
HAL Id: hal-04665635
https://hal.science/hal-04665635v1

Preprint submitted on 31 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Analysing collective adaptive systems by proving
theorems

Cosimo Perini Brogi, Marco Maggesi

To cite this version:
Cosimo Perini Brogi, Marco Maggesi. Analysing collective adaptive systems by proving theorems.
2024. �hal-04665635�

https://hal.science/hal-04665635v1
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Analysing collective adaptive systems
by proving theorems

Cosimo Perini Brogi1[0000−0001−7883−5727]

Marco Maggesi2[0000−0003−4380−7691]

1 IMT School for Advanced Studies Lucca
cosimo.perinibrogi@imtlucca.it

2 University of Florence, Italy
marco.maggesi@unifi.it

For Rocco, on the occasion of his 70th birthday⋆

Abstract. Inspired by Rocco De Nicola and colleagues’ novel approach
to the compositional analysis of complex adaptive systems, we foresee
an integrated methodology combining those methods with the logical
verification techniques offered by modern proof assistants. We explain
our long-term perspective on rigorous analysis of ensembles based on
these tools for computerised mathematics and propose some preliminary
results to make our methodological viewpoint more concrete.

Keywords: Collective adaptive systems · Formal methods · Emergent
properties · Logical verification · Interactive theorem proving.

1 Introduction

Humans are familiar with complex adaptive systems (CASs) without realising
it. Our Stone Age ancestors witnessed these systems by observing ant colonies
at work and the flight of flocks.

Today, we encounter CASs in road traffic, in colonies of microalgae and bac-
teria in the laboratory, and in cyber-physical distributed systems [47,6,21]. We
can study, utilise, and predict them (with sufficient precision) through the tools
offered by mathematics and programming languages.

Nevertheless, it remains challenging to assert that we have developed a unified
language or a uniform methodology to tackle the challenges posed by these
systems. Despite our substantial progress in this field, it is easy to feel like
the character created by Italo Calvino [10] between 1975 and 1983, when the
study of complex and self-organising systems was at its dawn:

Se si sofferma per qualche minuto a osservare la disposizione degli uc-
celli uno in rapporto all’altro, il signor Palomar si sente preso in una

⋆ We are grateful to Rocco for introducing (via discussions, reading lists, and lots of
jokes) the first author – and, indirectly, the second, too – to the field of collective
adaptive systems and their rigorous analysis.

Marco Maggesi
To appear on ISoLA 2024 - Lecture Notes in Computer Science - Springer https://2024-isola.isola-conference.org/

2 C. Perini Brogi, M. Maggesi

trama la cui continuità si estende uniforme e senza brecce, come se an-
che lui facesse parte di questo corpo in movimento composto di centinaia
e centinaia di corpi staccati ma il cui insieme costituisce un oggetto uni-
tario, come una nuvola o una colonna di fumo o uno zampillo, qualcosa
cioè che pur nella fluidità della sostanza raggiunge una sua solidità nella
forma. Ma basta che egli si metta a seguire con lo sguardo un singolo
pennuto perché la dissociazione degli elementi riprenda il sopravvento ed
ecco che la corrente da cui si sentiva trasportato, la rete da cui si sentiva
sostenuto si dissolvono e l’effetto è quello d’una vertigine che lo prende
alla bocca dello stomaco.3

To put it more prosaically, when we wish to study CASs, we find ourselves
subjected to two different tensions.

On the one hand, we can harness the power of sophisticated mathematics
such as statistical mechanics [45,4] and the theory of differential equations [41],
or, from the computational side, the flexibility of architecture description lan-
guages [44]. In doing so, we would obtain large and robust models of the system
as an autonomous unit. On the other hand, we can also resort to a meticulous
and precise formal description of the parts that make up the CAS, its agents or
its significant subsets [40,5,43]. This way, we would focus on the formal mod-
elling of local properties and interactions, subsequently exploring the evolution
of the complex behaviours through tools aimed at multi-agent system analysis
and simulation.

In the first case, we perform a more or less marked abstraction on the com-
positional nature of CASs, benefiting from the mathematical rigour of the model
obtained. This rigour and reliability derive from the robustness of the mathe-
matical theories used, which have been tested for centuries in studying natural
and artificial systems. In the second case, we aim for a very natural modelling of
CASs, which places the unitary aspects of collective dynamics in the background.
These aspects are explored subsequently through formalisation with computa-
tional tools for the simulation and verification of large-scale systems.

In this paper, we propose for the first time the use of mathematical logic, and
modern proof assistants in particular, as a point of contact between rigorous and
natural modelling of complex adaptive systems. We also discuss the possibility
of using these tools for computerised mathematics as a unified working environ-
ment for the mathematical formalisation, simulation, and formal verification of
3 Translated in [9] as: “If he lingers for a few moments to observe the arrangement

of the birds, one in relation to another, Mr. Palomar feels caught in a weft whose
continuity extends, uniform and without rents, as if he, too, were part of this moving
body composed of hundreds and hundreds of bodies, detached, but together forming
a single object, like a cloud or a column of smoke or a jet of water—something,
in other words, that even in the fluidity of its substance achieves a formal solidity
of its own. But he has only to start following a single bird with his gaze and the
disassociation of the elements returns; and the current that he felt transporting him,
the network that he felt sustaining him, dissolve; the effect is that of a vertigo that
grips him at the pit of the stomach.”

