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Abstract

We examine climate-related exposure within a large credit portfolio, addressing
transition and physical risks. We design a modeling methodology that begins
with the Shared Socioeconomic Pathways (SSP) scenarios and ends with describ-
ing the losses of a portfolio of obligors. The SSP scenarios impact the physical
risk of each obligor via a DICE-inspired damage function and their transition
risk through production, requiring optimal adjustment. To achieve optimal pro-
duction, the obligor optimizes various energy sources to align its greenhouse gas
(GHG) emission trajectories with SSP objectives, while accounting for uncertain-
ties in consumption trajectories. Ultimately, we obtain a Gaussian factor model
whose dimension is of the order of the number of obligors. Two efficient dimen-
sion reduction methods (Polynomial Chaos Expansion and Principal Component
Analysis) provide a fast and accurate method for analyzing credit portfolio losses.

Keywords: Climate Risks, Transitions Risks, Physical Risks, Credit Risk, Polynomial
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1 Introduction

Climate risk and financial impact.

Facing the challenges of climate change, financial institutions are encouraged to shift
their activities and investments toward a low-carbon economy. Under the Network for
Greening the Financial System (NGFS), an increasing number of international banks
have committed to the agreements made at the Conference of the Parties (COP 24) in
Katowice in 2018, aiming to align their portfolios with the CO2 trajectories of the Paris
Agreement. In other words, banks should incorporate the impact of climate change
into the management of their asset portfolios. Notably, measuring and assessing the
potential consequences of climate risks has become a key issue for financial institutions.

According to the Intergovernmental Panel on Climate Change (IPCC), CO2 and,
more generally, greenhouse gas (GHG) emissions are among the main causes of global
temperature increase. To achieve the idealized objective of limiting average warming
to no higher than 1.5oC, the IPCC summarizes [19] different potential macro-scenarios
called Representative Concentration Pathways (RCP) to indicate possible GHG abate-
ment scenarios. Based on more detailed socioeconomic criteria and factors, many other
scenarios, known as Shared Socioeconomic Pathways (SSPs), have been proposed in
the scientific literature, e.g., [27, 35]. These scenarios allow firms in different sectors
and countries to anticipate and implement their mitigation strategy.

Climate risks in finance encompass two primary categories: physical and transition
risks, as discussed in [9] and [2]. Physical risks entail immediate losses to companies
due to shocks, especially as the severity and frequency of events like floods, heatwaves,
and wildfires increase in extreme climate scenarios. Transition risks, on the other hand,
result from firms shifting toward low-carbon production methods, profoundly influ-
encing their future trajectory and impacting financial institutions and investors in the
market. Modeling both risks remains a complex task with many uncertainties and
limitations, but it is crucial for financial institutions granting loans to economic com-
panies (obligors) to consider the transmission channels of climate-related risk drivers
in the credit risk analysis of their portfolio. For the insurance sector, climate change,
particularly physical risks, can significantly affect an insurer’s balance sheet, especially
in non-life insurance, and lead to substantial consequences for insurance companies
providing financial protection against climate-related loss events (see, e.g., [12]). The
impact of both transition and physical risks on the insurance sector is a highly topical
issue; see the recent works of [14, 33] regarding non-life insurers and their credit risk.

Our study focuses on selected SSP scenarios, which describe future paths of GHG
emissions across various sectors and temperature trajectories. We downscale these
scenarios to individual obligors to model their adaptations (transition risks) and their
impacts on physical risks. Subsequently, we aggregate this modeling at the credit
portfolio level. The primary quantity of interest is the portfolio cumulative loss defined
below in (1). The challenge we undertake is twofold: first, to design a robust and
meaningful model; second, to efficiently and accurately solve and sample it, given the
large number of obligors in the portfolio.
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Literature on large portfolios and credit analysis.

Financial institutions manage large portfolios consisting of n obligors, where n can be
on the order of hundreds of thousands for major international banks. The cumulative
loss is typically expressed as

L =

n∑
i=1

Λi × 1{Xi≤di} (1)

where Λi (resp., di) represents the loss given default multiplied by the exposure at
default (resp., the default barrier) of the ith obligor,Xi is the obligor’s default-relevant
variable, which also characterizes the dependence between obligors through correlated
random factors. Modeling the marginal distributions of Xi and their dependence is
crucial. In the current work, we explicitly model Xi and di in terms of the related SSP.
In the credit-risk literature neglecting climate risks, there exist two main approaches to
describing the dependence of credit portfolios: the so-called bottom-up and top-down
models. In the first approach, we start with the marginal distribution of each default
time. Then, we specify the correlation structure, frequently utilizing copula models.
For a comprehensive survey, refer to McNeil and Frey [28]. In the second approach,
we focus directly on the cumulative loss process for credit portfolios to overcome
the computational burden associated with portfolio size (see, e.g., [4]). In the first
approach, when the size of a credit portfolio is very large, advanced numerical methods
must be used as any naive Monte Carlo simulation becomes too time-consuming.
Moreover, standard market models often impose a simplified dependence structure
to facilitate computation. In factor models such as the Gaussian copula model, all
obligors in the portfolio are correlated through one or several common macroeconomic
or financial risk factors. Conditionally on these common factors, the default of the
underlying companies is independent, as their heterogeneous factors are. A typical
example is the one-factor Gaussian copula model of Li [26], where the loss is expressed
as (1). In this model, Xi = ρiZ +

√
1− (ρi)2εi with Z and εi being independent

standard normal random variables, and ρi ∈ (−1, 1) being the correlation parameter.
The default barrier di is deterministic.

We can also consider a multivariate default intensity model, generalizing the
standard one-dimensional Cox model [23]. For a fixed horizon time T > 0, let

Xi =
∫ T

0
(λs + λi

s) ds where λ and λi are non-negative processes representing the
default intensity induced by common and individual risk factors. The default barrier
di is an independent exponential random variable. For other classical factor models in
credit risk modeling and analysis, refer to [40] and [16].
In the credit-risk literature accounting for climate risks, the authors of [13] consider
a multi-factor model called the Climate-Extended Risk Model (CERM) with several
common risk factors, i.e., Z is a centered Gaussian random vector with a given cor-
relation matrix. Our contribution is different as we consider a bottom-up modeling
approach and additionally provide an efficient computational scheme to analyze the
cumulative loss (1). To integrate the impact of climate risk into credit-sensitive firms
and asset portfolios, [24] develops a structural model for defaultable bonds of com-
panies exposed to transition risks. Unlike [24], which focuses on a single obligor, we

3



model the credit risk of a large portfolio and also account for physical risks. Climate
disaster-related events, such as Hurricane Harvey, have been incorporated using jump-
diffusion processes to measure the impact of physical risks on the default probability
of the housing sector, as demonstrated in [25]. In [10], the authors propose an inte-
grated assessment of energy transition risk that links future energy scenarios to a
structural economic model (Merton’s model). This methodology is applied to electric
utility companies located in the 28 European Union countries, focusing on the finan-
cial impacts of decarbonization policies. Another closely related work is [22], where
the authors apply an asset-and-liability model to analyze the impact of carbon costs
on default probabilities. They consider various fuel mix plans and carbon price scenar-
ios, with a particular focus on Eskom, South Africa’s state-owned utility. Unlike our
approach, these two papers do not consider physical risk and focus solely on electric
utilities. In contrast to [25], our work focuses on a portfolio of obligors, accounting for
dependence, and incorporates both physical and transition risks. Furthermore, adjust-
ments to default probabilities and bond portfolio valuations are derived under various
climate scenarios, based on the technological profiles of firms facing transition risks,
as outlined in [3]. As a difference with [3], we focus on the credit risk of the portfolio
rather than individual obligors. Additionally, our approach integrates both physical
and transition risks into the modeling, and addresses related computational challenges.

Contributions of our paper.

We propose a multi-default model that accounts for both transition and physical
risks. Our contributions encompass three key aspects. Our comprehensive approach
to modeling and computational methods is summarized in Figure 1. This diagram
is included for pedagogical clarity: it provides the reader with an overview of the
methodology developed and the main quantitative results obtained.

Firstly, on the modeling front and following the approach of [5], we start from a
target emission scenario, such as one of the SSPs, and derive the obligor’s transition
efforts and strategies by considering a mix of different energy types, their respective
emission factors, and associated costs; see Theorems 1, 2 and 3. These factors directly
impact the obligor’s production methods and credit quality. The correlation structure
among obligors is modeled by introducing common systemic factors, akin to market
factor models. This approach differs from [5], where the focus is on a unique energy
source and a cost function for a single obligor.

Secondly, in Section 3, we incorporate the projected costs associated with future
physical risks that affect the obligor’s overall value. This estimation draws on histor-
ical cost data and a modeling approach inspired by the Dynamic Integrated Model
of Climate and Economy (DICE), reminiscent of Nordhaus’ work [30, Eq. 5 p.10].
This approach acknowledges the inertia between GHG emissions and their subsequent
effects on physical risks. Overall, our model offers a transparent mechanism for tracing
how climate risks influence the creditworthiness of individual obligors. The marginal
default probability for each obligor can be inferred using a bottom-up credit modeling
approach. This is an additional extension to [5], which did not model physical risk.

Thirdly, we turn to computing credit risk metrics for large-scale portfolios using
a top-down framework. Drawing inspiration from [6], we introduce an efficient
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Given an SSP scenario: inputs are

- Sector-specific target emission trajectory t 7→ γ̃t
- Atmospheric temperature trajectory t 7→ TATM(t)

�
��

?

Q
QQ

?
�

��	
@
@@R

Obligor 1 Obligor nObligor i· · · · · ·

Transition risks

Section 2:

- Stochastic control

problem (6) respec-

ting the emission

scenario γ̃i
t

- Outputs: optimal

emission γ̂i
t (Th. 1)

and log-production

p̂it (26).

Physical risks

Section 3:

- Historical

losses

- Rescaling with

the DICE damage

function (21) as a

function on TATM

- Output: Expected

Physical Loss (22).

@
@@

�
��

?

