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(2) EDF R&D, Laboratoire National d’Hydraulique et Environnement, Chatou, France

(3) Dept. of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA
(4) Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE),
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ABSTRACT

We report on recent developments of a three-dimensional (3D) model
for wave propagation and wave-structure interaction. The velocity field
is solved with a boundary element method (BEM), based on fully non-
linear potential flow. This approach is efficiently parallelized on CPU
clusters. Recent progress is presented for extending the model for the
use of higher-order elements (i.e., cubic B-splines), and outline the fu-
ture steps necessary to a high-order approach on completely arbitrary
meshes necessary for complex industrial applications. Particular care is
taken with regards to the corner compatibility condition along the inter-
section between the body and free-surface, which is necessary for high-
accuracy modeling with the BEM approach. Applications are shown for
academic tests as well as for the computation of wave-induced forces and
moments on gravity-based foundations, where we compare numerical re-
sults against laboratory experiments. Such applications are of interest to
the continued development of foundations for offshore wind farms, and
extensions to this model are being implemented for simulating floating
structures and coupling to other models including viscous effects, which
can be important in some cases.

INTRODUCTION

A large variety of ocean wave models have been applied to investigate
wave-structure interaction; ever since the work of Longuet-Higgins and
Cokelet (1976), the boundary integral approach based on potential flow
theory has shown some interesting advantages, particularly as the calcu-
lations are only performed on the surfaces and not the interior of the do-
main. In the models, different ways to handle the free-surface have been
proposed, both in frequency and time-domain, but in some cases where
fully nonlinear effects are important, the standard approach has been to
solve Laplace’s equation for the velocity potential (mass conservation)
at each time step (optionally multiple times, or for the time-derivative
of the velocity potential), then updating the BEM mesh nodes and free
surface boundary conditions with a mixed Eulerian-Lagrangian (MEL)
approach. Tanizawa (2000) made a review to date of this technique.

Here, we use such a fully nonlinear potential flow (FNPF) model, based
on a boundary element method (BEM), similar to the approach of Grilli
et al. (2001). Their model has been successful at accurately modeling
landslide-generated tsunamis, rogue waves, waves generated by a surface

effect ship, and the initiation of wave breaking caused by bathymetry.
The higher-order BEM implemented by Grilli et al. was based on a
type of elements called “cubic mid-interval interpolation” (MII), which
worked on a structured grid (Fig. 2); this approach worked well in the
absence of surface-piercing structures. More recent work, however,
has focused on using more flexible unstructured grids that could handle
surface-piercing fixed or floating bodies, but using linear elements (Har-
ris et al., 2014a); this was less accurate, but the grid could more eas-
ily represent an arbitrary geometry. Additionally, the model efficiency
was improved by using the Fast Multipole Method (FMM Greengard
and Rokhlin (1987)) implemented on parallel CPU clusters for larger
grids (Harris et al., 2014b). This FMM-BEM approach has been vali-
dated for wave propagation as well as radiation and diffraction around
vertical cylinders (Dombre, 2015).

Nonlinear wave-structure interaction is particularly important for off-
shore structures because of the phenomenon of ringing, that can cause
high peak loads. Molin (2002) provides a summary of this problem. For
industrial applications, nonlinear forces can be estimated to some degree
by using Volterra transfer functions, as discussed by Kim (2008).

In this paper, we return to questions of accuracy of the BEM solution by
implementing cubic B-spline boundary elements, which enables higher-
accuracy results on the same mesh as previously used with linear ele-
ments, and even in some cases yield a better performance than MII el-
ements. There is no space here for a complete literature review on the
subject, but Maestre et al. (2016) has created one example of a recently
developed spline-based Numerical Wave Tank (NWT). Here we endeavor
to achieve something similar, showing improvements over earlier ver-
sions of our model built on similar methods.

