cereals Rotation 

entry crops 

Spring 

cereals 

Oil and 

protein crops  
 

Cereals vs 

rotation heads 

Spring cereals 

vs winter 

cereals  

Sugar beet vs 

oil and 

protein crops 

Corn vs 

spring barley 

Rapeseed vs 

protein pea vs 

alfalfa 

Mean 
0.058* 

(0.001) 

0.088* 

(0.002) 

0.120* 

(0.004) 

0.611* 

(0.068) 

0.180* 

(0.003) 

Standard deviation 
0.018* 

(0.003) 

0.032* 

(0.006) 

0.057* 

(0.010) 

0.569* 

(0.190) 

0.066* 

(0.010) 

A Estimated standard errors of the ML estimator are in parentheses. Note: Asterisk (*) denotes a statistically 

significant parameter at the 5% level. 

 

Table 4. Parameter Estimates of Regime Choice Models 

 Crop fixed costs ,

c

k i
β  

Scale 

parameter 
i

σ  

 
Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

seed 

 

Meana 0 
2.66* 

(0.16) 
0 

0.85* 

(0.22) 

-6.67* 

(0.35) 

1.33* 

(0.03) 

-2.73* 

(0.11) 

1.01* 

(0.04) 

Std deva 0 
4.00* 

(0.62) 
0 

5.18* 

(0.74) 

8.80* 

(1.46) 

0.71* 

(0.11) 

2.52* 

(0.40) 

0.47* 

(0.10) 

A Estimated standard deviation of the estimator in parentheses. Note: Asterisk (*) denotes a statistically non null 

parameter at the 5% level. 

 

Once we have estimated the parameters characterizing the distribution of the random 

parameters iγ , we can “statistically calibrate” those parameters for each farmer in our sample 

and thus obtain a set of farm specific “calibrated” models to be used for simulation purposes 

(Koutchadé et al, 2018). In this study, the specific parameter iγ  of farm i is calibrated as the 

mode of its (simulated) probability distribution conditional on what is known about farm i in 
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the data, that is to say following a ML criteria conditional on ( , , )it it itr+w z  for 1,...,t T= .  

The estimated farmer specific models allows computing fitting criteria, Sim-R², which are 

reported in table 5. Sim-R² criteria measure the quality of the prediction of the observed choices 

of farmers by the farm specific “calibrated” models. For a given choice variable and a given 

model, the Sim-R2 criterion is defined as the ratio of the empirical variance of the prediction of 

this variable to the empirical variance of the observed variable. The Sim-R² criteria tend to show 

that the proposed model offers a satisfactory fit to our data. Using the estimated farmer specific 

models to predict the regime choices observed in our data, we find our model to exhibit a 

relatively good predictive power with 73% of regime choices correctly predicted.  

Table 5. Fitting Criteria (Sim-R²) 

 
Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

seed 

Yield supply models 0.37 0.27 0.39 0.34 0.13 0.35 0.33 

Input demand models 0.51 0.40 0.47 0.50 0.35 0.46 0.51 

Acreage share models  0.94 0.81 0.86 0.81 0.90 0.77 

 

Price elasticities of crop acreages 

Table 6 reports the estimated means of own price crop acreage elasticities per regime. These 

elasticities are larger than those commonly found in the literature, probably due to the 

disaggregation level of our data. More importantly, observing how crop regime specific acreage 

elasticities within production regimes vary across regimes allows us to illustrate the main 

features distinguishing ERS-MEMC models from their CR-MEMC counterparts. These 

estimates display significant differences across production regimes. In particular, crop acreage 

own price elasticities generally grow with the number of crops produced in the considered 

production regime. The higher the number of crops, the more farmers can make use of crop 

acreage substitution opportunities. We can also notice that, the more the considered regime 
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contains rotation starting crops, the more rapeseed acreage choices are responsive to rapeseed 

price. This elasticity range, on average, from 0.43, when rapeseed is the only rotation starting 

crop in the regime (as in regimes 10 and 14), to 1.23, in regimes with 4 rotation entry crops (as 

in regimes 1 and 2). Similarly, barley acreages are much more responsive to changes in barley 

price in regimes including corn (regimes 1, 3 and 4 for instance) than in regimes without corn 

(regimes 2, 5 and 8 for instance). In fact, corn and barley are the only spring cereals in the 

considered crop set. 