Analysing CASs by proving theorems 3

ensembles to complement and, possibly, integrate with the techniques already
available to the scientific community.

In the following pages, we will endeavour to elucidate our proposal by ad-
dressing some of the potential offered by proof assistants, as well as the challenges
posed by their use, for the study of these systems in each of the tasks mentioned
above: the development of formal specifications in the language of type the-
ory (Section 3), the simulation of the dynamics of specific systems (Section 4),
and the formal verification of the expected emergent properties of generic CASs
(Section 5). In Section 6, we showcase some preliminary results to make our
arguments more explicit and concrete. We begin this quasi-essay by contextual-
ising our proposal within the literature on the rigorous engineering of complex
adaptive systems, acknowledging one methodology as our primary source of in-
spiration (Section 2). We conclude it (Section 7) with some observations on the
reasons for investing in logical verification, even in this area of research.

2 Brief overview of frameworks for ensembles

Various approaches to the rigorous engineering of collective adaptive systems,
also known as ensembles, can be found in the literature. Some involve action-
based formalisms [3], others use non-classical logics (spatial, temporal, and modal
in general) [46], machine learning algorithms [7], and different programming
paradigms [22].

The aim of many studies is not only to analyse, model, and use ensembles
but also to verify and guarantee that a specific system manifests the expected
behaviour. This latter goal is crucial today, as ensembles encompass not only ant
colonies or flocks of birds but also smart cities and robot swarms. These systems
can have independent and non-communicating components, collaborating (with
or without explicit communication) or centrally guided (e.g., by a leader). At the
same time, this goal is very challenging for the techniques and tools currently
available due to the main defining characteristics of CASs, which are:

– Comprising a potentially large number of distinct entities with individual
objectives.

– The ability to adapt dynamically at runtime.
– The emergence of system properties and behaviours that are not directly

attributable to the behaviours and properties of individual components (also
known as emergent properties).

It is clear, therefore, that the challenge involves not only the development
of new tools for studying, programming, and verifying ensembles but also new
methodologies to achieve success in these objectives.

For example, consider those CASs where the primary system properties
emerge through communication (direct or mediated) between individual com-
ponents. No single “correct” method exists to study this kind of system. It
is legitimate to develop a data-driven methodology to predict collective be-
haviours [7], as well as to work within the paradigm of “aggregate programming”

4 C. Perini Brogi, M. Maggesi

or “attribute-based programming”, abstracting from various characteristics of the
components [22,43]. Additionally, purely mathematical models can be used to
study these types of ensembles in terms of graphs and more general relational
structures, kinetic systems [41], or atemporal causal chains [27,28].

2.1 A different approach

The most recent works by Rocco De Nicola and collaborators propose an addi-
tional methodology for studying this type of ensembles [16,17,18,19,20,23]. This
approach effectively captures a wide range of examples uniformly using a high-
level language based on process algebras. The idea is to define a CAS through its
components interacting according to local rules, which involve a distributed data
structure formalising biological stigmergy. This methodology is thus inspired by
what happens in biological and natural systems, such as ant colonies, to bring
about the collective behaviour of interest naturally.

As mentioned earlier, this “bio-inspired approach” requires using precise for-
mal language so that the manifestation of the system’s collective properties can
be efficiently simulated and verified using robust formal methods. In that work,
the language LAbS (Language with Attribute-based Stigmergies)4 and its opera-
tional semantics are introduced and systematically used, along with the SLiVER
tool (Symbolic LAbS Verifier)5 for the automatic translation of LAbS specifica-
tions into sequential imperative programs [16,17,24]. These programs are then
subjected to simulation and verification tools based on (bounded) model check-
ing and SAT/SMT solvers.

In the present context, we are interested in a specific characteristic of this
bottom-up methodology: using a compositional computational structure (the
process algebra behind the operational semantics of LAbS) to model and anal-
yse ensembles. This choice has made the formalisation of system specifications
particularly intuitive, flexible, and extendable, much more natural to handle
than the mathematical models typically used for these systems in fields such as
biology. Additionally, it has allowed for a rigorous formal verification of their
main properties.

This compositional, bio-inspired, and formally rigorous methodology has sig-
nificant intrinsic value, already evident in the combination of “LAbS + SLiVER
+ model checking.” This same methodology can also be embodied by different
tools derived from contemporary mathematical logic, which in some aspects are
complementary to more traditional formal methods, namely type theory-based
proof assistants. Currently, we have only some promising elementary examples
to support our thesis. However, in the following sections, we will clarify how
to translate and instantiate Rocco and collaborators’ methodology into com-
puterised mathematics. In the present work, we focus on high-level concepts
4 The source code for the LAbS code generator for formal specifications of collective

systems is freely available from the repository https://github.com/labs-lang/labs.
5 The source code and binary releases of SLiVER for Linux x64 systems are freely

available from the repository https://github.com/labs-lang/sliver.

https://github.com/labs-lang/labs
https://github.com/labs-lang/sliver

Analysing CASs by proving theorems 5

shared by a potentially large class of formal models, encompassing both Rocco’s
approach [16,17,20] and our recent results documented in [39].