METHODOLOGY

For an incompressible inviscid fluid with irrotational motion, mass con-
servation is a Laplace’s equation for the velocity potential, φ ,

∇
2
φ = 0 in D (1)

u = ∇φ in D (2)

with u the flow velocity in domain D (e.g., Fig. 1). Using a semi-
Lagrangian approach on the free-surface, for which points are fixed in
the horizontal direction, the material derivative for a point following the



free-surface reads:
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where η denotes the vertical position of the free surface. From this, we
can express the kinematic and dynamic free surface boundary conditions
in Cartesian coordinates, in a reference frame that is potentially moving
in the x-direction at a speed, U(t), as:
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with g the gravitational acceleration, z the vertical coordinate, p the fluid
pressure (assumed to be zero on the free surface), and ρ the fluid density.

On stationary submerged or surface-piercing bodies, the boundary con-
dition is simply a no-flow condition on the body boundary (or hull) Γh,
whereas for bodies moving relative to the coordinate system, with fixed
or free motion, which are not considered in this paper, the boundary
condition expresses that the normal flow velocity matches that of the
rigid body projected on the local normal direction. Numerically damp-
ing waves exiting at the edge of the domain in direction x is handled
by adding −ν(x)η and −ν(x)φ to the right side of Eq. 4 and 5, respec-
tively, where ν = 0 for all of the domain except for points x≥ xAB, where

ν(x) = ν0

(
x−xAB

LAB

)2
.

Hydrodynamic forces and moments acting on the rigid body are com-
puted by integrating the hydrodynamic pressure. This requires calcu-
lating the time derivative of the potential at each time step, which also
satisfies Laplace’s equation; here, as in Grilli et al.’s NWT (Grilli et al.,
2001), ∂φ/∂ t is also computed with a BEM. For freely moving bodies,
however, both BEMs for the potential and its time derivative are coupled
through the unknown body motion, which requires implementing special
procedures (see, e.g., Guerber et al. (2012) for a review and details).

Boundary element method

As indicated above, Laplace’s Eq. 1 is solved as a BIE expressed at each
collocation point xi (or [xi,yi,zi] for i = 1, . . . ,N),

α(xi)φ(xi) =
∫ [

∂φ

∂n
(x)G(x,xi)−φ(x)

∂G
∂n

(x,xi)

]
dΓ (6)
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Fig. 1: Definition sketch of NWT computational domain for wave inter-
action with a rigid body (length L by width w by depth h). No-flow condi-
tions are specified on lateral and bottom boundaries; waves are generated
on the leftward boundary (Neumann boundary condition for known ve-
locity and acceleration) and are damped on the far end of the NWT over
an absorbing beach (AB) of length LAB.

where G is the free space Green’s function based on the distance to the
target point i, ri = ‖xi− x‖, α is the exterior solid angle made by the
boundary at a collocation point i (e.g., for a smooth boundary this would
be 2π), and n points in the direction of the local outwards normal vector
to the boundary. In 3D, the free space Green’s function of Laplace’s
equation and its normal derivative read:

G(x,xi) =
1

4π‖ri‖
(7)

∂G
∂n

(x,xi) =−
1

4π

ri ·n
‖ri‖3 (8)

Solving Eq. 6 with a BEM discretization requires: (i) integrating inte-
gral kernels over individual boundary elements, which become singular
when ri→ 0; and (ii) solving the resulting (typically N by N) linear sys-
tem of algebraic equations. The BEM integrals are performed over each
triangular element using Dunavant (1984) rules, and quadrangular ele-
ments with a tensor product of Gauss integration. Singular integrals are
dealt with using a Duffy transformation (Duffy, 1982). The coefficients
α in the BIE are found by applying the rigid mode method (e.g., Grilli
et al. (1989)), which expresses that for a Dirichlet problem with φ = 1
specified over the entire boundary of domain D, the discretized BIE must
yield ∂φ/∂n = 0; the α coefficients are then found as the residuals of
this Dirichlet problem. The solution of the BEM discretized algebraic
system is then solved with GMRES, a Krylov iterative solver.

Parallelization

On modern computers, it is often advantageous to run the model over a
distributed cluster, sharing the workload over different processors. This
is relatively simple to do with a BEM: when applying Eq. 6, each pro-
cessor uses an approximately equal partition of the number of elements,
thus each processor stores a piece of the resulting system matrix.