Table 6. Per Regime Average Own Price Crop Acreage Elasticities 

Regime   Per regime average own price crop acreage elasticities 

Number Frequency 
Crop 

number 

 Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape-

seed 

1 04.3% 7  0.56 5.10 1.22 1.93 0.93 1.16 1.23 

2 13.8%   0.54  0.66 1.92 0.93 1.16 1.23 

3 09.0% 6  0.56 5.10 1.22 1.89 0.88  1.22 

4 02.4%   0.55 5.10 1.22 1.84  1.08 0.97 

5 37.7%   0.54  0.65 1.89 0.88  1.19 

6 05.4%   0.55 5.10 1.21 1.78   0.70 

7 02.6% 5  0.53 5.10 1.21   1.03 0.80 

8 02.6%   0.54  0.65 1.84  1.08 0.97 

9 00.8%   0.53  0.64 1.78 0.71 1.02  

10 06.3%   0.52 5.10 1.20    0.43 

11 06.6% 4  0.53  0.64 1.77   0.70 

12 01.6%   0.51  0.63   1.03 0.79 

13 02.4%   0.52  0.64 1.69 0.49   

14 04.1% 3  0.50  0.63    0.43 

15 00.4%   0.49  0.62 0.89    

 

Adapting the decomposition proposed by McDonald and Moffit (1980) for standard Tobit 

models to our ERS-MEMC model allows computing elasticities accounting for the impact of 

crop prices both on acreages within any given regime and on switches in production regimes.18 

The average acreage own price elasticities in our farm sample and their components are reported 

in table 7. A significant part of the price effects on acreages can be due to the inclusion or not 

of crops in the production regimes chosen by farmers. For protein peas notably, which represent 

                                                 

18 The elasticity formulas are provided in Online Supplementary Appendix A4. 
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a small part of acreages in the considered area, changes in production regimes account for about 

one fifth of the estimated price elasticities. However, changes in the production regimes can 

also have significant effects for frequently produced crops. For instance, they account for 11% 

of the sugar beet acreage own price elasticities. 

Table 7. Average Own Price Elasticities of Crop Acreages 

 Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape- 

seed 

Average crop acreage own 

price elasticities
a
 

0.55 

(0.22) 

5.32 

(3.90) 

0.77 

(0.44) 

2.08 

(1.33) 

1.08 

(0.65) 

1.38 

(0.56) 

1.02 

(0.45) 

Due to changes in acreages 

within production regimes
b
 

0.55 

(100%) 

5.10 

(96%) 

0.76 

(99%) 

1.85 

(89%) 

0.87 

(81%) 

1.11 

(80%) 

0.96 

(94%) 

Due to changes in 

production regimes
b
 

0.00 

(0%) 

0.22 

(4%) 

0.02 

(1%) 

0.23 

(11%) 

0.21 

(19%) 

0.27 

(20%) 

0.06 

(6%) 

A Sample standard deviations in parentheses. B Shares in global elasticities in parenthesis.  

 

Estimated effects of the support of pea production on observed pea acreages in France 

Our sample data covers a period where two distinct crop payments schemes were implemented 

in France (see table 8). Between 2007 and 2009, part of the payments were still coupled to 

production for cereals and oilseeds crops. These payments amounted to around 100€/ha for 

wheat, barley, corn and rapeseed. At that time, protein pea benefited from the same 100€/ha 

payment plus a 50€/ha premium. From 2010, the decoupling of CAP payments was completely 

achieved in France, implying the removal of the area-based payment for cereals and oilseeds 

crop. The protein pea premium was however maintained at 155€/ha in 2010 and was increased 

up to 183€/ha in 2011.  