@
@
@@R

�
�

��	

Value of the ith obligor as

V̂ i
t = hi(t, p̂it) for an explicit

function hi, accounting for

systemic and idiosyncratic

risks (25).

· · ·

@
@
@@R

· · ·

�
�

��	?

Dimension reduction (33) of stochastic

factors of the credit portfolio through

Principal Component Analysis (34).

Error bound (35).

?

Large portfolio loss approximation

Lt (29) via Polynomial Chaos

Expansion in Section 5.3.

Fig. 1 Diagram illustrating the analysis of the problem.
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numerical method based on Polynomial Chaos Expansions (PCE) for evaluating
cumulative losses, see Section 5.3. However, our approach stands out by integrating
dimension-reduction techniques specifically tailored to address climate risk.

As mentioned earlier, the correlation structure among obligors is established
through a common systemic risk factor. We propose a method to reduce both the
common and all idiosyncratic risk factors (amounting to n + 1 factors) to just
2+ 1

2 (M +1)(M +2) factors, where M is limited to a few units. This reduction is sub-
stantiated quantitatively through two main approaches: a) an analysis of eigenvalues
via Principal Component Analysis (PCA), yielding two significant factors (see Section
5.2 and Proposition 5 for an L1 error estimate), and b) a Polynomial Chaos Expan-
sion applied to the limited systemic factors to perform a Gaussian approximation with
1
2 (M + 1)(M + 2) terms. Additionally, we provide an error estimation for the trun-
cated losses based on findings from [6, Theorems 2.6-7]. The improvement is significant
especially for n large, as discussed in Subsection 5.3. Our method has shown both
accuracy and speed in practical applications, supported by numerical experiments.

The remainder of the paper is structured as follows. Section 2 addresses transi-
tion risk, deriving optimal emission strategies for an obligor navigating low-carbon
mitigation transitions. Section 3 examines various potential physical risks and their
impact on the obligor’s value process. In Section 4, we quantify the combined impact
of transition and physical risks on the obligor’s credit quality, providing a semi-explicit
formula for default probability in a special setting. Section 5 focuses on aggregating
credit risks and calculating cumulative losses for large portfolios, introducing efficient
numerical methods for computation. Technical details are deferred to the Appendix.

2 Modeling the transition risk of each portfolio
obligor

2.1 Overview of the approach

We consider a portfolio composed of n ∈ N∗ companies whose production depends
on their GHG emission levels measured in carbon dioxide equivalent CO2e where CO2e
means that all GHG emissions have been converted into CO2 emissions. To allow com-
parison of the global warming of different gases, climate scientists use global warming
potential (GWP) factors to convert one unit of a particular GHG to one unit of CO2.
For example, methane CH4 has a GWP of about 27-30 over 100 years. Note that GHGs
differ in their radiative efficiency (ability to absorb energy) and their lifetime (how
long they stay in the atmosphere), see [34, Table 2.14] for a detailed table of these
different GHG characteristics.

The companies aim to optimize their emission strategies following a low-carbon
mitigation transition. Specifically, the ith obligor solves the infinite-horizon optimiza-
tion problem

J i
(
γi

•

)
= E

[∫ ∞

0

e−rt
(
πi(P i

t )− Ci(γi
•,t)− ℓi1(γ

i
•,t) + ℓi2(γ

i
•,t)

)
dt

]
(2)

where
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• P i is the obligor’s production assumed to depend on time and to be stochastic
as it accounts for the demand uncertainty in goods. It will be modeled using the
Stochastic Differential Equation (4) which will be detailed later. The production
dynamics depends also on the energy power coming from different energy sources
e ∈ E i where E i is the set of all of the energy sources available to the ith obligor.
The energy power is proportional to the vector of GHG emissions γi

• := (γe)e∈E i .
We refer to Subsection 2.2 for details, in particular equation (4) which describes
how γi

• := (γe)e∈E i affects P i.
• πi is a profit function and r > 0 is a discount factor.
• Ci(γi

•) represents the cost of purchasing these different primary energies, see (3).
• National and international authorities penalize (resp., reward) companies emitting
above (resp., below) an emission target, see below. This is encoded in the term
ℓi1(γ

i
•) (resp., ℓ

i
2(γ

i
•)), see Examples 1 and 2.

Comparing (2) with [5, Eq. 3], we note again that different energy sources are consid-
ered through the term γi

• := (γe)e∈E i and an additional reward term ℓ2 is included; this
is a significant difference with [5] as it allows for more realism in terms of adaptation
policy.

In our model, we do not consider any carbon compensation or offset, and we ignore
carbon permits that could be traded in carbon markets. This extension is left to further
research.

In the end, the optimal emission policy for the ith obligor is

γ̂i
• = arg sup

γi
•∈Ai

J i
(
γi

•

)
,

where Ai is the set of admissible emission policies for the ith obligor. In this simplified
model, we assume that companies are correlated through a common market factor but
they do not interact with each other through the drift coefficient.

Last, our approach for modeling production takes CO2e emissions as inputs, while
taking energy consumptions as inputs may initially appear more intuitive, given that
these consumptions yield different CO2e emissions. In fact, both approaches are equiv-
alent because of the ratio θie,t > 0. In our modeling, we prefer to focus on CO2e

emissions.
Below, we describe each step and establish that, under suitable model hypotheses,

there exists a unique emission policy for each obligor.

2.2 Modeling the link between GHG emissions and production

Energy sources: GHG emissions, emission factors, and cost.

According to the U.S. Energy Information Administration (EIA)1, the different energy
sources used by the U.S. industrial sector are: natural gas, petroleum, electricity,
renewable sources (mainly biomass), and coal. Depending on how and where these
energy sources are produced, their climate impact and price are different. For example,

1https://www.eia.gov/energyexplained/use-of-energy/industry.php
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most companies purchase electricity from electric utilities, independent power pro-
ducers, or possibly produce electricity for their own use with solar panels. Electricity
can be produced from nuclear energy (nuclear power plant), renewable energy (wind,
hydroelectric power plant, photovoltaic), fossil energy (oil, coal-fired power plant) or
a combination of nuclear/renewable/fossil energies. Depending on where the obligor
operates and its choice of suppliers, the electricity might be produced from a differ-
ent electric mix. To illustrate this, Table 1 shows an example of three different UK
Electricity Suppliers as of 2022. Observe for example that electricity produced from
nuclear energy (resp., gas) is 63.1% (resp., 15.1%) for EDF Energy and 7.0% (resp.,
74.0%) for Utilita.

Supplier Coal Gas Nuclear Renewable Other Emission factor (kgCO2e per kWh)
Utilita 9.0 74.0 7.0 3.0 8.0 0.429
e.on 2.0 16.1 1.5 78.8 1.6 0.093
EDF Energy 1.6 15.1 63.1 19.0 1.2 0.082
Bulb 0 0 0 100.0 0 ≈ 0

Table 1 Fuel Mix (in %) of some of the UK Domestic Electricity Suppliers as of 2022. Those values
are taken from https://electricityinfo.org/fuel-mix-of-uk-domestic-electricity-suppliers/. We assume
here that 1kgCO2e ≈ 1kgCO2 for electricity production. Note that because of The Electricity (Fuel
Mix Disclosure) Regulations Act of 2005, electric suppliers are obligated to provide details of the mix
of fuels used to produce electricity https://www.legislation.gov.uk/uksi/2005/391/contents/made.

Source of Energy Emission factors (kgCO2e per kWh)
Electricity (Coal) 0.820
Electricity (Gas) 0.490
Electricity (Wind) 0.011
Electricity (Nuclear) 0.012
Electricity (Hydro) 0.024
Charcoal 0.403
Crude Oil 0.264
Natural Gas 0.202

Table 2 A few examples of emission factors. For the
emission factors from electricity generation, we report the
median values of the lifecycle emissions from [38, Table
A.III.2]. For the others, we report the default emission
factors of [15, Table 2.2]. We have used the conversion
1kg/TJ = 18

5
× 10−6 × 1kg/kWh where 1TJ is one tera joule.

Those values are also reported at https://ourworldindata.
org/grapher/carbon-dioxide-emissions-factor

The last column of Table 1 is the so-called emission factor (sometimes called
emission intensity or carbon output rate)2. It quantifies how much GHG emissions
(measured in CO2e) are released when consuming 1 kWh of a particular energy source
e. Examples of emissions factors are reported in Table 2. Observe that the emission

2terminology from https://ember-climate.org/insights/research/european-electricity-review-2022/ and
https://www.eia.gov/tools/glossary/index.php?id=c
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factor for electricity produced from coal is about 0.820
0.012 ≈ 68 times higher than elec-

tricity produced from nuclear energy. Emission factors for world countries as of 2022
are reported in [18].

We also stress that countries have different energy mix profiles. For example, in
Figure 2, we plot the energy mix for China, the USA, and France in 2022. The share
of electricity produced from nuclear energy is 63% for France, 5% for China, 18% for
the USA, while when produced from coal it is 1% for France, 61% for China, and 19%
for the USA.
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Fig. 2 Left: Emission factors of electricity in kgCO2e/kWh as a function of time for France, the USA,
and China. Right: Bar plots of the electricity mix as of 2022 for the same countries. Data taken
from [36].

Notation.

In our model, we denote by E all the set of all possible energy sources3 an obligor can
use for its production:

E all :=
{
Coal consumption, Coal coke net imports, Petroleum consumption,

Dry natural gas consumption, Nuclear electricity net generation,

Hydroelectricity net generation, Geothermal electricity net generation,

Solar thermal and photovoltaic electricity net generation,

Wind electricity net generation, Electricity net imports, ...
}
.

We let E i ⊆ E all be the energy sources available to the ith obligor. Notice the
dependence of i for E i as the set of all available energy sources might differ from one
obligor to the other (different locations, different suppliers, etc). An obligor is unlikely
to have access to all possible energy sources E all and to use all available energy sources

3It corresponds to the list of energy sources for “Primary Energy Consumption” in the EIA’s glossary
https://www.eia.gov/tools/glossary.
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E i. This fact will be materialized in the constraint set Gi, see (8) in Subsection 2.3. We
stress that we are not attempting to optimize the selection of energy sources (e)e∈E i ,
but rather to optimize the obligor’s emissions (γe)e∈E i .