3 Formalisation

According to the bottom-up methodology we intend to apply, whether we opt
to simulate or verify the behaviour of a CAS, we require a formal language to
describe the system in terms of its components and the distributed data structure
(stigmergy) that facilitates interaction among individual components.

The type theories underpinning modern proof assistants are sufficiently ex-
pressive to encapsulate the concept of interactive agents with individual be-
haviours, local copies of stigmergy, and an evolving environment. We can also
effortlessly formalise all the local rules/link predicates of, e.g., [17] that govern
the dynamics of the components (and, thus, the collective system). All this can
be achieved with a single formal language and a unified logical framework.

Type theory (simple or dependent)6 permits this because each of these no-
tions – agent, virtual stigmergy, system, environment – is defined through a
distinct type within the same formal system. For instance, a single step in the
dynamics of an agent is defined as a function—specified in the language of the
theory—that takes an element of type ’agent’ and an element of type ’stigmergy’
and returns a collection of possible attributes of the agent. This step thus defines
the individual agent’s logic (or behaviour) in functional and formal terms. The
system’s evolution can similarly be defined as a typed function in terms of indi-
vidual update steps according to the logic of the component and the dynamics
of the stigmergy (also defined in functional terms).

In this manner, type theory provides a high-level computational language
akin to LAbS for formalising and describing CASs. It also offers the additional
level of abstraction afforded by the operational semantics of LAbS, as it en-
ables us to define a generic type ‘agent’ through the type variables ‘attribute’,
‘local-knowledge’, and ‘possible-actions’. Depending on the system under con-
sideration, we can instantiate these three type variables and then concentrate on
defining the typed functions that represent the dynamics of individual agents,
thereby translating into mathematical language the listings that describe the
types of agents considered in, e.g., [20].

4 Simulation

Once a CAS is formalised, the standard bottom-up methodology outlined in [17,20]
instructs us to translate the LAbS specifications for the system and the oper-
ational semantics of the language into sequential imperative programs, written
for example in C, on which the actual simulation takes place.

Using type theory, we can replace all the delicate and ingenious work of
sequential emulation detailed in [23] with a conversion function that operates on
the typed term defining the system’s initialisation state.
6 Refer to [34,14] for a hands-on introduction.

6 C. Perini Brogi, M. Maggesi

In addition to basic low-level conversions—such as handling let...in con-
structions within the formal system description—this function will require logical
conversions to automatically reformulate the formal analogues of the predicate
links that govern communication between agents and other syntactic optimisa-
tions.

These latter optimisations depend on the availability, within the proof as-
sistant at hand, of formalised proofs of mathematical theorems that allow for
the gradual refinement of specifications from their original formulation—usually
easy for a human user to read—into a form better managed by the remaining
generic conversion operations and automatic reasoning processes that are part
of the proof assistant’s logical kernel.

Simulation thus becomes the straightforward automatic execution of a call-
by-value evaluation of the evolution function—describing the behaviour (or logic)
of the components/agents—on the typed terms corresponding to the system’s
initial state (and the subsequent possible steps in its evolution).

In our context, the non-deterministic component of the agents’ dynamics is
managed by set-theoretic concepts and operations. These replace the scheduler
used in the conventional context’s sequential emulation of LAbS specifications.
This approach guarantees the correctness of the simulation concerning the in-
tended dynamics, owing to the theorems that have already been formally proven
in the proof assistant and utilised in the earlier conversion process.

By applying the bottom-up methodology of Rocco and his collaborators
within a formal proof environment, we can avoid translating the formal specifi-
cations and their semantics into C programs for simulation. Instead, we execute
and simulate the specifications directly within the proof assistant. These spec-
ifications are already articulated in a typed functional programming language,
or more precisely, in the language of the logical engine that underpins the proof
assistant.

However, it is fair to recognise that reducing simulation to an extensive call-
by-value evaluation could be more efficient. Moreover, this approach forfeits
the advantages of advanced techniques available for analysing C programs, as
detailed in works such as [48,12,38,30].

5 Verification

Verification and simulation are complementary approaches in the analysis of en-
sembles. Simulation is more efficient for empirically testing the potential emer-
gence of expected collective behaviour. Formal verification, while more com-
putationally intensive, provides a stronger guarantee of the emergence of this
behaviour or absence thereof. It is not uncommon for verification to identify
specific system dynamics that simulation might miss, as noted in [19].7

7 This discrepancy between the outcomes of simulation and verification is not sur-
prising to those familiar with software quality and safety using formal methods. A
rigorously verified bug always invalidates any successful simulations of the program’s
functional behaviours under examination.

Analysing CASs by proving theorems 7

The standard bottom-up methodology includes automatic formal methods
for verifying ensembles. The SLiVER tool uses the same backend technique for
both simulation and verification [17,24,23]. Verifying a CAS’s behaviour is re-
duced to reachability analysis of the corresponding non-deterministic sequential
imperative program, also used in the simulation process.