Table 9 reports simulation results aimed at assessing the effects of the area-based payments 

specifically aimed at promoting protein pea production in France, that is to say 50€/ha from 

2007 to 2009 and 163€/ha on average from 2010 to 2011. These results show that the specific 

support to protein pea had a significant impact on pea acreages in France. This support increased 
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the average pea acreage share by 0.3% (i.e., 25% of the actual average pea acreage) from 2007 

to 2009 and by 1.3% (i.e., 42% of the actual average pea acreage) in 2010 and 2011.  

Table 8. Average annual crop area-based payments (€/ha), 2007 -- 2011 

Year Winter 

wheat 
Corn Barley 

Sugar 

beet 
Alfalfa 

Protein 

pea 

Rape-

seed 

2007 100 99 100 0 0 155 94 

2008 97 96 98 0 0 155 103 

2009 94 91 93 0 0 147 120 

2010 0 0 0 0 0 151 0 

2011 0 0 0 0 0 183 0 

 

Table 9. Simulated effects of the removal of the protein pea specific area-based 

payments, 2007–2009 and 2010 – 2011  

 

Actual situation 

Simulated situation: 

protein pea area-based 

specific payment 

removed 

Estimated effects of 

the protein pea area-

based specific 

payment 

 '07 – '09 '10 – '11 '07 – '09 '10 – '11 '07 – '09 '10 – '11  

Average pea area-based 

specific payment 
50€/ha 163€/ha   +50€/ha +163€/ha 

Acreage shares       

Protein pea 1.2% 3.1% 0.9% 1.8% +0.3% +1.3% 

Other rotation heads 37.0% 37.2% 36.5% 37.5% –0.2% –1.0% 

Cereals 61.8% 60.4% 61.9% 60.7% –0.1% –0.3% 

 

 

Estimated effects of hypothetical support levels of pea production on crop acreages in France 

Our analysis of the effects of the past support scheme to protein pea production suggests that 

reasonable increases in the protein pea area-based payments could achieve significant increases 

in pea production in France. We investigate this point by simulating the effects on farmers’ crop 

acreage choices of protein pea area-based subsidies ranging from 25€/ha to 400€/ha, starting 

from the situation “with protein pea area-based specific payments removed” as it is estimated 

above (see table 9). This “free of support to pea production” baseline situation makes it easier 

to analyze the effects of the considered subsidy scheme. In order to assess the effects of farmers’ 

production regime choices, we present two sets of simulation results. The first one assesses the 
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effects of area-based subsidies on protein peas by allowing changes in both crop acreage levels 

and production regimes (represented in solid lines on figure 2). The second set of results allows 

changes in crop acreage levels only, holding fixed farmers’ production regimes (represented in 

dotted lines on figure 2). Contrasting these results highlights the impacts production regime 

switches on our simulation outcomes.  

 

According to our results, a 300€/ha subsidy would increase the average pea acreage share 

by 1.9%, from 1.2%, the average pea acreage share in our baseline scenario, to 3.1%, which 

represents a significant increase as pea acreages are more than doubled. These additional pea 

acreages would mainly replace those of other rotation starting crops. The combined average 

acreage share of rapeseed, alfalfa and sugar beet would decrease by 1.5% while that of cereals 

would only decrease by 0.5%. This illustrates the point in considering crop – agronomic and 

management – characteristics when specifying the acreage management cost function. 
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Comparing these results to those simulated with a model not allowing for changes in crop 

production regimes shows that about 75% of the increase in the pea acreage would be due to 

new producers. The simulation results without regime changes actually show that a 0.5% 

increase in pea acreages would be achieved with a 300€/ha subsidy. Production regime changes 

also explain another feature of our simulation results. The simulated average pea acreage is 

increasing in the pea area-based payment but displays changing increasing rates. This pattern 

is due to the kinks and jumps, which are smoothed by the averaging process, in farmers’ pea 

acreage choices induced by regime switches. 