This savings in time also applies to the GMRES solver, where each
matrix-vector product is also parallelized, and combined on a single
node. This corresponds to expressing the algebraic system as Ax =
(A1 +A2 + . . .+An)x where each Ai corresponds to the contribution to
the system matrix from each processor. The matrix assembly and matrix-
vector products required, which take the most amount of computational
time, are thus efficiently divided.

Significant work has been done in using the fast multipole method
(FMM) with this same code, including some described in a correspond-
ing paper at this conference (Mivehchi et al. 2017), but here we do not
focus on this. Use of the FMM permits the CPU time of the resulting
code for large problems to be as fast as O(N) instead of O(N2) when
using GMRES with a standard BEM (Greengard and Rokhlin, 1987).

The NWT detailed here is thus not ideal, but nevertheless relatively effi-
cient, and unaffected by changes to the time-stepping and element types,
which are discussed next.

Time-stepping

For fluid-structure interaction it is advantageous (and for freely-moving
structures, often necessary for reasons of stability) to solve the problem
not only for the velocity potential but also for its time-derivative, in de-
termining the pressure on a body. Having ∂φ/∂ t available, as in Grilli
et al. (2001), we could perform the time updating of both the free sur-
face and body position in the NWT based on second-order Taylor series,
which more efficiently makes use of the information available.
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Fig. 2: Equivalent one-dimensional (1D) basis function for the BEM elements considered in this paper: (a) linear; (b) MII; (c) cubic B-spline.

Here we instead use a third-order Runge-Kutta explicit scheme for time
updating, which can be written compactly as:

f (1) = f (n)+∆t(δt f (n)) (9)

f (2) =
3
4

f (n)+
1
4

(
f (1)+∆t(δt f (1))

)
(10)

f (n+1) =
1
3

f (n)+
2
3

(
f (2)+∆t(δt f (2))

)
(11)

As a result of this, we can make a direct comparison with any type of
element, as long as we can compute the normal vector at each point of
the moving boundaries, as well as the velocity from the known values of
φ and φn at a given time step.

In particular, to solve Eq. (4), we note that for a normal vector n =
(nx,ny,nz):

∂η

∂x
=
−nx

nz
and

∂η

∂y
=
−ny

nz
(12)

The flow velocity can also be derived in the same coordinate system
(Fochesato et al., 2005). If we define a coordinate system based on unit-
vectors (s,m,n) where s and m are tangent to the surface, we note that
these vectors may be non-orthogonal, and we define κ = s ·m ∈ [0,1].
Further, we obtain the normal vector from: n = s×m. This yields the
velocity:

u = (φs−κφm)/(1−κ
2)s+(φm−κφs)/(1−κ

2)m+φnn (13)

In the case of linear elements, where the derivatives may not be contin-
uous at a given point, we take the velocity at a collocation node to be an
average of the velocity on the adjacent elements.

Cubic B-splines

Considering a BEM model, the geometry problem is defined uniquely
by the boundary surfaces of the fluid domain, so accurate description of
boundary surfaces is important for the accuracy of the entire model. We
consider here cubic B-splines, which are widely used by the computer
aided design (CAD) systems to accurately describe complex surfaces.

The use of cubic B-splines is for all field variables, which includes coor-
dinates, velocity potential, and its normal derivative. The goal of cubic
B-spline interpolation is to obtain a smooth surface with continuous first
and second derivatives, both on the surface of each element and at each
collocation node.

If we consider a one-dimensional (1D) version, a tabulated function gk =
g(sk),k = 0, ...,N is a list of values at different points. The cubic B-spline

function, S(s) in [s0,sN ] could be written as the linear combination of the
Bk:

S(s) =
N+1

∑
k=−1

pkBk(s), (14)

where pk is a unknown value at control points, Bk are the basis functions
that satisfy C2 continuity conditions (from which the second deivative is
continuous), and S(sk) = gk at control points sk. Unknown values pk can
then be calculated by solving a system of linear equations:

gk =
1
6

pk−1 +
4
6

pk +
1
6

pk+1. (15)

for all k, because B(−1) = 1/6, B(0) = 4/6, and B(+1) = 1/6. This
step is different than using linear or MII elements, for example, because
in those other cases the basis functions in 1D would be one at the center
and zero at all other integer valued points (see Fig. 2).