Similarly, a proof assistant can simulate the system’s evolution and prove
properties of the CAS. Through conversions, we can simulate the system’s evo-
lution. Moreover, we can state the property we intend to verify in the language
of type theory. This property becomes a mathematical theorem, ready to be for-
mally proven within the interactive proof environment of the proof assistant,
using the inference rules of the same underlying type theory.

In this way, the proof assistant does provide a unified workspace for con-
structing a model, writing a specification, simulating the system’s dynamics,
and mathematically proving the expected property. It also allows for the identi-
fication of potential counterexamples and rare events.

It must be acknowledged that while this methodological homogeneity and
mathematical rigour are significant gains, there is a considerable loss in automa-
tion. In the standard version (LAbS+SLiVER) of the bottom-up methodology,
simulation and verification may require lengthy execution times for the auto-
matic tools. The user waits for the result without active engagement during
these processes. In our proposed methodology, verification demands varying de-
grees of user participation, as the user must develop a formal proof according to
the language and rules of the proof assistant. This workload cannot be reduced
or compared to the push-button approach more prevalent in formal methods.

However, our proposal offers added value as it is less affected by issues re-
lated to the size of ensembles. Reducing the verification of a CAS property to a
reachability or model-checking problem exposes the process to well-known issues
related to state explosion, partially addressed by current parameterised model-
checking techniques. Moreover, model checking-based verification can only op-
erate on a fixed-size model. This limitation restricts consideration to ensembles
with a predetermined number of agents, even when the property of interest is
simple to specify and independent of system size, as in the example of colliding
ants studied in [20].

To achieve a tool capable of unbounded verification, the current model checking-
based workflow appears to require integration with different program analysis
methods, such as k-induction [49], completeness thresholds [15], or property-
directed analysis [50].

On the other hand, when working with a proof assistant, it is relatively
straightforward to reason about ensembles of arbitrary sizes to demonstrate
whether a property is satisfied, generalising over predetermined dimensional pa-
rameters.

Furthermore, the expressiveness of type theory allows for the formalisation of
any collective property one might expect from the CAS, including those typically
beyond the scope of model checking logics like LTL and CTL [31].

8 C. Perini Brogi, M. Maggesi

6 Make it concrete

In this section, we present two different approaches to analysing an elementary
ensemble, specifically a colony of foraging ants depicted in the idealised scenario
of Figure 1

2 3

1

40

Fig. 1. The discrete model for the idealised version of the double bridge experiment

The ant environment is represented by a simple graph resembling a regular
pentagon, with the node labelled 0 serving as the nest and the node labelled 4 as
the food source. Ants move discretely between adjacent nodes in unit steps, with
the ratio r between the path 0–1–4 and 0–2–3–4 being 2, akin to the laboratory
experiment detailed in [32]. They deposit pheromones on intermediate nodes
and opt for the shorter or longer path based on higher pheromone concentration
when at the nest or the food source.

Biologists experimenting with the colony have observed an emergent prop-
erty: the gradual convergence of foraging ants towards the shortest path 0–1–4.
This serves as an illustration of emergent self-organisation, guided by indirect
communication through pheromone release and detection, a prime example of
stigmergic interaction among agents.8

6.1 Ants in an SMT-solver

Let us initially examine the system described above using the language and
capabilities of the SMT-checker. In our experiments, we employed Z3, a widely
utilised solver in the community of formal methods and program analysis [42].9

A natural approach to formalise our scenario is as a transition system, linking
the system state at a given time t with the subsequent system state at t+ 1.

8 Refer to [37,32,25,20] for a more detailed discussion of this phenomenon.
9 We survey here some snippets of code, which is freely available from our online

notebook, also archived on Software Heritage.

https://gist.github.com/maggesi/1ab74605e4767ee7905d4cab3e4cd375
https://gist.github.com/maggesi/1ab74605e4767ee7905d4cab3e4cd375
https://archive.softwareheritage.org/swh:1:snp:727b40d66729dc3ba0f36419f7da22c575ed2ff1;origin=https://gist.github.com/maggesi/1ab74605e4767ee7905d4cab3e4cd375

Analysing CASs by proving theorems 9

Simulation of the dynamics then simplifies to a relatively straightforward
constraint satisfaction problem. Similarly, verifying the emergent behaviour of
the foraging colony entails certifying that the negation of the thesis – namely,
the convergence of the ants on the shortest path – is unsatisfiable.

By relying on (potentially refined versions of) this technology, our focus can
be directed towards precisely describing the specific colony under considera-
tion and formalising the system specifications. Simulation and verification then
become effortlessly achievable, aligning with the push-button methodology of
automated model checking. Nonetheless, automation comes at a cost in terms
of generality and expressive capabilities. Both simulation and verification of ex-
pected properties can only be conducted on specific instances of the idealised
model – namely, on colonies of predetermined size within the specification and
for evolutions with a pre-set time bound – due to the reliance on first-order logic
alone.

6.2 Ants in Higher-Order Logic

Our central assertion has been this: in principle, a proof assistant is a unified
platform for all the mathematical tasks involved in analysing a CAS, encom-
passing formal specification, automated simulation, and rigorous verification.