Concluding remarks 

The main methodological objective of this article is to present an original modelling framework 

for dealing with null acreages in MEMC models. This framework is fully consistent from an 

economic viewpoint and explicitly considers regime fixed costs. These features make the ERS-

MEMC model proposed in this article suitable for analyzing and, to some extent, disentangling, 

the effects of the main drivers of farmers’ acreage choices at disaggregation levels at which 

issues raised by null acreages are pervasive. Our estimation and simulation results notably tend 

to demonstrate that accounting for production regime choices deeply impact farmers’ choices 

regarding minor crops. Our results also show that crop acreage choices involving minor crops 

display patterns that cannot be accounted for by the CR-MEMC models currently used for 

handling null acreage choices. 

Our application demonstrates the empirical tractability of the random parameter ERS-

MEMC models presented here. Of course, estimating such models raises challenging issues. 

But, this is also necessary for estimating micro-econometric models suitably accounting for 

important features characterizing micro-economic agricultural production data, among which 

frequent null crop acreages and significant, if not massive, unobserved heterogeneity. 

According to our experience, ML estimators computed with stochastic versions of EM 
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algorithms, SAEM algorithms in particular, appear to be interesting alternatives to Simulated 

ML estimators for relatively large systems of interrelated equations such as our random 

parameter ERS-MEMC model. 

This article proposes solutions to methodological issues that could be used for improving micro-

econometric analyzes of policies impacting crop acreage choices. The ERS-MEMC models 

considered in this article not only allow us to disentangle intensive and extensive margin effects, 

they also allow investigation of crop choice effects. This unique feature is of special interest for 

analyzing samples containing both specialized and diversified farms as well as for analyzing 

the effects of policy instruments impacting or targeting farmers’ crop set choices. For instance, 

owing to its positive agronomic effects, crop diversification is a key feature of environmentally 

friendly crop production systems (e.g., Matson et al, 1997; Tilman et al, 2002; Lin, 2011). 

Given current trends in the EU agri-environmental policy, this calls for research on original 

policy instruments, besides subsidy schemes targeting crops of special agronomic interest, 

aimed at fostering the adoption of diversified acreages by farmers. The overall structure of our 

model makes it relevant in this context. 

Of course, the ERS-MEMC model presented in this article relies on restrictive assumptions. 

Even if this is not specific to our MEMC model, our assuming that farmers are risk neutral is 

admittedly questionable. Adapting our ERS-MEMC model for accounting for the effects of 

farmers’ risk preferences while maintaining its empirical tractability constitutes a research topic 

of interest. Yet, this topic is also challenging. The empirical tractability of our ERS-MEMC 

model relies on properties that are specific to the MNL crop acreage share models while the 

theoretical background of these models strongly relies on farmers’ risk neutrality assumption.  

Admittedly, CR-MEMC models appear to be less restrictive in this respect, which is of 

interest when the limitations of these models can be overcome. For instance, CR-MEMC 

models may be used as reduced form approximations of farmers’ choices when the production 
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regimes of most sampled farms are close to the “all crops” regime, which is the regime on which 

their specification is primarily based. In such cases, CR-MEMC models enable considering a 

wide variety of functional forms. For instance, Sckokai and Moro (2006) and Platoni et al 

(2012) consider CR-MEMC models relaxing farmers’ risk neutrality assumption. 

Also, the ERS-MEMC models presented here rely on restrictive assumptions regarding the 

dynamic features of multi-crop technologies and farmers’ choice process. More work is needed 

to represent the agronomic effects of crop rotation and crop diversification in our models. Yet, 

this remark holds for the MEMC models proposed in the literature. 

Estimation cost appears to be among the limitations of our modelling framework that need to 

be addressed first. Significant computing and coding costs make applied research work, such 

as specification search, tedious and time consuming. Relatively slight modifications of its 

specification could, however, significantly reduce the estimation burden of the ERS-MEMC 

model presented in this article. For instance, in our application the covariance parameters of the 

random parameter vector 
i
γ  account for two-thirds of the estimated parameters. Yet, our results 

suggest that many elements of 
i
γ  are linked by a few farmer specific “latent productivity 

factors”. Taking advantage of this latent productivity factor structure could significantly reduce 

the dimension of the estimation problem. Also, estimating the regime choice probability 

function of our ERS-MEMC model is both tedious and time consuming. Slight alterations of 

the specification of this model could significantly reduce the cost of its estimation in this regard. 
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