To use this B-spline algorithm and solving for control points in 2D, we
can use the tensor product B-spline interpolation and express an interpo-
lated function S(s,m) as:

S(s,m) =
N+1

∑
i=−1

M+1

∑
j=−1

pi jBi(s)B j(m), (16)

Similar to the algorithm for 1D B-splines we can then construct a matrix
of coefficients for every control point. The tensor products of B-spline
are shown at Fig. 3. We only need to construct this linear system once at
teach time step, which we can later solve and use to interpolate different
physical parameters over the mesh.

At the edges of each B-spline surface, we need to add additional equa-
tions in the system; for edges we consider so-called not-a-knot condi-
tions, described below. We apply these boundary conditions by adding a
single layer of virtual nodes along each edge (Fig. 3).

Not-a-knot condition The not-a-knot condition assumes that the third-
derivative of the B-spline is continuous between the two intervals at the
edge of the surface. In 1D, we can represent this by:

pk−1−4pk +6pk+1−4pk+2 + pk+3 = 0. (17)

Equivalent coefficients for 2D B-splines are shown in Fig.3e. This con-
dition is used because we do not generally know, for example, both the
value and the derivative of the parameters at the edges of a surface.
However, improvements could be made later for the velocity potential,
φ , making use of physical information from the intersecting surfaces to
specify derivative, as in Grilli and Svendsen (1990).
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Fig. 3: Coefficients needed for computing 2D B-splines: (a) control points; (b) partial derivative in s-direction; (c) partial derivative in m-direction. In
lower panel, examples are shown for coefficients used in: (d) cross derivative in sm directions for corner condition; (e) not-a-knot condition. Grayed out
sections are so-called “virtual” elements beyond the edge of a surface.

Fig. 4: Torus-shaped domain for testing the accuracy of B-splines versus
linear BEM elements.

Corner condition For simplicity, we implement the assumption that
∂sm = 0 in the corners. Coefficients for that case shown are in Fig.3d.

In the future we will use a more arbitrary grid connectivity, perhaps T-
splines (Sederberg et al., 2003), to describe surfaces instead of B-splines.
T-splines are a generalization of B-splines, in which several B-spline
patches can be integrated into unique T-spline, so that it is possible to
describe surfaces and boundary parameters more accurately.

PERFORMANCE TESTING

Velocity errors for different element types

In order to test the implementation of B-splines, we first start with a test
case that does not involve edges or corners. In this case, to create a
regular grid, the natural choice would be a torus. We choose one whose
major radius of 1.0 and minor radius 0.5 (Fig. 4).

After creating such a mesh, we can determine the normal vector at each
collocation point, and then apply a test function, φ (test) = x2− z2, with
the corresponding normal derivative, φ

(test)
n = 2xnx − 2znz. After that
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Fig. 5: Errors corresponding to the velocity computed on a torus with the
test function φ = x2− z2, with different element types.

we can compute the velocity at each point. We then consider the error
associated with such result:

ε =
max(||u−u(test)||

max(||u(test)||)
(18)

Fig. 5 shows this errors as a function of grid size.

In all cases, the error decreases with a refining mesh, indicating conver-
gence to the proper solution. We also see that higher-order isoparametric
elements produce more accurate results, but only up to a certain point: if
we increase the order of the polynomial interpolation too much, the error
no longer decreases as fast, because of larger errors at the edge of each
element; this is related to Runge’s phenomenon for polynomial interpo-
lation. By contrast, we see that B-splines provide much more accurate
results for the same order element on the same mesh.