Two features characterize an energy source e ∈ E i:

• the price αi
e,t > 0 per unit of e-energy consumed by the ith obligor at time t. The

price may differ from one obligor to the other as it depends on the location of the
obligor’s offices, factories, and its access to related energy supply companies and
their rates. We assume that the price is a deterministic function of time 4. Its unit
is USD/kWh. In Figure 3, we plot the yearly U.S. average prices of gasoline, gas, and
electricity from 1978-79 to 2023.

• the power/CO2e ratio θie,t > 0. It corresponds to the average production rate for each
energy e, i.e., the quotient of the total equivalent power production with respect to
the equivalent CO2 emission from using e. Its unit is kW/kgCO2e. It equals the inverse
of the emission factor (previously described), divided by one hour. These power/CO2e
ratios may depend on i because companies may differ in their geographic zones and
countries with different electricity mixes, as illustrated in Figure 2. We assume that
each t 7→ θie,t is a deterministic function of time.

For every obligor, there exists a trade-off between price and emission factor depend-
ing on how “green” the obligor is. An obligor might want to pay more for using
“cleaner” energy sources. However, the obligor’s probability of default could increase if
the costs of fulfilling carbon obligations (e.g., through carbon pricing or sequestration)
become too high. Conversely, successful mitigation strategies and efficient management
of such obligations can help achieve financial net zero, as introduced in [20].
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Fig. 3 Left: Yearly US average price of Gasoline in USD/liter. Right: Yearly US average prices of
household gas and electricity in USD/kWh. Source: U.S. Bureau of Labor Statistics.

We denote by γi
•,t := (γi

e,t)e∈E i the vector of instantaneous GHG emissions for the

ith obligor coming from each of the primary energy sources e ∈ E i. Its unit is kgCO2e.

4Ideally, the price αe,t should depend on the future scenario pathway considered. Electric price scenarios
for some sectors are available in the AR6 database https://data.ene.iiasa.ac.at/ar6
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With our notations, the instantaneous energy (in kWh) coming from e consumed during
a small interval [t, t+ dt] (in hours h) is then

θie,t × γi
e,t dt.

The cost (in USD) of consuming such energy is

αi
e,t × θie,t × γi

e,t dt,

while the cost (in USD) of consuming energy coming from all sources e ∈ E i is∑
e∈E i

αi
e,t × θie,t × γi

e,t dt =: αi,θ
•,t · γi

•,t dt

where we have introduced the short-hand notation

αi,θ
•,t := (αi

e,t × θie,t)e∈E i ,

and · denotes the scalar product. In addition, to account for the limited amount of
energy available at a given date, we add a quadratic term that captures the fact that
marginal energy cost is increasing with the demand. Introducing the notations,

βi,θ
•,t :=

(
βi
e,t × (θie,t)

2
)
e∈E i

, (γ2)i•,t := ((γi
e,t)

2)e∈E i ,

the total energy cost over the interval [t, t+ dt] writes as

Ci(γi
•,t) dt =

∑
e∈E i

(
αi
e,t ×

(
θie,t × γi

e,t

)
+ βi

e,t ×
(
θie,t × γi

e,t

)2)
dt

=
(
αi,θ

•,t · γi
•,t + βi,θ

•,t · (γ2)i•,t

)
dt (3)

where t 7→ αi
e,t and t 7→ βi

e,t (and thus t 7→ αi,θ
e,t and t 7→ βi,θ

e,t) are strictly positive and

deterministic measurable functions of time for any e ∈ E i. In the specific example of
[5, Eq. 14], a single energy type was considered, and the total energy cost was entirely
quadratic in the emissions. Here, we consider various types of energy and include
a linear term in the emissions to model the cost in USD of consuming energies. An
illustration on how obligor emissions may evolve with time is depicted later in Figure
5.
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Fig. 4 CO2 emissions in some of the CIMP6 Scenarios for the transportation (left figure) and indus-
trial (right figure) sectors. See the AR6 Scenario Explorer and Database at https://data.ene.iiasa.ac.
at/ar6/.

Total GHG emissions.

Using the previous notations, the total GHG emissions is∑
e∈E i

γi
e,t = 1 · γi

•,t

where 1 is a vector with unit components in the appropriate dimension equal to |E i|.
Let γ̃i = (γ̃i

t , t ≥ 0) be a carbon emission benchmark (e.g., an SSP of a certain
sector to which the ith obligor belongs to), which is supposed to be a deterministic and
measurable function with respect to time. See Figure 4 for such emission benchmarks.
At time t, the obligor is:

• penalized if its global emission is above γ̃i
t through ℓi1

(
1 · γi

•,t − γ̃i
t

)
where ℓi1 is a

non-decreasing continuous function,
• rewarded if its global emission is below γ̃i

t through ℓi2
(
γ̃i
t − 1 · γi

•,t

)
where ℓi2 is

another non-decreasing continuous function.

We further assume that ℓi1, ℓ
i
2 have at most a quadratic growth at infinity. They corre-

spond to national or international policies aimed at incentivizing the reduction of GHG
emissions through the establishment of specific quantitative targets. The selection of
penalty and reward functions remains a challenging issue for regulatory authorities.
Imposing higher penalties, such as exponential penalty functions, may prompt imme-
diate responses from companies. However, this could yield long-term adverse effects on
their productivity or competitiveness. Therefore, a well-designed penalty and reward
mechanism is crucial for encouraging companies to enhance their adaptation and
mitigation measures while maintaining alignment with their business strategies.
Example 1. The functions ℓi can be taken as

ℓi1(x) = ωi
1 x2

+, ℓi2(x) = ωi
2 x2

+,

12
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where x+ = max(x, 0), and ωi
1, ω

i
2 ≥ 0 are constant parameters representing respec-

tively the penalty and reward forces. We choose a quadratic penalty (resp., reward)
function to accentuate large values of over-emission (resp., under-emission) compared
to the benchmark emission scenario. This example is further investigated in Theo-
rems 3 and 4. This results in a convex problem that allows for an explicit solution for
each obligor and can be solved numerically with fast algorithms for all obligors in the
portfolio.
Example 2. The functions ℓi can be taken as

ℓi1(x) = ωi
1 x2

+, ℓi2(x) = ωi
2 x+.

Here, the reward function has a linear growth rate. Compared to the previous example,
there is less incentive to pollute less though the cost of polluting remains the same.

Production dynamics and profit function.

We consider the special model where the profit function is given by

πi(x) = APi × log(x),

where APi is a given average price.
To define the stochastic model for the production, consider a filtered probability

space (Ω,F ,F = (Ft)t≥0,P) on which is defined n+1 independent standard Brownian
motions B,B1, . . . , Bn. Given the logarithmic nature of the profit function, we directly
model the log-production pit = log(P i

t ) as a linear stochastic differential equation

dpit = µi(t, pit, γ
i
•,t) dt+ σi dW i

t ,

µi(t, p, γi
•,t) = ai − bip+

∑
e∈E i

cie × γi
e,t × θie,t

= ai − bip+ ci,θ• · γi
•,t,

(4)

where we have introduced
ci,θ• := (cie × θie,t)e∈E i

and
dW i

t = ρi dBt +
√

1− (ρi)2 dBi
t (5)

with correlations ρi ∈ (−1, 1). B reads as a systemic risk factor and the (Bi)1≤i≤n as
independent idiosyncratic risk factors. We further assume that σi > 0.

In (4), the coefficient ai ≥ 0 represents an average production level, bi ≥ 0 is a
mean-reverting parameter and cie measures the obligor’s energy consumption depen-
dence on e. Making cie depend on e serves as a means to convey that, from the
perspective of the ith obligor, it is possible to interchange energy sources, even though
the power consumption γi

e × θie remains the same. To illustrate this concept, con-
sider the straightforward example of hydroelectric power generation and fuel usage for
vehicle transportation.

13



2.3 The obligor’s optimization plan

Each obligor aims to optimize its emission level under the double objectives of
maximizing its production profit and respecting the emission mitigation scenario.
Mathematically, it corresponds to

γ̂i
• := arg sup

γi
•∈Ai

J i
(
γi

•

)
, (6)

J i
(
γi

•

)
:= E

[∫ ∞

0

e−rt

(
APi pit − αi,θ

•,t · γi
•,t − βi,θ

•,t · (γ2)i•,t

− ℓi1
(
1 · γi

•,t − γ̃i
t

)
+ ℓi2

(
γ̃i
t − 1 · γi

•,t

))
dt

]
, (7)

where r > 0 is a constant positive discount rate. The admissible stochastic control set
Ai contains all progressively measurable processes γi

• valued in∏
t≥0

Gi•,t with Gi•,t =
∏
e∈E i

[0, λmax
e,t ] (8)

where the function t 7→ λmax
e,t is measurable.

Mathematically, what is important is that the set Gi•,t is a closed, bounded, and

non-empty subset 5 of [0,+∞)|E
i|.

We assume that the following integrability condition holds: there exists η ∈ (0, r)
such that ∫ ∞

0

e−ηt sup
γi
•,t∈Gi

•,t

|γi
•,t|2 dt < +∞. (9)

In view of (8), the condition writes
∫∞
0

e−ηt supe∈E i(λmax
e,t )2 dt < +∞.

2.4 Existence and uniqueness of an optimal emission

We now characterize the solution γ̂i
• to the optimization problem (6).

Theorem 1. Let i ∈ {1, · · · , n} and for any γ•,t, define

f i
t (γ

i
•,t) :=

APi

r + bi
ci,θ• · γi

•,t − αi,θ
•,t · γi

•,t − βi,θ
•,t · (γ2)i•,t−

ℓi1
(
1 · γi

•,t − γ̃i
t

)
+ ℓi2

(
γ̃i
t − 1 · γi

•,t

)
. (10)

Assume that

5Allowing for unbounded Gi
t is presumably possible but would lead to extra technicalities that are not

central to our work. Furthermore, on the application side, restricting to bounded emissions is natural.
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• the benchmark global emission t 7→ γ̃i
t is such that∫ ∞

0

e−ηt|γ̃i
t |2dt < +∞, (11)

• there exists a γ̂i
•,t ∈ Gi•,t maximizing f i

t (·).