We have explored this potential in a related study [39], and now summarise
our findings concerning the idealised foraging colony analysed within the HOL
Light proof assistant.10

A simulation for an ant colony of fixed size can be implemented as an auto-
mated call-by-value evaluation of the evolution function within HOL Light. This
function is executed iteratively to generate a complete collection of potential
states arising from the colony’s initial configuration.11

Moreover, we can abstract from the specific parameters of the ant colony
– most notably, its size – and proceed with rigorous verification to confirm
that the expected convergence on the shortest path occurs whenever certain
explicit conditions are met, independently of the number of ants involved in the
dynamics. This emergence is formulated as a formal theorem in the language of
type theory and formally proven irrespective of the number of ants comprising
the colony.

6.3 Finding the right path

In our technical paper [39], we have shown how to model, simulate, and verify
for colonies of arbitrary size the convergence of foraging ants on the shortest
10 For the source code, please refer to our GitHub repository HOL-Ants, containing the

formal analysis discussed here. The same code is also archived on Software Heritage.
11 Although the efficiency of this evaluation can be improved, our current demon-

stration suffices to show that exploration of the system dynamics can indeed be
performed within the proof assistant on a mid-level personal computer, without
resorting to external resources.

https://github.com/logicosimo/HOL-Ants
https://archive.softwareheritage.org/swh:1:snp:12ae679b9994966f5271a48f2bb25bb18657c314;origin=https://github.com/logicosimo/HOL-Ants

10 C. Perini Brogi, M. Maggesi

path within a discrete, abstract, and idealised environment, only using the proof
assistant HOL Light [35]. Enhancing the performance of the conversion function
used to simulate the long-term dynamics of colonies of fixed size is possible. This
improvement can be achieved within the proof assistant itself and may lead to
performances comparable to the efficiency of the SMT-based model.

On the contrary, due to the intrinsic limitations of the formal language and
engineerisation of SMT-solvers, it is probably impossible to verify the dynamics
of colonies of arbitrary size, even though such a task for a specific colony can be
(quite easily) accomplished automatically after fixing the number of ants within
the model.

These first experiments confirm that, even for such a simple scenario, there
exists a trade-off between the expressive capability and exactitude of proof as-
sistants, on the one hand, and the optimised automation and ease of use of
SMT-solvers. Notice that the methodologies employed in the two proposed ex-
periments are so distinct that a quantitative comparison is challenging, if only
partially meaningful, at the current stage of development.

Future advances in interactive theorem proving could shorten the difference
between these two approaches. Furthermore, we foresee a fruitful integration
of the two technologies to distribute the workflow between a formal platform
optimised for the exploration of dynamics (i.e., the automated theorem prover)
and one specialised in the rigorous certification of the expected properties of
these dynamics (i.e., the proof assistant).

Our perspective prioritises using highly expressive general systems such as
HOL Light or other proof assistants. We know there are tools, like the Dafny
language [51], which integrate proof techniques based on SAT/SMT. However,
our current interest lies in starting with general tools that can subsequently be
specialised to make them practical for a wide range of interesting cases.

At the same time, we recognise the importance of providing end-users with
intuitive and user-friendly tools. We understand that an intuitive environment
for formal proof development is crucial for widespread adoption, particularly
for researchers who may need to become more familiar with computer-aided
mathematics. To address this, we are considering the development of extensions
and customisations of HOL Light to facilitate its use in such contexts.

7 Conclusions

Proof assistants are computer programs that enable us to perform mathematics
with the highest level of precision available. Their expressive capacity and formal
exactness find a natural application in software and hardware verification, in
industrial and academic research as well [33,36,26,2,14,11].

Over the past years [29], they have made an essential contribution to the
construction and discovery of new areas of mathematics and their rigorous struc-
turing [8,1]. Moreover, they are proving to be exceptional tools for boosting a
long-awaited process of renewing peer-review procedures and for democratising
the communication of scientific results [13].

Analysing CASs by proving theorems 11

In this methodological paper, we have suggested how to use these tools for the
rigorous engineering of collective adaptive systems, their analysis, and, most im-
portantly, the mathematical verification of their expected behaviours. Our pro-
posal is inspired by an existing bottom-up approach to ensemble modelling [20],
which we propose to translate into a framework focused on the use of proof as-
sistants for every essential aspect of the analysis (specification, simulation, and
verification).

We have outlined our long-term perspective on the feasibility of such a unified
methodology and the challenges to face, presenting some initial positive results
in this direction. There remains ample scope for further work and refinement,
particularly concerning the efficiency of a comprehensive analysis of CASs cen-
tred on proof assistants. Nonetheless, this endeavour holds scientific significance
within a broader horizon, imbued with more general philosophical implications.
In a sense, with our proposal, we aim to introduce new tools and methods to
precisely understand the phenomena involving ensembles, preceding the use of
new technologies based on approximate knowledge of these systems. In literary
terms, the arguments we have presented in the preceding pages may also reveal
a personal affinity for Mr Palomar’s cognitive effort and our desire to alleviate,
through the precision offered by mathematical logic, that sense of vertigo de-
scribed at the paper’s outset – a sensation that has likely accompanied (some
members of) our species since time immemorial.