There are different methods for dealing with the loss of accuracy of
higher-order isoparametric elements, including spectral elements (i.e.,



Fig. 6: Propagation in the NWT of a solitary wave of height H/h0 = 0.6
in a grid of non-dimensional dimensions 12x1x1 for testing the accuracy
and convergence of the BEM solution as a function of grid size N (or
equivalent mesh size ∆x) and element type.

adjusting the positions of the collocation nodes) or a mid-interval inter-
polation (the MII element of Grilli et al. (2001)), etc.

Solitary wave propagation

A standard test case for nonlinear wave models is the propagation of
solitary waves, and checking for errors in volume and energy. Similar to
Grilli and Svendsen (1990) in 1D and Grilli et al. (2001) in 2D, we first
assess the convergence properties of the NWT in terms of conservation
of mass and energy, as a function of a non-dimensional grid resolution
β =

√
∆x/g/∆t, reflecting mesh and time step size, for the propagation

over a constant depth h0 of a solitary wave of large height H (Fig. 6).

Note, in their error analysis, Grilli et al. used instead the mesh Courant
number, Co = (∆t

√
gh0)/∆x. Here we use β as introduced by Büchmann

(2000) who proposed that the accuracy and stability of results of such
NWTs is better described as a function of a mesh Froude number, since
the most unstable modes correspond to the shortest wavelengths. [In
fact, the mesh Courant number used by Grilli et al. (2001) is easily re-
lated to β , as C0 = β−1

√
h0/∆x, so there is a one-to-one correspondence

between the two approaches.] Comparing errors on mass and energy
against β , we see in Fig. 7 distinct trends in the results.

In the simulations, the NWT has a length 12 times the water depth, a
width equal to depth, and the wave is such that H/h0 = 0.6. As in
Grilli et al. (2001), the solitary wave profile and its initial potential and
normal velocity on the free-surface are computed using the method of
Tanaka (1986), and the crest is initially located at x′ = x/h0 = 4; compu-
tations are performed until t ′ = t

√
g/h0 = 3.2 (prime variables are non-

dimensional, with length being scaled by depth h0 and time by
√

h0/g).
We compare results obtained here for the mass and energy errors param-
eters with those reported by Grilli et al. (2001) using their 3D-NWT with
cubic MII elements; in the present simulations results are either obtained
with cubic B-spline elements or with linear elements. In the MII and B-
spline cases, we use the same structured grid of N = 1,030 nodes, corre-
sponding to a grid spacing on the free surface of ∆x = 0.25h0, and adjust
the time step. With linear elements, we use an unstructured triangular
mesh of N = 1,242 nodes and approximately the same grid spacing, in
order to compare all the results with each other.

At each time step, we compute the numerical error on the global con-
servation of mass and total energy of the solitary wave. During prop-
agation, both mass and energy of the solitary wave should theoreti-
cally stay constant, as there is no mass or energy input or output into

the NWT. Hence, we define the numerical error on wave volume as:
εm = |(m(t)−m0)/m0|, with the instantaneous solitary wave volume be-
ing computed in the NWT as:

m(t) =
∫

Γ f

znz dΓ (19)

with Γ f denoting the free surface boundary, and m0 the theoretical value
obtained with Tanaka’s method. Similarly, we define the numerical error
on total wave energy as εe = |(e(t)− e0)/e0|, with the instantaneous total
energy being computed as the sum of kinetic and potential energy, as:

e(t) =
1
2

ρ

∫
Γ

φ
∂φ

∂n
dΓ+

1
2

ρg
∫

Γ f

z2nz dΓ (20)

and e0 being again the theoretical value obtained with Tanaka’s method.
In both equations, some integrals are taken only over the free surface,
which allows computing the part of the volume and potential energy er-
ror corresponding to the wave only, which is a stricter condition than
computing relative errors with respect to the entire NWT mass and en-
ergy and thus avoids underestimating errors for large NWTs in which
much of the water is not in motion.