Then, this maximizer solves the optimal stochastic control problem (6).
Theorem 2. Assume that (11) holds, that γi

•,t 7→ f i
t (γ

i
•,t) is continuous and strictly

concave. Then, there exists a unique γ̂i
•,t ∈ Gi•,t maximizing f i

t (·) and thus solving the
optimization problem (6).

The main advantage of the setting of Theorem 2 compared to that of Theorem 1
is algorithmic, because, in the above concave case, we can make use of fast algorithms
to compute the maximizer of f i

t (·), (see, e.g., the projected gradient descent algorithm
exposed in Remark 3).
Theorem 3. Consider the loss functions of Example 1, i.e., ℓi1(x) = ωi

1(x+)
2 and

ℓi2(x) = ωi
2(x+)

2. Then, when ωi
2

(
1 · 1

βi,θ
•,t

)
< 1 for any t ≥ 0, the assumptions of

Theorem 2 are satisfied.
Note that the loss functions of Example 2 do not allow to retrieve a concave

problem: as the reader can easily check, this is mainly due to the fact that g(z) :
z 7→ z2 − cz+ (with c > 0) is not a convex function (indeed, g(ϵ) + g(−ϵ) < 2g(0)
for a small enough ϵ > 0). Despite this lack of convexity, the conditions of Theorem
1 apply: indeed, the function γi

•,t 7→ f i
t (γ

i
•,t) is continuous on a compact set Git and,

thus, admits a maximizer. However, the uniqueness is not guaranteed.

Proof of Theorem 1. To alleviate notation, we omit the index i. Let γ• = (γe)e∈E ∈ A
be an admissible strategy to the problem (7). Then, the difference J(γ̂•)−J(γ•) equals

E
[ ∫ ∞

0

e−rt

(
AP

(
p̂t − pt

)
− αθ

•,t ·
(
γ̂•,t − γ•,t

)
− βθ

•,t ·
(
(γ̂2)•,t − (γ2)•,t

)
− ℓ1(1 · γ̂•,t − γ̃t) + ℓ1(1 · γ•,t − γ̃t) + ℓ2(γ̃t − 1 · γ̂•,t)− ℓ2(γ̃t − 1 · γ•,t)

)
dt

]
(12)

where p̂t is given by

dp̂t = (a− bp̂t + cθ• · γ̂•,t)dt+ σdWt, p̂0 = p0. (13)

By Ito’s formula, we have

d
(
e−rt(p̂t − pt)

)
= e−rt

(
− (b+ r)(p̂t − pt) + cθ• · (γ̂•,t − γ•,t)

)
dt. (14)

Since γ• ∈ A, we have

E
[(∫ ∞

0

e−ηt|cθ• · γ•,t|dt
)2

]
≤

(∫ ∞

0

(e−ηt/2)2dt
)
E
[∫ ∞

0

(e−ηt/2|cθ• · γ•,t|)2dt
]
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≤ |c
θ
• |2

η
E
[∫ ∞

0

e−ηt|γ•,t|2dt
]
< +∞

using the integrability condition (9). Therefore, the integral
∫∞
0

e−ηt|cθ• ·γ•,t|dt is finite
almost surely; the same holds obviously for γ̂•. By solving the equation (13), we get

p̂t − pt =

∫ t

0

e−b(t−s)cθ• · (γ̂•,s − γ•,s)ds,

|e−rt(p̂t − pt)| ≤ e(η−r)t

∫ t

0

e−ηs|cθ• · (γ̂•,s − γ•,s)|ds

using b ≥ 0. Hence, since r > η,

lim
t→+∞

e−rt(p̂t − pt) = 0, a.s.,

which leads to∫ ∞

0

e−rt
(
− (b+ r)(p̂t − pt) + cθ• · (γ̂•,t − γ•,t)

)
dt = 0, a.s.,

owing to (14). Consequently, (12) rewrites as

J(γ̂•)− J(γ•)

= E
[ ∫ ∞

0

e−rt

(
AP

r + b
cθ• · (γ̂•,t − γ•,t)− αθ

•,t ·
(
γ̂•,t − γ•,t

)
− βθ

•,t ·
(
(γ̂2)•,t − (γ2)•,t

)
− ℓ1(1 · γ̂•,t − γ̃t) + ℓ1(1 · γ•,t − γ̃t) + ℓ2(γ̃t − 1 · γ̂•,t)− ℓ2(γ̃t − 1 · γ•,t)

)
dt

]
= E

[∫ ∞

0

e−rt
(
ft(γ̂•,t)− ft(γ•,t)

)
dt

]
.

As γ̂•,t maximizes ft(·) for any t, we have proved the announced statement. Moreover,
we can show that t 7→ γ̂•,t is measurable, see Appendix B for detail.

Proof of Theorem 2. The strict concavity of f i
t (·) on the convex set Git ensures that

the set of maximizers of γ̂i
•,t is reduced to a singleton.

Proof of Theorem 3. We omit the index i. In view of Theorem 2, it is enough to prove
that for any t, the continuous function ft is strictly concave with the current choice of
loss functions ℓ1 = ω1(x+)

2 and ℓ2 = ω2(x+)
2. At any given t, the Hessian matrix is

(
D2ft(γ•)

)
e,e′

:=
∂2ft(γ•)

∂γe ∂γe′
= −21e=e′β

θ
e,t − 2ω11Et + 2ω21Ec

t
, e, e′ ∈ E ,

where Et := {γ̃t < 1 · γ•}. On the set of γ• such that Et holds, then D2ft(γ•) is
obviously negative definite because we have assumed βθ

e,t > 0 for any e and t, and ω1 ≥
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0. On the complementary set where 1Et = 0, the sign analysis is less straightforward.
Let us compute the associated quadratic form: for any non-zero x• = (xe)e∈E ∈ R|E |,
we have

1

2
x• ·D2ft(γ•)x• = −

∑
e∈E

βθ
e,tx

2
e + ω2

(∑
e∈E

xe
)2

≤ −
∑
e∈E

βθ
e,tx

2
e + ω2

(∑
e∈E

1

βθ
e,t

)(∑
e∈E

βθ
e,tx

2
e

)
< 0,

since ω2

(∑
e∈E

1
βθ
e,t

)
< 1 and

∑
e∈E βθ

e,tx
2
e > 0. We have proved that, in any case,

D2ft(γ•) is negative definite, i.e., ft is strictly concave.

2.5 An explicit example

We now offer efficient emission strategies with explicit formulas based on Example 1
and Theorem 3.
Theorem 4. Assume that the assumptions of Theorem 3 are in force. For any t ≥ 0,
define

Γi
t :=

1

2βi,θ
•,t

·
(APi ci,θ•

r + bi
− αi,θ

•,t

)
, ξi1,t := ωi

1

(
1 · 1

βi,θ
•,t

)
, ξi2,t := ωi

2

(
1 · 1

βi,θ
•,t

)
and assume that for all e ∈ E i,

0 <
APi ci,θe
r + bi

− αi,θ
e,t −

2ωi
1

1 + ξi1,t

(
Γi
t − γ̃i

t

)+ − 2ωi
2

1− ξi2,t

(
γ̃i
t − Γi

t

)+
< 2βi,θ

e,tλ
max
e,t . (15)

Then, the optimal emission strategy for the energy source e has the explicit form

γ̂i
e,t =

1

2βi,θ
e,t

(APi ci,θe
r + bi

− αi,θ
e,t −

2ωi
1

1 + ξi1,t

(
Γi
t − γ̃i

t

)+ − 2ωi
2

1− ξi2,t

(
γ̃i
t − Γi

t

)+)
. (16)

Furthermore, the excess emission equals

1 · γ̂i
•,t − γ̃i

t =
1

1 + ξi1,t

(
Γi
t − γ̃i

t

)+ − 1

1− ξi2,t

(
γ̃i
t − Γi

t

)+
. (17)

Proof. We compute the gradient of (10). For any t ≥ 0 and energy source e ∈ E i,

∂f i
t

∂γi
e,t

(γi
•,t) =

APi ci,θe
r + bi

−αi,θ
e,t−2βi,θ

e,tγ
i
e,t−2ωi

1

(
1 ·γi

•,t− γ̃i
t

)
+
−2ωi

2

(
γ̃i
t−1 ·γi

•,t

)
+
. (18)

From Theorem 3, we know that f i
t is strictly concave so that it is enough to check

that γ̂i
e,t given by (16) is in

(
0, λmax

e,t

)
(the interior of the constraint set) and cancels

(18). The verification that γ̂i
e,t ∈

(
0, λmax

e,t

)
is immediate from the condition (15).
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Let us now verify that γ̂i
e,t cancels (18) and verifies (17). Consider the first case

where Γi
t ≥ γ̃i

t : summing over e in (16), we have

1 · γ̂i
•,t − γ̃i

t = Γi
t −

ξi1,t
1 + ξi1,t

(
Γi
t − γ̃i

t

)
− γ̃i

t

=
1

1 + ξi1,t

(
Γi
t − γ̃i

t

)
,

and therefore, we get

∂f i
t

∂γi
e,t

(γ̂i
•,t) =

APi ci,θe
r + bi

− αi,θ
e,t −

(APi ci,θe
r + bi

− αi,θ
e,t −

2ωi
1

1 + ξi1,t

(
Γi
t − γ̃i

t

))
− 2ωi

1

1 + ξi1,t

(
Γi
t − γ̃i

t

)
= 0.

Consider now the second case where Γi
t < γ̃i

t . A similar computation gives

γ̃i
t − 1 · γ̂i

•,t = γ̃i
t − Γi

t +
ξi2,t

1− ξi2,t

(
γ̃i
t − Γi

t

)
=

1

1− ξi2,t

(
γ̃i
t − Γi

t

)
and consequently, it readily follows that

∂f i
t

∂γi
e,t

(γ̂i
•,t) =

APi ci,θe
r + bi

− αi,θ
e,t −

(APi ci,θe
r + bi

− αi,θ
e,t −

2ωi
2

1− ξi2,t

(
γ̃i
t − Γi

t

))
− 2ωi

2

1− ξi2,t

(
γ̃i
t − Γi

t

)
= 0.