Acknowledgments. We thank two anonymous reviewers for their comments and
feedback on the first submission of this work; the current version definitely gained
from their suggestions regarding clarity and readability.

This work was partially funded by: the MIUR project PRIN 2017FTXR7S IT-
MATTERS (Methods and Tools for Trustworthy Smart Systems); the MIUR project
PRIN 2017JZ2SW5 “Real and Complex Manifolds: Topology, Geometry and holomor-
phic dynamics”; the project SERICS PE00000014 (SEcurity and RIghts in the Cy-
berSpace) under the MUR National Recovery and Resilience Plan funded by the Eu-
ropean Union - NextGenerationEU (MUR Code: 2022CY2J5S); Istituto Nazionale di
Alta Matematica – INdAM group GNSAGA.

Disclosure of Interests. The authors have no competing interests to disclose.

References

1. Avigad, J.: Mathematics and the formal turn. Bulletin (New Series) of the Ameri-
can Mathematical Society 61(2) (2024). https://doi.org/https://doi.org/10.
1090/bull/1832

2. Baanen, A., Bentkamp, A., Blanchette, J., Hölzl, J., Limperg, J.: The Hitchhiker’s
Guide to Logical Verification (2024)

3. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
4. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I.,

Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: In-
teraction ruling animal collective behavior depends on topological rather than met-
ric distance: Evidence from a field study. Proceedings of the National Academy of
Sciences 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105,
https://www.pnas.org/doi/abs/10.1073/pnas.0711437105

https://doi.org/https://doi.org/10.1090/bull/1832
https://doi.org/https://doi.org/10.1090/bull/1832
https://doi.org/https://doi.org/10.1090/bull/1832
https://doi.org/https://doi.org/10.1090/bull/1832
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1073/pnas.0711437105
https://www.pnas.org/doi/abs/10.1073/pnas.0711437105

12 C. Perini Brogi, M. Maggesi

5. Beal, J., Viroli, M.: Aggregate programming: From foundations to applications.
Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems:
16th International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016,
Advanced Lectures 16 pp. 233–260 (2016)

6. Bortolussi, L., De Nicola, R., Gast, N., Gilmore, S., Hillston, J., Massink, M.,
Tribastone, M.: A quantitative approach to the design and analysis of collective
adaptive systems. In: 1st FoCAS Workshop on Fundamentals of Collective Adap-
tive Systems (2013)

7. Bureš, T., Hnětynka, P., Kruliš, M., Plášil, F., Khalyeyev, D., Hahner, S., Seifer-
mann, S., Walter, M., Heinrich, R.: Generating adaptation rule-specific neural net-
works. International Journal on Software Tools for Technology Transfer 25(5),
733–746 (2023)

8. Buzzard, K.: Mathematical reasoning and the computer. Bulletin (New Series)
of the American Mathematical Society 61(2) (2024). https://doi.org/https:
//doi.org/10.1090/bull/1836

9. Calvino, I.: Mr Palomar. Vintage classics, Vintage (1994), English translation
of [10] by W. Weaver

10. Calvino, I.: Palomar. Mondadori (2013)
11. Chapman, R., Petcher, A., Hansen, T., Peng, Y., Lepoint, T., Bytheway, C., Kam-

panakis, P.: Formal Verification of Cryptographic Software at AWS: Current Prac-
tices and Future Trends. nist.org (2024)

12. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising in-
terprocedural bit-precise termination proofs (T). In: 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). pp. 53–64 (2015).
https://doi.org/10.1109/ASE.2015.10

13. Cheng, E.: How machines can make mathematics more congressive. Bulletin (New
Series) of the American Mathematical Society 61(2) (2024). https://doi.org/
https://doi.org/10.1090/bull/1827

14. Chlipala, A.: Certified programming with dependent types: a pragmatic introduc-
tion to the Coq proof assistant. MIT Press (2022)

15. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) Verification,
Model Checking, and Abstract Interpretation. pp. 85–96. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2004)

16. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages for
verifiable multi-robot systems. Frontiers Robotics AI 5, 94 (2018). https://doi.
org/10.3389/FROBT.2018.00094, https://doi.org/10.3389/frobt.2018.00094

17. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187, 102345 (2020). https://doi.org/10.1016/J.
SCICO.2019.102345, https://doi.org/10.1016/j.scico.2019.102345

18. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of birds
from the bottom up. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation. Adaptation and Learn-
ing - 11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22-
30, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13703,
pp. 82–96. Springer (2022). https://doi.org/10.1007/978-3-031-19759-8_6,
https://doi.org/10.1007/978-3-031-19759-8_6

19. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Intuitive modelling and
formal analysis of collective behaviour in foraging ants. In: Pang, J., Niehren, J.