One sees that accuracy in terms of mass or volume conservation is sub-
stantially better with cubic B-splines than any other. It appears to be less
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Fig. 7: Maximum errors in volume (top) and energy (bottom) conserva-
tion for propagating a solitary wave with amplitude of H/h = 0.6, for
MII (hollow), linear (x), and B-spline (solid) NWTs.
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Fig. 8: Parallel scaling of the BEM solution of Laplace’s equation for
a mesh of quadrangular cubic B-spline elements with N = 1,030 nodes,
as a function of the number M of CPU cores; 36 integration points were
used over each element.

accurate with MII elements, but since the grid stretches as it follows the
wave, as opposed to a semi-Lagrangian (fixed horizontal position), this
may be the cause. In contrast, energy conservation is best with the MII
code, and the difference between unstructured triangular mesh and cubic
B-splines is not very significant, suggesting that for this size mesh, the
error is determined mostly by the time-stepping method. Future work
will investigate whether it is possible to improve this accuracy further.

We can also assess the efficiency of the parallelization on this applica-
tion. Fig. 8 shows that up to several hundred processors, the scaling is
relatively efficient. Thus while for a single processor the B-spline code
is slower than the highly optimized MII code, as the earlier code of Grilli
et al. (2001) is not parallel, for a large enough computer we are able
to match the same “wall-clock”, or simulation time in terms of the real
world. Certainly for larger meshes we also need to look at implementing
the FMM with cubic B-spline elements, which has already been done for
linear elements in Harris et al. (2016).

GRAVITY BASED FOUNDATION

Experimental setup

As a part of earlier (1/45 scale) model testing by France Energies
Marines, a study was made of a gravity based foundation (GBF) that
could be used, e.g., to support offshore wind turbines (Fig. 9). This would
correspond at full scale to a diameter at the waterline of 6.5 m, and the
diameter at the bottom of the conical part of 20 m; the foundation it-
self is 30 m across. The conical part starts 2 m above the mudline and
ends 12 m above the it. Experimental results were acquired for regular
and irregular sea states, as well as both with and without current. Here
we consider only the smallest wave states, in order to avoid numerical
instabilities which can exist along waterlines.

The tests were performed in a 80-m long and 1.5-m wide wave flume in
which waves were generated with a wavemaker, which were both regular
(Table 1) or irregular (not discussed here) waves. Nonlinear wave model-
ing is performed with the NWT, which is believed to be important due to
the experimental results, which show that in some instances, ringing was
observed. Of particular interest is the surge force or overturning moment
(Fig. 10).

Fig. 9: Gravity based foundation model at 1/45 scale in empty wave
flume.

Test Wave height Wave period Depth Current

02-R 5.6 m 8.6 s 30.0 m 0.0 m/s
04-R 9.3 m 9.8 s 30.0 m 0.0 m/s
05-R 13.0 m 10.3 s 30.0 m 0.0 m/s
02-RC 5.6 m 8.6 s 30.0 m +1.0 m/s
04-RC 9.3 m 9.8 s 30.0 m +1.0 m/s
05-RC 13.0 m 10.3 s 30.0 m +1.0 m/s
02-RCM 5.6 m 8.6 s 30.0 m -1.0 m/s
04-RCM 9.3 m 9.8 s 30.0 m -1.0 m/s
05-RCM 13.0 m 10.3 s 30.0 m -1.0 m/s
U1-R 13.7 m 10.9 s 34.1 m 0.0 m/s
U1-RC1 13.7 m 10.9 s 34.1 m +1.0 m/s

Table 1: Regular wave tests on gravity based foundation, showing target
wave conditions at prototype scale.
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Fig. 10: Time series of surge force (top panel) and overturning moment
on the GBF structure (lower panel) of Fig. 9, for case O2-R.

Numerical comparisons

Here we consider the O2-R test case (Table 1), with a wave height of
5.6 m and a wave period of 8.6 s. At present, although large amplitude
waves appear to be modeled well (e.g., the solitary wave above), and tests
with earlier versions of the model for interactions with monopiles show
reasonable results for higher-order harmonics (e.g., comparisons by Har-
ris et al. (2016) with data of Huseby and Grue (2000)) with steepnesses
up to kA = 0.15. Cases here, however, are at least at kA = 0.16 for the
O2-R case, and some substantially higher. In these cases, instabilities
along the waterline become an issue (Fig. 12).