The proof is complete.

Remark 1. The interpretations of the above results are as follows. First, when there
is no penalty or reward policy, then the obligor’s optimal emission strategy for each
energy e is

1

2βi,θ
e,t

( ci,θe
r + bi

− αi,θ
e,t

)
.

When the incentive policies are incorporated, that is, when ω1 and ω2 become strictly
positive, the obligor reduces its emissions level. Second, the price of a given energy
αi,θ
e,t is bounded from above by a certain level so that the energy e is chosen by the

obligor. In the opposite case, the emission by the corresponding energy may drop to
zero, meaning that the obligor prefers to avoid e and choose other types of energy.

We conclude this section by illustrating, in Figure 5, the outputs of Theorem 4.
Namely, we consider the scenario SSP1-26 for the industrial sector and three energy
types (natural gas, electricity from nuclear, and electricity from coal). We use the
values of Table 2 for the power/CO2e ratios and Figure 2 for the prices. More precisely,
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the parameters are r = 0.05, a = b = 0, c = (1, 1, 1), ω1 = 10−4, ω2 = 0, α =
(0.05, 0.16, 0.16), β = (1, 1, 1), θ = (1/0.202, 1/0.012, 1/0.820)/3600. As expected in
view of the SSP1-26 scenario (right plot of Figure 4), the total emission gets reduced
as time goes by, and the reduction mainly impacts the browner sources of energy (first
coal, second natural gas).
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Fig. 5 Optimal emissions for three types of energy: natural gas, electricity from nuclear, and elec-
tricity from coal. Scenario: SSP1-26. Sector: Industrial.

3 Modeling the physical risk of each portfolio obligor

Now, we model the physical risk and its effect on the obligor’s value process. Inspired by
actuarial science, especially ruin theory [1], we model our aggregate loss as a compound
Poisson process, capturing the randomness of physical risk events in time, independent
inter-arrival intervals, and random losses denoted as Z. Our goal, however, is to provide
a more tailored analysis specific to the obligor of interest. In our study, we incorporate
the temporal evolution of the magnitude of physical risks, offering a detailed and
dynamic perspective on how these risks affect the obligor.

3.1 Disintegrating the physical risk over climate and weather
event types

In our modeling, we aim to consider two specific aspects:

1. Not all climate and weather events are relevant to a particular obligor.
2. The obligor’s exposures vary based on the geographical zones of its offices and

factories.

Climate extremes (droughts, heatwaves, sea level rise, etc) pertain to long-term,
persistent deviations from typical climate conditions, while weather extreme events
(tornadoes, blizzards, tsunamis, etc) are short-term, intense deviations from normal
weather patterns. They both occur on different timescales (typically from hours to a
few days for weather-extreme events) and have distinct characteristics. Types of cli-
mate extremes and weather extreme events cw are extensively detailed in [39] and
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consist of

CW :=
{
storm/typhoon/hurricane/tornado/tropical cyclone,

hailstorm, flood, winter storm, level sea rise, and storm surge,

heat wave, drought, wildfire, extreme cold spells, snowstorms, and blizzards,. . .
}
.

For each climate and weather event cw and geographical zone l, we associate a Pois-
son process Ncw,l (defined on the same filtered probability space as before) with a

deterministic intensity t 7→ λcw,lt . The intensity varies over time due to the global
impact of climate change, which increases the frequency of extreme weather events.
However, the outcome is location-dependent, with some areas experiencing heightened
frequencies while others may see decreases. We refer to [21] for the mathematical def-
inition of a time-inhomogeneous Poisson process. While these Poisson processes could
be defined with interdependencies, they do not affect the subsequent derivation, as we
demonstrate.

When a climate and weather event cw occurs in a geographical zone l and time u,
the ith obligor experiences an immediate loss Zi,cw,l

u
6 resulting from the obligor’s vul-

nerability and exposure to climate events. Over a time interval [t0, t1], the cumulative
loss incurred by the ith obligor is∫ t1

t0

∑
cw,l

Zi,cw,l
u dNcw,l

u .

3.2 Expected loss for an obligor

The obligor is making provisions for these physical risks by discounting future losses
with an interest rate r. This leads to the following definition of the Expected Physical
Loss (EPL) as follows:

EPLi(t) := E
[∑

cw,l

∫ ∞

t

e−r(u−t)Zi,cw,l
u dNcw,l

u

∣∣Ft

]
. (19)

From the properties of the compound process, we have

EPLi(t) =

∫ ∞

t

e−r(u−t)
(∑

cw,l

E
[
Zi,cw,l
u

]
λcw,lu

)
du, (20)

where we have additionally assumed that the random losses (Zi,cw,l
u )u are independent

(in time) – this is a standard assumption in actuarial sciences.
Alternatively to the above Expected Physical Loss, we could better capture the

full distribution of the physical losses, i.e. the term
∑

cw,l

∫
· · · in (19), by computing

quantile-based measures (e.g., Value-at-Risk). This approach is commonly used in the

6on the mathematical side, Zi,cw,l is a càglàd process
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Solvency II framework with the Minimum Capital Requirement (MCR) and Solvency
Capital Requirement (SCR). This option is briefly discussed in Remark 1.

3.3 Calibration procedure

To use the above description, we have to model the time evolution of

u 7→ E
[
Zi,cw,l
u

]
, u 7→ λcw,lu ,

according to each geographical zone l and climate and weather event cw.
Empirical studies, like [19], reveal a strong connection between the frequencies

λcw,lu of climate events, mean losses E
[
Zi,cw,l
u

]
, and the climate mitigation trajectory

linked to a specific SSP. In a scenario like SSP5, characterized by significant warming,
obligors would face more frequent and substantial losses. Conversely, in a greener,
highly mitigated scenario such as SSP1, losses would be far less frequent and severe.
We suggest a simplified, realistic model suitable for straightforward calibration.

From the Nordhaus model [30, 31] (also known as the DICE model – Dynamic
Integrated model of Climate and the Economy), we know that E

[
Zi,cw,l
u

]
and λcw,lu

depend on the global rise in atmospheric temperature TATM through a damage function
D. In the initial DICE model, the damage is quadratic:

D
(
TATM

)
= a1TATM + a2T 2

ATM (21)

with a1 = 0, a2 = 0.0028388 (2008 version of DICE). Alternative functions have been
proposed in the literature; see [17, 41], for instance. Note that TATM refers to the
global average temperature increase relative to the pre-industrial era. For simplicity,
we assume the damage function is identical for all companies and independent of cw
and l.

We assume that
∑

cw,l E
[
Zi,cw,l
u

]
λcw,lu evolves proportionally to D(TATM(u)), where

the path of the atmosphere temperature is given by the selected SSP and denoted
u → TATM(u), see Figure 6 for some relative temperature paths for different SSP
scenarios. All in all, our model of physical losses for the ith obligor becomes

EPLi(t) :=
(∑

cw,l

E
[
Zi,cw,l
tref

]
λcw,ltref

)∫ ∞

t

e−r(u−t) D(TATM(u))

D(TATM(tref))
du, (22)

where tref is the time at which the model is calibrated.

Calculating the total physical losses of the obligor
(∑

cw,l E
[
Zi,cw,l
tref

]
λcw,ltref

)
is based

on historical obligor data. Note that we are not accounting for any changes the obligor
may have made to its operations or locations in recent years. Observe also that the inte-
gral factor is common across all companies. In essence, when evaluating future physical
risk, we begin with historical losses and apply a scenario-dependent multiplicative
factor ∫ ∞

t

e−r(u−t) D(TATM(u))

D(TATM(tref))
du.
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Fig. 6 Global average temperature increase relative to the pre-industrial era (year 1750) for different
SSPs. Source: [35], https://ourworldindata.org/.

Remark 1. To more effectively capture the full distribution of physical losses, we
could define a Value-at-Risk-based measure at risk level α, thereby replacing EPLi in
(19) with

VaRα-PL
i(t) =

∫ ∞

t

e−r(u−t) VaRα

[∑
cw,l

∫ u

u−1

Zi,cw,l
s dNcw,l

s ds
]
du. (23)

The quantity PLi
u :=

∑
cw,l

∫ u

u−1
Zi,cw,l
s dNcw,l

s ds represents the physical loss incurred
by the ith obligor over a one-year period ending at time u. By applying similar argu-
ments to those used for the estimation of EPLi, the VaRα-PL

i metrics can be derived
via DICE-rescaling as

̂VaRα-PL
i(t) = VaRα

[
PLi

tref

] ∫ ∞

t

e−r(u−t) D(TATM(u))

D(TATM(tref))
du. (24)

Additionally, the quantity VaRα

[
PLi

tref

]
can be inferred from historical physical loss

data.

4 Obligor’s default probability in an explicit model

We model the default event as in the structural credit approach, [37, Chapter 3]. At
a given time t ≥ 0, an obligor defaults if its value is inferior to its debt and liability
level. The probability of default for the ith obligor is

PDi
t = P

(
V̂ i
t ≤ Li(t)

)
where the obligor’s value V̂ i

t is impacted by both transition and physical risks, and
the default barrier Li(t) is a deterministic function which represents the minimal level
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of the obligor’s liability payment such as the debt reimbursement and the labor cost
of the obligor at time t.

In the following, we define the obligor’s value V̂ i
t as the conditional discounted

value of the obligor’s future cashflow at time t ≥ 0 with the optimal emission strategy
γ̂i, minus the expected physical losses (19). We also take losses functions ℓ1(·), ℓ2(·)
to be the same as in Example 1. This yields

V̂ i
t := E

[∫ ∞

t

e−r(u−t)

(
APi × P̂ i

u − αi,θ
•,u · γ̂i

•,u − βi,θ
•,u · (γ̂2)i•,u

− ωi
1

(
1 · γ̂i

•,u − γ̃i
u

)2
+
+ ωi

2

(
γ̃i
u − 1 · γ̂i

•,u

)2
+

)
du

∣∣∣∣∣Ft

]
− EPLi(t),

(25)

where P̂ i denotes the optimal production associated with γ̂i
•. We note that although

the optimization is conducted with the logarithmic function, we here use the total
production for the computation of the obligor’s value.