https://doi.org/https://doi.org/10.1090/bull/1836
https://doi.org/https://doi.org/10.1090/bull/1836
https://doi.org/https://doi.org/10.1090/bull/1836
https://doi.org/https://doi.org/10.1090/bull/1836
https://doi.org/10.1109/ASE.2015.10
https://doi.org/10.1109/ASE.2015.10
https://doi.org/https://doi.org/10.1090/bull/1827
https://doi.org/https://doi.org/10.1090/bull/1827
https://doi.org/https://doi.org/10.1090/bull/1827
https://doi.org/https://doi.org/10.1090/bull/1827
https://doi.org/10.3389/FROBT.2018.00094
https://doi.org/10.3389/FROBT.2018.00094
https://doi.org/10.3389/FROBT.2018.00094
https://doi.org/10.3389/FROBT.2018.00094
https://doi.org/10.3389/frobt.2018.00094
https://doi.org/10.1016/J.SCICO.2019.102345
https://doi.org/10.1016/J.SCICO.2019.102345
https://doi.org/10.1016/J.SCICO.2019.102345
https://doi.org/10.1016/J.SCICO.2019.102345
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1007/978-3-031-19759-8_6
https://doi.org/10.1007/978-3-031-19759-8_6
https://doi.org/10.1007/978-3-031-19759-8_6

Analysing CASs by proving theorems 13

(eds.) Computational Methods in Systems Biology - 21st International Confer-
ence, CMSB 2023, Luxembourg City, Luxembourg, September 13-15, 2023, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14137, pp. 44–61. Springer
(2023). https://doi.org/10.1007/978-3-031-42697-1_4, https://doi.org/10.
1007/978-3-031-42697-1_4

20. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling flocks of birds
and colonies of ants from the bottom up. Int. J. Softw. Tools Technol. Transf.
25(5), 675–691 (2023). https://doi.org/10.1007/S10009-023-00731-0, https:
//doi.org/10.1007/s10009-023-00731-0

21. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adap-
tive systems. International Journal on Software Tools for Technology Transfer 22,
389–397 (2020)

22. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the scel language. ACM Transactions on Autonomous and
Adaptive Systems (TAAS) 9(2), 1–29 (2014)

23. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via
sequential emulation. ACM Trans. Softw. Eng. Methodol. 31(3), 37:1–37:41 (2022).
https://doi.org/10.1145/3490387, https://doi.org/10.1145/3490387

24. Di Stefano, L., Lang, F., Serwe, W.: Combining SLiVER with CADP to ana-
lyze multi-agent systems. In: Bliudze, S., Bocchi, L. (eds.) Coordination Mod-
els and Languages - 22nd IFIP WG 6.1 International Conference, COORDINA-
TION 2020, Held as Part of the 15th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-
19, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12134, pp. 370–
385. Springer (2020). https://doi.org/10.1007/978-3-030-50029-0_23, https:
//doi.org/10.1007/978-3-030-50029-0_23

25. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
Springer (2019)

26. Ferguson, W.E., Bingham, J., Erkök, L., Harrison, J.R., Leslie-Hurd, J.: Digit
serial methods with applications to division and square root. IEEE Transactions
on Computers 67(3), 449–456 (2017)

27. Fettke, P., Reisig, W.: Discrete models of continuous behavior of collective adap-
tive systems. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Adaptation and Learning - 11th Interna-
tional Symposium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 13703, pp. 65–81. Springer
(2022). https://doi.org/10.1007/978-3-031-19759-8_5, https://doi.org/10.
1007/978-3-031-19759-8_5

28. Fettke, P., Reisig, W.: A causal, time-independent synchronization pattern for
collective adaptive systems. Int. J. Softw. Tools Technol. Transf. 25(5), 659–673
(2023). https://doi.org/10.1007/S10009-023-00733-Y, https://doi.org/10.
1007/s10009-023-00733-y

29. Fraser, M., Granville, A., Harris, M.H., McLarty, C., Riehl, E., Venkatesh, A.: Will
machines change mathematics? Bulletin (New Series) of the American Mathemat-
ical Society 61(2) (2024). https://doi.org/https://doi.org/10.1090/bull/
1833

30. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineer-
ing. p. 888–891. ASE ’18, Association for Computing Machinery, New York, NY,

https://doi.org/10.1007/978-3-031-42697-1_4
https://doi.org/10.1007/978-3-031-42697-1_4
https://doi.org/10.1007/978-3-031-42697-1_4
https://doi.org/10.1007/978-3-031-42697-1_4
https://doi.org/10.1007/S10009-023-00731-0
https://doi.org/10.1007/S10009-023-00731-0
https://doi.org/10.1007/s10009-023-00731-0
https://doi.org/10.1007/s10009-023-00731-0
https://doi.org/10.1145/3490387
https://doi.org/10.1145/3490387
https://doi.org/10.1145/3490387
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1007/978-3-031-19759-8_5
https://doi.org/10.1007/978-3-031-19759-8_5
https://doi.org/10.1007/978-3-031-19759-8_5
https://doi.org/10.1007/978-3-031-19759-8_5
https://doi.org/10.1007/S10009-023-00733-Y
https://doi.org/10.1007/S10009-023-00733-Y
https://doi.org/10.1007/s10009-023-00733-y
https://doi.org/10.1007/s10009-023-00733-y
https://doi.org/https://doi.org/10.1090/bull/1833
https://doi.org/https://doi.org/10.1090/bull/1833
https://doi.org/https://doi.org/10.1090/bull/1833
https://doi.org/https://doi.org/10.1090/bull/1833