It has been reported that nonlinear NWT models can be unstable near
waterlines, and a variety of approaches have been proposed for handling
this, generally based on filtering short, presumably nonphysical, wave-
lengths (Tanizawa, 2000); others have considered more complex time-
stepping schemes (e.g. Mola et al., 2013) to deal with this. (A substantial
filtering naturally stabilizes the problem but may affect the physics.)

As a result, we can make an estimate of the NWT with cubic B-spline

Fig. 11: Numerical GBF numerical grid, with cubic B-splines.

Fig. 12: Typical instability seen near the free-surface for modeling the
O2-R or larger waves.

elements (i.e., using a grid of Fig. 11, with a timestep of 0.1 s), but with a
reduced, 2 m wave height. Then, we can consider the Fourier transform
of the force (or equivalently, the moment) as:

f (m)(t) =
∫ t+T

t

(∫
body

pdA
)

eimωτ dτ (21)

From this, assuming that the nondimensional coefficients, f (n)/(ρgAn)
are constant for different wave amplitudes, we were able to estimate the
value by reconstructing the time-series based on the coefficients with
the smaller amplitude (e.g., for the third harmonic of the overturning
moment, M(3)

y (H = 5.6m) ≈ (5.6/2.0)3M(3)
y (H = 2m)). This is essen-

tially the approach of Volterra transfer functions, as discussed by Kim
(2008), and data for monopiles (e.g. Huseby and Grue, 2000) shows that
this can be a reasonable approximation for moderate wave amplitudes.
Clearly this is approximate, but shows potential should the instability be
resolved.

From this, we obtain a range of overturning moment from -44 to +34
MN m and a surge force between -5.0 and +4.9 MN (Fig. 13), which
corresponds well to the experimental results (Fig. 10). The model in its
present form takes approximately an hour and a half with 256 proces-
sors, running in parallel. More complex tests, with larger incident wave
heights, will be shown at the conference, testing different ways to stabi-
lize these short waves near the waterline (see e.g. Guignard and Grilli,
2001; Grilli et al., 2003), which may be damped in the basin tests due to
viscous effects.

SUMMARY

In this paper, we demonstrated a numerical wave tank (NWT) for solv-
ing fully nonlinear potential flows using the boundary element method
(BEM). This NWT uses a higher-order spatial discretization with cubic
B-splines, enabling more accurate results than using other element types.
In addition, the model is parallelized to work on hundreds of CPUs.

Comparisons with earlier versions of the code show large gains in accu-
racy relative to linear elements, and even compared to cubic mid-interval
interpolation of Grilli et al. (2001), at least for some limited test cases.
We further presented results in particular for a GBF, which could be used
as the foundation of an offshore wind turbine, showing reasonable agree-
ment with experimental results for an initial test.

A variety of changes are required to complete this as an industrial tool,
namely: integration of the cubic B-spline representation into the fast mul-
tiple method algorithm (FMM; see Mivehchi et al. in this conference for



Fig. 13: Hydrodynamic pressure on the GBF at an instant.

some details on this point); switching to Taylor series time-stepping as
in Grilli et al. (2001); handling of arbitrary grid connectivity. Progress
towards these goals will be presented at the conference.
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Université Paris-Est.

Duffy, M. G. (1982). “Quadrature over a pyramid or cube of integrands
with a singularity at a vertex”. SIAM Journal on Numerical Analysis,
19:1260–1262.

Dunavant, D. A. (1984). “High degree efficient symmetrical Gaussian
quadrature rules for the triangle”. International Journal for Numerical
Methods in Engineering, 21:1129–1148.

Fochesato, C., Grilli, S. T., and Guyenne, P. (2005). “Note on non-
orthogonality of local curvilinear co-ordinates in a three-dimensional
boundary element method”. International Journal for Numerical
Methods in Fluids, 48:305–324.