Recall that in the explicit model of Section 2.5, the optimal emission γ̂i
• is deter-

ministic and explicitly given by (16). When the benchmark γ̃i is low (strict mitigation
scenario), the penalty coefficient ωi

1 plays an essential role in the optimal strategy,
while for a relatively loose scenario when the benchmark is high, the reward coefficient
ωi
2 is more important.
To facilitate the subsequent aggregation of losses across different obligors, let us

first describe the stochastic distribution of log production. From (4) and (5), the
optimal log production p̂i is

p̂iu = e−bi(u−t)p̂it +
ai

bi
(1− e−bi(u−t)) +

∫ u

t

e−bi(u−s)(ci,θ• · γ̂i
•,s)ds

+ σi

∫ u

t

e−bi(u−s)
(
ρidBs +

√
1− (ρi)2 dBi

s

)
,

(26)

for all u ≥ t.
Conditionally on Ft,

(
p̂iu

)
1≤i≤n

is an n-dimensional Gaussian vector with condi-

tional mean

E
[
p̂iu|Ft

]
= e−bi(u−t)p̂it +

ai

bi
(1− e−bi(u−t)) +

∫ u

t

e−bi(u−s)(ci,θ• · γ̂i
•,s) ds

=: e−bi(u−t)p̂it +mi(u, t),

(27)

and conditional covariance

Cov
(
p̂iu, p̂

j
u|Ft

)
:= Σi,j(u− t) = σiσj

(
ρiρj1i ̸=j + 1i=j

) 1− e−(bi+bj)(u−t)

bi + bj
, (28)

for every i, j ∈ {1, . . . , n}.
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5 Aggregated loss distribution of the portfolio

5.1 Modeling the loss

In this section, we consider the loss portfolio and its computation. Let the loss portfolio
be defined as

Lt =

n∑
i=1

Λi × 1{
V̂ i
t ≤Li(t)

} (29)

where Λi = EADi×LGDi and LGDi,EADi are respectively the loss given default and
exposure at default associated with the ith obligor. The time horizon t is typically
chosen to be one year according to the solvency regulation. If interested in longer-time
horizons, conditional losses can also be considered as our problem setting is Markovian.

From (22), (25), and the fact that E
[
P̂ i
u|Ft

]
= exp

(
e−bi(u−t)p̂it+mi(u, t)+ 1

2Σ
i,i(u−

t)
)
, we have

V̂ i
t = hi

(
t, p̂it

)
where the deterministic function hi(·, ·) is defined for all t ≥ 0 and x ∈ R as

hi(t, x) := APi

∫ ∞

t

e−r(u−t) exp
(
e−bi(u−t)x+mi(u, t) +

1

2
Σi,i(u− t)

)
du

−
∫ ∞

t

e−r(u−t)
(
αi,θ

•,u · γ̂i
•,u + βi,θ

•,u · (γ̂2)i•,u + ωi
1

(
1 · γ̂i

•,u − γ̃i
u

)2
+
− ωi

2

(
γ̃i
u − 1 · γ̂i

•,u

)2
+

)
du

− EPLi(t).

(30)

Note that hi(t, ·) is a continuous increasing bijection from R to (0,+∞), for any t.
The portfolio loss rewrites as

Lt =

n∑
i=1

Λi 1{
hi(t,p̂i

t)≤Li(t)
}

=

n∑
i=1

Λi 1{
p̂i
t≤(hi(t,·))−1(Li(t))

}
=

n∑
i=1

Λi 1{
e−bit p̂i

0+mi(t,0)+σi
√

1−(ρi)2
∫ t
0
e−bi(t−s) dBi

s−(hi(t,·))−1(Li(t))≤−σiρi
∫ t
0
e−bi(t−s) dBs

}
=

n∑
i=1

Λi 1{
Ai

t≤Xi
t

}
with Ai

t :=
1

σi

[
e−bit p̂i0 +mi(t, 0) + σi

√
1− (ρi)2

∫ t

0

e−bi(t−s) dBi
s − (hi(t, ·))−1(Li(t))

]
,

Xi
t := −ρi

∫ t

0

e−bi(t−s) dBs.
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Analyzing the distribution of Lt is intricate. Analytical methods are not suitable due
to it being a weighted sum of correlated Bernoulli random variables with varying
dependencies. An alternative Monte Carlo simulation is feasible but time-consuming
for several reasons: a) in typical cases, there are many obligors (n is large); b) the
number of correlated Gaussian random variables is large (as large as n) making sam-
pling Lt costly; c) numerous Lt samples are required, especially for tail event risk
management.

To tackle these challenges, we utilize two efficient dimension reduction methods,
leveraging multiple enhancements.

• The distribution of the vectorXt = (Xi
t)1≤i≤n is Gaussian. An initial, naive assump-

tion might be that the rank of its covariance matrix KXt
approximately equals the

number of distinct bi, and that all eigenvalues hold significant importance. How-
ever, this intuition is considerably flawed. A thorough examination of the spectral
decomposition of KXt

reveals a surprising result: the top two eigenvalues account
for over 99% of the total variance (i.e., the trace of KXt

). Consequently, we first
perform a Principal Component Analysis (PCA) on the vector Xt, reducing it to
two principal factors. For an in-depth analysis, refer to Section 5.2.

• This approach allows us to express the loss Lt as a sum of indicator functions
with n independent Gaussian random variables (for

∫ t

0
e−bi(t−s)dBi

s) and two com-
mon factors derived from the PCA. Utilizing a two-dimensional Polynomial Chaos
Expansion (PCE) for indicator functions as outlined in [6], and retaining the first
M terms (typically M = 6 or 10 suffices), we further approximate Lt using a mul-
tivariate Gaussian random variable with a dimension of M + 2 and involving a
summation of M2 terms, instead of 2n Gaussian random variables and n terms in
the sum. Recall that typically n ≈ 106 for major banks: in comparison with the
new cost M2 ⪅ 100, the improvement in complexity is huge. This is elaborated in
Subsection 5.3.

In summary, this significantly reduces the overall computational cost of our climate
credit model.

5.2 Principal Component Analysis (PCA) of Xt := (Xi
t)1≤i≤n

Let KXt
=

(
(KXt

)i,j
)
1≤i,j≤n

be the covariance matrix of Xt. We have

(KXt)
i,j := Cov(Xi

t , X
j
t ) = ρiρj

∫ t

0

e−bi(t−s)e−bj(t−s)ds = ρiρj
1− e−(bi+bj)t

bi + bj
. (31)

Following [11, Section 3.2], the spectral decomposition of KXt
writes as

KXt
=

n∑
k=1

νkuk(uk)⊤

where (νk)1≤k≤n are the eigenvalues (in decreasing order) and (uk)1≤k≤n are the
eigenvectors of KXt

. Since the latter is a positive semi-definite matrix, νk ≥ 0 for all
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k. Equivalently,

Xt =

n∑
k=1

√
νkGkuk (32)

where the (Gk)1≤k≤n are independent N (0, 1) random variables.
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ν1 for k from 1 to 10 with n = 1000, ρ ∼ U [−1, 1] and b ∼ U [0, 1], U [1, 4], and U [0, 10].
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U [1, 4], and U [0, 10]. For each ratio, we provide the 95% confidence interval with 30 independent runs.

Note that when the bi are constant (say equal to b > 0), we can write KXt
=

ρρ⊤ 1−e−2bt

2b (where ρ is the vector of ρi) and therefore, the rank of KXt equals 1 at
most (νk = 0 for k = 2, · · ·n). For non-constant b, we observe (see Figures 7 and 8)
that KXt generally resembles a low-rank symmetric matrix, where only the first two
eigenvalues ν1 and ν2 matter. This can be assessed using the inertia:∑2

k=1 ν
k∑n

k=1 ν
k
.
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The above depends on bi and n and in our experiments, it is very close to 1. namely,
we take ρi ∼ U [−1, 1] and three distinct cases for the bi:

• bi ∼ U [0, 1]: the rank of KXt
is very close to one, corresponding to the scenario

where b is nearly constant.
• bi ∼ U [1, 4]: this is the typical case in practice, the characteristic time 1/b falls
between one quarter and one year.

• bi ∼ U [0, 10]: to illustrate that a rank-two approximation remains acceptable even
as the variance increases.

In Figure 7, we plot the ratio νk/ν1 from k = 1 to 10 with n = 1000 for a single
realization of ρi and bi. The plot demonstrates that the ratio decreases extremely
rapidly. Specifically, when bi ∼ U [0, 10], the ratio ν3/ν1 ≈ 10−2, and it is close to

10−5 when bi ∼ U [0, 1]. In Figure 8, we plot ν1∑
k νk ,

ν1+ν2∑
k νk , using boxplots over 100

replications for n ranging from 100 to 1500. The results show that the two eigenvalues
account for 99% of the total variance when bi ∼ U [0, 10], and 99.99% otherwise. We
have not yet been able to precisely quantify this property theoretically, including the
selection of the reduced dimension. Furthermore, to the best of our knowledge, this
phenomenon has not been documented in the existing literature on random matrices.