14 C. Perini Brogi, M. Maggesi

USA (2018). https://doi.org/10.1145/3238147.3240481, https://doi.org/10.
1145/3238147.3240481

31. Goranko, V., Rumberg, A.: Temporal Logic. In: Zalta, E.N., Nodelman, U. (eds.)
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2024 edn. (2024), https://plato.stanford.edu/archives/
sum2024/entries/logic-temporal/

32. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76(12), 579–581 (1989)

33. Harrison, J.: Floating-point verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005: Formal Methods, International Symposium of Formal Methods
Europe, Proceedings. Lecture Notes in Computer Science, vol. 3582, pp. 529–532.
Springer-Verlag (2005)

34. Harrison, J.: HOL Light tutorial. http://www.cl.cam.ac.uk/~jrh13/hol-light/
tutorial.pdf (2017)

35. Harrison, J.: The HOL Light Theorem Prover. Available at https://github.com/
jrh13/hol-light (2024)

36. Harrison, J., Urban, J., Wiedijk, F.: History of Interactive Theorem Proving. In:
Computational Logic. vol. 9, pp. 135–214 (2014)

37. Hölldobler, B., Wilson, E.O.: The Ants. Belknap Press of Harvard University Press
(1990), https://books.google.it/books?id=R-7TaridBX0C

38. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
c: A software analysis perspective. Form. Asp. Comput. 27(3), 573–609
(may 2015). https://doi.org/10.1007/s00165-014-0326-7, https://doi.org/
10.1007/s00165-014-0326-7

39. Maggesi, M., Perini Brogi, C.: Rigorous analysis of idealised pathfinding ants in
higher-order logic. ISoLA 2024 (This issue), Lecture Notes in Computer Science,
Springer (2024), HAL preprint hal-04620418

40. Mefteh, W., Migeon, F., Gleizes, M.P., Gargouri, F.: ADELFE 3.0: Design, building
adaptive multi agent systems based on simulation. A case study. In: Computational
Collective Intelligence: 7th International Conference, ICCCI 2015, Madrid, Spain,
September 21-23, 2015, Proceedings, Part I. pp. 19–28. Springer (2015)

41. Monica, S., Bergenti, F., Zambonelli, F.: A kinetic approach to investigate the
collective dynamics of multi-agent systems. International Journal on Software Tools
for Technology Transfer 25(5), 693–705 (2023)

42. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24, https://doi.org/10.1007/978-3-540-78800-3_24

43. Murgia, M., Pinciroli, R., Trubiani, C., Tuosto, E.: Comparing perfomance ab-
stractions for collective adaptive systems. International Journal on Software Tools
for Technology Transfer 25(5), 785–798 (2023)

44. Ozkaya, M., Kloukinas, C.: Are we there yet? Analyzing architecture description
languages for formal analysis, usability, and realizability. In: 2013 39th Euromi-
cro Conference on Software Engineering and Advanced Applications. pp. 177–184.
IEEE (2013)

45. Parisi, G.: Nobel Lecture: Multiple equilibria. Rev. Mod. Phys. 95, 030501
(Aug 2023). https://doi.org/10.1103/RevModPhys.95.030501, https://link.
aps.org/doi/10.1103/RevModPhys.95.030501

https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://plato.stanford.edu/archives/sum2024/entries/logic-temporal/
https://plato.stanford.edu/archives/sum2024/entries/logic-temporal/
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://github.com/jrh13/hol-light
https://github.com/jrh13/hol-light
https://books.google.it/books?id=R-7TaridBX0C
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://hal.science/hal-04620418
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1103/RevModPhys.95.030501
https://doi.org/10.1103/RevModPhys.95.030501
https://link.aps.org/doi/10.1103/RevModPhys.95.030501
https://link.aps.org/doi/10.1103/RevModPhys.95.030501

Analysing CASs by proving theorems 15

46. Platzer, A.: The logical path to autonomous cyber-physical systems. In: Inter-
national Conference on Quantitative Evaluation of Systems. pp. 25–33. Springer
(2019)

47. Priami, C., Quaglia, P.: Global Computing: IST/FET International Workshop,
GC 2004, Rovereto, Italy, March 9-12, 2004, Revised Selected Papers, vol. 3267.
Springer (2005)

48. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. SIGPLAN Not. 39(6),
14–24 (jun 2004). https://doi.org/10.1145/996893.996845, https://doi.org/
10.1145/996893.996845

49. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induc-
tion and a sat-solver. In: Hunt, W.A., Johnson, S.D. (eds.) Formal Methods in
Computer-Aided Design. pp. 127–144. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2000)

50. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self compo-
sition. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. pp. 161–179.
Springer International Publishing, Cham (2019)

51. Sitnikovski, B.: Introducing Software Verification with Dafny Language: Proving
Program Correctness. Apress (2022)

https://doi.org/10.1145/996893.996845
https://doi.org/10.1145/996893.996845
https://doi.org/10.1145/996893.996845
https://doi.org/10.1145/996893.996845

	Analysing collective adaptive systems by proving theorems