Greengard, L. and Rokhlin, V. (1987). “A fast algorithm for particle
simulations”. Journal of Computational Physics, 73:325–348.

Grilli, S. T., Guyenne, P., and Dias, F. (2001). “A fully nonlinear model
for three-dimensional overturning waves over arbitrary bottom”. In-
ternational Journal for Numerical Methods in Fluids, 35:829–867.

Grilli, S. T., Skourup, J., and Svendsen, I. A. (1989). “An efficient bound-
ary element method for nonlinear water waves”. Engineering Analysis

with Boundary Elements, 6:97–107.
Grilli, S. T. and Svendsen, I. A. (1990). “Corner problems and global

accuracy in the boundary element solution of nonlinear wave flows”.
Engineering Analysis with Boundary Elements, 7:178–195.

Grilli, S. T., Voropayev, S., Testik, F. Y., and Fernando, H. J. S. (2003).
“Numerical modeling and experiments of wave shoaling over buried
cylinders in sandy bottom”. In Proceedings of the 13th Offshore and
Polar Engineering Conference, pages 405–412.

Guerber, E., Benoit, M., Grilli, S. T., and Buvat, C. (2012). “A fully
nonlinear implicit model for wave interactions with submerged struc-
tures in forced of free motion”. Engineering Analysis with Boundary
Elements, 36:1151–1163.

Guignard, S. and Grilli, S. T. (2001). “Modeling of shoaling and breaking
waves in a 2D-NWT by using a spilling breaker model”. In Proceed-
ings of the 11th Offshore and Polar Engineering Conference, pages
116–123.

Harris, J. C., Dombre, E., Benoit, M., and Grilli, S. T. (2014a). “A
comparison of methods in fully nonlinear boundary element numer-
ical wave tank development”. In Proceedings of the 13th Journees de
l’Hydrodynamique.

Harris, J. C., Dombre, E., Benoit, M., and Grilli, S. T. (2014b). “Fast in-
tegral equation methods for fully nonlinear water wave modeling”. In
Proceedings of the 24th International Offshore and Polar Engineering
Conference, pages 583–590, Busan, Korea.

Harris, J. C., Dombre, E., Mivehchi, A., Benoit, M., Grilli, S. T., and
Peyrard, C. (2016). “Progress in fully nonlinear wave modeling for
wave-structure interaction”. In Proceedings of the 15th Journée de
l’Hydrodynamique, page 12 pp., Brest, France.

Huseby, M. and Grue, J. (2000). “An experimental investigation of
higher-harmonic wave forces on a vertical cylinder”. Journal of Fluid
Mechanics, 414:75–103.

Kim, C. H. (2008). Nonlinear waves and offshore structures, volume 27
of Advanced Series on Ocean Engineering. World Scientific Pub. Co.
Inc. 540 pp.

Longuet-Higgins, M. S. and Cokelet, E. (1976). “The deformation of
steep surface waves on water, I. A numerical method of computation”.
Proceedings of the Royal Society A, 350:1–26.

Maestre, J., Cuesta, I., and Pallares, J. (2016). “An unsteady 3D Iso-
geometrical Boundary Element Analysis applied to nonlinear gravity
waves”. Computer Methods in Applied Mechanics and Engineering,
310:112–133.

Mola, A., Heltai, L., and DeSimone, A. (2013). “A stable and adap-
tive semi-Lagrangian potential model for unsteady and nonlinear ship-
wave interactions”. Engineering Analysis with Boundary Elements,
37:128–143.

Molin, B. (2002). Hydrodynamique des structures offshore. Editions
Technip. 440 pp.

Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. (2003). “T-
splines and T-NURCCs”. ACM Trans. Graph., 22:477–484.

Tanaka, M. (1986). “The stability of solitary waves”. Physics and Fluids,
29:650–655.

Tanizawa, K. (2000). “The state of the art on numerical wave tank”. In
Proceeding of 4th Osaka Colloquium on Seakeeping Performance of
Ships, pages 95–114.