We now leverage these experimental observations to approximate the distribution
of Xt with a low-dimensional Gaussian distribution. We choose to truncate (32) and
keep only 2 terms:

Xt ≈
2∑

k=1

√
νkGkuk. (33)

Denoting the coordinates of the two eigenvectors u1, u2 by u1,i, u2,i for i = 1, . . . , n,
the above expansion leads to an approximate model

Lt ≈ LPCA
t :=

n∑
i=1

Λi 1{
Ai

t≤
√
ν1G1u1,i+

√
ν2G2u2,i

}. (34)

Proposition 5. The L1 error between the original and approximated loss is bounded
as follows:

E
[∣∣Lt − LPCA

t

∣∣] ≤ n∑
i=1

Λi

π

|ρi|√
1− (ρi)2

√∑n
k=3 ν

k(uk,i)2∑n
k=1 ν

k(uk,i)2
. (35)

The smaller the eigenvalues (νk, k ≥ 3) compared to the others, the better the
approximation. We have focused on the PCA approximation, but we do not claim that
the dependence of constants is optimal with respect to the probabilistic characteristics
of Ai

t. In particular, the estimate (35) does not account for the fact that we compute
tail risks (the indicator functions in (29) are likely equal to 0, which is not reflected
on the right-hand side of (35)).
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Proof. A direct triangular inequality yields

E
[∣∣Lt − LPCA

t

∣∣] ≤ n∑
i=1

Λi E
[∣∣∣∣1{Ai

t≤Xi
t

} − 1{
Ai

t≤
√
ν1G1u1,i+

√
ν2G2u2,i

}∣∣∣∣] . (36)

To bound the above, we use bounds on the distribution of Ai
t. Recall that Ai

t has

a Gaussian distribution with variance (1 − (ρi)2) 1−e−2bit

2bi . Observe that we have the
identity

(ρi)2
1− e−2bit

2bi
=

n∑
k=1

νk(uk,i)2;

this follows from the comparison of (31) and (32). Hence, the Gaussian density of Ai
t

is uniformly bounded by

1
√
2π

√∑
k≥1 ν

k(uk,i)2

|ρi|√
1− (ρi)2

.

If Xi
t >

√
ν1G1u1,i +

√
ν2G2u2,i, the difference of indicator functions in the right-

hand side of (36) equals 1{√
ν1G1u1,i+

√
ν2G2u2,i<Ai

t≤Xi
t

}; in the other case, it is equal

to −1{
Xi

t<Ai
t≤

√
ν1G1u1,i+

√
ν2G2u2,i

}. Since Ai
t is independent of Xi

t and
√
ν1G1u1,i +

√
ν2G2u2,i, we get

E
[∣∣∣∣1{Ai

t≤Xi
t

} − 1{
Ai

t≤
√
ν1G1u1,i+

√
ν2G2u2,i

}∣∣∣∣]
≤ 1√

2π
√∑n

k=1 ν
k(uk,i)2

|ρi|√
1− (ρi)2

E
[∣∣∣Xi

t −
√
ν1G1u1,i +

√
ν2G2u2,i

∣∣∣]
The quantity inside in the absolute value is Gaussian distributed with mean zero and
variance

n∑
k=3

νk(uk,i)2.

In addition, we have E
[
|G1|

]
=

√
2
π . All in all, we obtain

E
[∣∣∣∣1{Ai

t≤Xi
t

} − 1{
Ai

t≤
√
ν1G1u1,i+

√
ν2G2u2,i

}∣∣∣∣] ≤ 1

π

|ρi|√
1− (ρi)2

√∑n
k=3 ν

k(uk,i)2∑n
k=1 ν

k(uk,i)2
.

Plugging this into (36) readily completes the proof.
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5.3 Polynomial chaos expansion (PCE)

We further approximate LPCA using a polynomial chaos expansion (PCE). Write

LPCA
t =

n∑
i=1

Λi 1{
Ai

t√
ν1(u1,i)2+ν2(u2,i)2

≤
√

ν1u1,iG1+
√

ν2u2,iG2√
ν1(u1,i)2+ν2(u2,i)2

}
=:

n∑
i=1

Λi 1{
Ãi

t≤L1,iG1+L2,iG2
}

with Lk,i :=
√
νkuk,i√

ν1(u1,i)2+ν2(u2,i)2
for k = 1, 2 so that (L1,i)2 + (L2,i)2 = 1 and Ãi

t :=

Ai
t√

ν1(u1,i)2+ν2(u2,i)2
. Observing that L1,iG1+L2,iG2 ∼ N (0, 1), we apply a PCE of the

indicator function at order M (see Proposition 6) to get

LPCA,PCE
t :=

n∑
i=1

Λi
M∑

m=0

τm(Ãi
t)Hem(L1,iG1 + L2,iG2)

=

n∑
i=1

Λi
M∑

m=0

τm(Ãi
t)

∑
m1,m2≥0
m1+m2=m

m!

m1!m2!
(L1,i)m1(L2,i)m2Hem1(G

1)Hem2(G
2)

where we have used [6, Lemma 3.5] at the second equality. Introducing the new random
variables

εn,m1,m2 :=

n∑
i=1

Λi τm1+m2(Ã
i
t)
(m1 +m2)!

m1!m2!
(L1,i)m1(L2,i)m2 ,

the approximate portfolio loss rewrites as

LPCA,PCE
t =

M∑
m=0

∑
m1,m2≥0
m1+m2=m

εn,m1,m2
Hem1

(G1)Hem2
(G2). (37)

In the approximation of large n, the εn,m1,m2 being sums of independent ran-
dom variables, we can approximate the 1

2 (M + 2)(M + 1)-dimensional vector(
εn,m1,m2

)
m1+m2=m, 0≤m≤M

with a Gaussian vector (εGn,m1,m2
) with mean vectorM
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and covariance matrix K where for every 0 ≤ m1,m
′
1,m2,m

′
2 ≤M , we have

Mm1,m2
:= E [εn,m1,m2

] =

n∑
i=1

Λi E
[
τm1+m2

(
Ãi

t

)] (m1 +m2)!

m1!m2!
(L1,i)m1(L2,i)m2 ,

K(m1,m2),(m′
1,m

′
2)

:= Cov
(
εn,m1,m2 , εn,m′

1,m
′
2

)
=

n∑
i=1

(Λi)2 Cov
(
τm1+m2

(
Ãi

t

)
, τm′

1+m′
2

(
Ãi

t

))
× (m1 +m2)!

m1!m2!
(L1,i)m1(L2,i)m2

(m′
1 +m′

2)!

m′
1!m

′
2!

(L1,i)m
′
1(L2,i)m

′
2 ,

(38)
taking advantage of the independence of (Ãi

t)1≤i≤n. Our PCA-PCE portfolio loss with
Gaussian approximation finally writes as

LPCA,PCE,G
t :=

M∑
m=0

∑
m1,m2≥0
m1+m2=m

εGn,m1,m2
Hem1(G

1)Hem2(G
2).

The parametersM,K can be efficiently computed either thanks to recursive rela-
tions, see Proposition 7 for details, or via simple Gauss–Hermite quadratures. The L2

error due to the truncation between LPCA and LPCA,PCE is of order (
∑n

i=1 Λ
i)M− 1

4 .
Refined estimates for the L2 error are provided in [7, Theorem 2.7].

5.4 Numerical experiments

In this section, we aim to evaluate our methodology, focusing specifically on two key
aspects: the improvement in computational speed and the performance of the PCA-
PCE-based approximation. Additionally, we seek to assess the impact of physical risk
on the portfolio loss.

We focus on three distinct SSP scenarios: SSP1-26, SSP3-70 (Baseline), and SSP5-
85 (Baseline) for the transportation sector, see Figure 4. The portfolio loss maturity is
set at t = 5 years, where t = 0 corresponds to 2015. We take nmc = 105 Monte Carlo
samples for our analysis. We study the fictitious portfolio A with parameters:

Portfolio A:
t = 5 years, n = 1, 000, r = 2%, 3 different energy sources for e, cie = (0.01, 0.01, 0.01),
ω1 = 0.05, ω2 = 0.02, αi

•,t = (0, 0, 0), βi
•,t = (0.1, 0.5, 0.8), θi•,t = (1, 1, 1), P0 = 1,

σi i.i.d.∼ U [0, 1
2 ], a

i i.i.d.∼ U [0, 1
2 ], b

i i.i.d.∼ U [1, 4], ρi i.i.d.∼ U [−1, 1], Λi = 1√
i
, APi = 1,

λref = 3%.

5.4.1 Physical Risk Impact

In light of Section 3, to account for the physical risk associated with the portfolio,
we must compute the expected physical loss EPLi for each obligor i. From (25), we
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observe that when accounting for physical risk, the default barrier Li(t) increases by
the amount EPLi.

To compute EPLi as described in (22), we assume that the sum of the total phys-
ical losses amounts to 0.001% of the obligor’s current value. This is represented by∑

cw,l E
[
Zi,cw,l
tref

]
λcw,ltref

= 0.001%× V̂ i
0 . The damage function D is defined in (21).
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Fig. 9 Portfolio losses with and without physical risk when t = 5 years for the scenarios SSP1-26,
SSP3-70, and SSP5-85.

As anticipated, we see in Figure 9 that incorporating a physical risk term signifi-
cantly shifts the portfolio loss distribution upward. In the subsequent numerical tests
assessing the accuracy of PCA-PCE approximations, we eliminate physical risk by
setting EPLi(t) = 0 for all i, and focus solely on the transition risk component.

5.4.2 PCA approximation

We now evaluate the PCA approximation. In Figure 10, we present the density plots
of the loss portfolio and the two-factor-PCA-approximated loss. As anticipated from
the analysis in Section 5.2, the PCA approximation is highly accurate, with the two
densities appearing virtually identical.
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Fig. 10 Portfolio loss L and two-factor-PCA-approximated loss LPCA when t = 5 years for the
scenarios SSP1-26, SSP3-70, and SSP5-85 (top figures) and associated Q-Q plots (bottom figures).

5.4.3 PCA-PCE approximation

Next, we assess the PCA-PCE-approximated loss for truncation parameters M ∈
{1, 3, 5, 10} along with the respective Q-Q plot, see Figure 11. As expected, the
approximation improves with higher values of M .
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Fig. 11 Comparison of L and LPCA,PCE,G (left figures) and associated Q-Q plots (right figures)
with M = 1, 3, 5 and 10 when t = 5 years for the scenarios SSP1-26, SSP3-70, and SSP5-85.
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Let us further describe the numerical implementations of our PCA-PCE approx-
imation for the portfolio loss L. We assume that all parameters listed in Table 3 are
available.

For each scenario, we begin by pre-computing the PCA decomposition of the covari-
ance matrix KX , see (31), along with the mean and covariance of the vector ε for
the PCE. Next, we perform a Monte Carlo simulation to obtain nmc samples of the
approximated loss LPCA,PCE, as described in Algorithm 2.

As an example, when n = 10, 000 obligors and nmc = 105 Monte Carlo samples,
Algorithm 1 takes approximately 75 seconds, while Algorithm 2 takes approximately
2 seconds. For both Algorithms, the pre-computation of Li(t) and γ̂i

t takes about 10
minutes.

Algorithm 1: Crude Monte Carlo: Sampling of the portfolio loss Lt

Output: nmc i.i.d. samples of Lt;
for j ← 1 to nmc do

Compute vector of optimal emissions (γ̂1
t , . . . , γ̂

n
t ), see Theorem 4;

Sample Gaussian vector (p̂1t , . . . , p̂
n
t ), see (27) and (28);

Compute vector of optimal values (V̂ 1
t , . . . , V̂

n
t ) where V̂ i(t) = hi(t, p̂it), see

(30);
Compute the portfolio loss Lt =

∑n
i=1 Λ

i × 1{
V̂ i
t ≤Li(t)

}, see (29).

end

Algorithm 2: Monte Carlo: Sampling of the PCA-PCE portfolio loss with
Gaussian approximation (with loss functions as in Example 1)

Output: nmc i.i.d. samples of LPCA,PCE,G
t ;

Offline computation:
Find PCA decomposition of the covariance matrix KXt , see Section 5.2;
Compute parametersM,K (38) for the PCE using recursive relations in
Proposition 7;
for j ← 1 to nmc do

Sample
(
εGn,m1,m2

)
m1+m2=m, 0≤m≤M

∼ N (M,K);
Sample two independent G1, G2 ∼ N (0, 1);
Compute PCA-PCE portfolio loss with Gaussian approximation
LPCA,PCE,G
t =

∑M
m=0

∑
m1,m2≥0
m1+m2=m

εGn,m1,m2
Hem1

(G1)Hem2
(G2), see (37);

end

Remark 2. To calibrate the default boundary Li(t), we proceed as in [5, Section 3.2.].
Given a default intensity rate λi

ref for the ith obligor, Li(t) is determined such that

P
(
V̂ i
t (ω1 = ω2 = 0) ≤ Li(t)

)
= 1− e−λi

ref t,

where V̂ i
t (ω1 = ω2 = 0) corresponds to the optimal obligor’s value with no reward or

penalization.
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Remark 3 (Projected gradient descent to compute γ̂i
•,t under the setting of Theorem

2). In general, there is no closed-form solution for the optimal emissions. To
numerically solve

argmax
γ•∈Gi

•,t

f i
t (γ•), (39)

we can use a projected gradient descent (PGD) [8]. More precisely, we first use gradient
descent and then perform a projection onto Gi•,t, see (8). At the kth iteration, we set

for each energy source e ∈ E i,

γ
i,(k+1)
e,t = Proj[0,λmax

e,t ]

(
γ
i,(k)
e,t −ηk

∂

∂γi
e,t

f i
t (γ

i,(k)
e,t )

)
=

(
γ
i,(k)
e,t −ηk

∂

∂γi
e,t

f i
t (γ

i,(k)
e,t )

)+

∧λmax
e,t ,

where ηk is the step-size.
Recall from [29, Section 2.1] that if g is a convex and L-smooth function on Rd

then the convergence rate for a gradient descent γ(k) = γ(k−1) − ηk∇g(γ(k−1)) is
g(γ(k))−g(γ̂) ≤ O(1/k). If in addition g is µ-strongly convex 7, g(γ(k))−g(γ̂) ≤ O((1−
µ/L)k) = O(e−k(µ/L)) where k is the number of iterations. Because the projection
is onto a closed convex set, the convergence rates remain the same for (39), see [29,
Section 2.2.5].

Defining A := −x• ·D2ft(γ•)x•, we observe that:

A = 2
(∑

e∈E

βθ
e,tx

2
e − ω2

(∑
e∈E

xe
)2) ≥ 2

(∑
e∈E

βθ
e,tx

2
e

(
1− ω2

∑
e∈E

1

βθ
e,t

))
≥ µ

∑
e∈E

x2
e,

where µ = 2mine′∈E i βθ
e′,t

(
1 − ω2

∑
e∈E

1
βθ
e,t

)
. Similarly, A ≤ L

∑
e∈E x2

e with

L = 2maxe∈E i βe,t. Consequently, −ft(·) is convex, L-smooth, and µ-strongly convex,
which ensures that a PGD has the exponential convergence rate O(e−k(µ/L)).

6 Conclusion

We have designed an end-to-end methodology to assess the credit risk of a large port-
folio of obligors impacted by transition and physical climate risks, addressing both
modeling and computational challenges. Our model takes as input an SSP scenario,
transforms it into an optimal emission strategy for each obligor based on its character-
istics, and then deduces the impact on the obligor’s firm value within a structural credit
modeling framework. The aggregation of individual losses across the large portfolio
is achieved using two dimension-reduction techniques–Principal Component Analysis
and Polynomial Chaos Expansion–proven to be efficient and accurate. In the near
future, we will apply the whole procedure to real data.

7A differentiable function f : Rd → R is L-smooth if f(y) ≤ f(x) + ∇f(x) · (y − x) + L
2 ∥y − x∥2 and is

µ-strongly convex with µ > 0 if f(y) ≥ f(x) + ∇f(x) · (y − x) + µ
2 ∥y − x∥2 for all x, y ∈ Rd.
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A Polynomial Chaos Expansion

For any m ∈ N, denote Hem(x) := (−1)me
x2

2
dm

dxm

(
e−

x2

2

)
the probabilist’s Hermite

polynomials. They satisfy the three-term recurrence relation

He0(x) = 1, He1(x) = x, Hem+2(x) = xHem+1(x)− (m+ 1)Hem(x), ∀m ∈ N.

For a detailed account of Hermite polynomials, see [32, Chapter 18].
Proposition 6 ([7, Proposition 2.2 for Hermite polynomials]). Let c ∈ R and Z ∈ R.
Then,

1c≤Z =

∞∑
m=0

τm (c)Hem (Z)

where τ0(c) = Φ(−c) and τm(c) = e−
c2

2

m!
√
2π

Hem−1(c) for all m ∈ N∗. The equality holds

for all Z ̸= c.
Proposition 7 ([6, Proposition 3.1]). Let a ∈ R∗, b ∈ R and X ∼ N (0, 1). For every
i, j ∈ N, define

µi(a, b) := E [τi(aX + b)] ,

σi,j(a, b) := Cov (τi(aX + b), τj(aX + b)) .

Then, the following recursive relations hold:µ0(a, b) = Φ
(
− b√

1+a2

)
, µ1(a, b) =

e
− b2

2(1+a2)
√
2π

√
1+a2

,

µi+2(a, b) =
b

(i+2)(1+a2)µi+1(a, b)− i
(i+2)(i+1)(1+a2)µi(a, b),

σ0,0(a, b) = ΦΣ

(
(−b,−b)⊤

)
− µ0(a, b)

2, Σ =
(
1+a2 a2

a2 1+a2

)
.

σ0,1(a, b) = µ1(a, b)
(
µ0

(
a√

1+a2
, b
1+a2

)
− µ0(a, b)

)
,

σ0,i+2(a, b) =
b

(i+2)(1+a2)σ0,i+1(a, b)− i
(i+1)(i+2)(1+a2)σ0,i(a, b)

− a2

(i+2)(1+a2)µ1(a, b)µi+1

(
a√

1+a2
, b
1+a2

)
,

σi+1,j+1(a, b) =
1

a2(i+1)

[
−
(
1 + a2

)
(j + 2)σi,j+2(a, b) + bσi,j+1(a, b)− j

j+1σi,j(a, b)
]

−µi+1(a, b)µj+1(a, b),

where for all x ∈ R2, ΦΣ(x) := P(Y ≤ x) and Y ∼ N (0,Σ) with Σ positive definite.

B Proof of measurability in time for Theorem 1

We show that the (deterministic) optimal solution γ̂•,t of Theorem 1 is measurable in
time. Let d = |E i|. We use the notation f(t,x) : [0,+∞) × Rd → R to denote the
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function f i
t (·) defined in (10) by

f i
t (x) :=

APi

r + bi
ci,θ• · x− αi,θ

•,t · x− βi,θ
•,t · x2 − ℓi1

(
1 · x− γ̃i

t

)
+ ℓi2

(
γ̃i
t − 1 · x)

where for any x = (x1, · · · , xd), the notation x2 denotes the vector (x2
1, · · · , x2

d). The
standing assumptions are

1. For any x ∈ Rd, f(·,x) : R+ → R is measurable.
2. For any t ∈ R+, f(t, ·) : Rd → R is continuous.

For the sake of notational simplicity in (8), we rewrite the set Gi•,t as

Gt := [0, λ1(t)]× · · · × [0, λd(t)],

for some measurable (in time) mappings λi. This is a compact subset of Rd. We define
a new function extending f(t, ·) outside Gt as

g :

{
R+ × Rd → R,
(t, x) 7→ f(t,x)1x∈Gt

−∞1x/∈Gt

.

Since the λi’s are measurable, the indicator functions are measurable in time (for any
given x ∈ Rd), and since f(·,x) is measurable too, g(·,x) is measurable in time. Owing
to the form of Gt and the continuity of f in the second variable, observe that

f̂(t) := max
x∈Gt

f(t,x) = sup
x∈Q

g(t,x).

As a countable supremum of measurable functions, f̂ is a measurable mapping.
Now, denote by x∗

t ∈ Gt the point that maximizes f(t, ·) on Gt. Let us show that
T := {t ∈ R+ : x∗

t ≤ x̄} is a measurable set for any given x̄ ∈ Rd. Observe that

T =

∞⋂
m=1

⋃
x∈Q,x≤x̄

{
g(t,x) ≥ f̂(t)− 1

m

}
,

i.e., T is a countable intersection of countable unions of measurable sets, thus it is a
measurable set.

C Model parameters
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