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Abstract: Polytetrafluoroethylene (PTFE) and, by extension, fluoropolymers are ubiquitous in science,
life, and the environment as perfluoroalkyl pollutants (PFAS). In all cases, it is difficult to transform
these materials due to their chemical inertness. Herein, we report a direct amination process of PTFE
and some fluoropolymers such as polyvinylidene fluoride (PVDF) and Nafion by lithium alkylamide
salts. Synthesizing these reactants extemporaneously between lithium metal and an aliphatic primary
di- or triamine that also serves as a solvent leads to the rapid nucleophilic substitution of fluoride
by an alkylamide moiety when in contact with the fluoropolymer. Moreover, lithium alkylamides
dissolved in suitable solvents other than amines can react with fluoropolymers. This highly efficient
one-pot process opens the way for further surface or bulk modification if needed, providing an easy,
inexpensive, and fast experiment protocol on large scales.

Keywords: PTFE; Nafion; PVDF; fluoropolymers; amination; defluorination

1. Introduction

PTFE and, by extension, fluoropolymers are some of the most important polymer
materials that have a significant impact on our daily lives, from food (antiadhesive pan) to
rechargeable batteries (lithium battery separators) as well as health (prostheses and drugs).
They have many desirable properties such as inertness to chemicals, temperature, and
aging, mainly. However, the stable C-F bond (485 kJ/mol) and low surface energy towards
oils and many solvents including water make them challenging to functionalize, limiting
some of their applications [1–3].

The modification of fluoropolymers, whether on the surface to add a functional group
or bulk until their depolymerization, requires their defluorination. Several solutions ex-
ist, such as wet or plasma etching or mineralization [4–8]. Originally, it was performed
by dissolving lithium or sodium in liquid ammonia, following the Billups–Birch reac-
tion [9,10]. Then, another alternative method was to use sodium naphthalenide dissolved
in an ether such as tetrahydrofuran (THF) to reduce health risks or benzoin in dimethyl-
sulphoxide [11,12]. More recently, a new defluorination possibility was proposed with a
magnesium salt in a mixture of benzene and 4-(dimethylamino)pyridine [13].

Despite many works reporting the functionalization or depolymerization of fluoropoly-
mers [14], there is no direct chemical conversion of carbon–fluorine bonds in fluorinated
materials to any functionality [15]. Alkali metals are known to be soluble in light amines to
a lesser extent than in ammonia, while ethylenediamine (EDA) improves the solubility of al-
kali metals in light amines. Extensive work with lithium in light amines or a mixture of light
amines and EDA (in a small amount) has been dedicated to the reduction in several types
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of aromatic compounds. Especially, the Benkeser reduction, which is a fork of the Billups–
Birch reaction [16], overcomes the drawbacks of handling ammonia when performed on
kilograms or even an industrial scale [17]. But there is no mention of the corresponding
alkali alkylamide salt formation in EDA or an explanation of its reactivity [18–23]. More
recently, the alkylation of single-walled carbon nanotubes by lithium dissolved in EDA has
been reported [24–26], while reduced graphene oxide is aminated [27].

Here, we report a successful approach towards an experimental one-pot defluorination
and amination of fluoropolymers. A stable but fluoropolymer-reactive lithium alkylamide
salt is generated in situ, in mild conditions (20 ◦C) and under an inert atmosphere (argon),
by the reaction between lithium and a primary di- or triamine. EDA, diethylenetriamine
(DETA), and 1,3-diaminopropane (DAP) are three solvents that react with lithium by
forming stable dark blue solvated electrons until the end of the reaction, leading to the
alkylamide formation and hydrogen bubbling. Herein, PTFE, polyvinylidene fluoride
(PVDF), and a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer (Nafion)
were reacted with lithium alkylamides as a proof of concept.

2. Results and Discussion
2.1. Synthesis of Lithium Alkylamides in Aliphatic Primary Di- or Triamines

Organolithium compounds are of great importance in organic asymmetric synthe-
sis [28,29] but remain little studied in the case of lithium alkylamides because few crystal-
lographic data exist. They are more soluble and reactive than their sodium or potassium
counterparts, hence the use of lithium in our study [30,31].

In stoichiometric proportions between lithium and EDA, DETA, or DAP, all com-
pounds are consumed until a white salt is formed. The X-ray diffraction (XRD) analysis
of the crystals obtained by the reaction between lithium and EDA (Figure 1a) leads to the
chemical formulae C8H28Li4N8 in the unit cell (space group P21/n) and corresponds to
LiNHC2H4NH2 (LiEDA), in total agreement with the only known structure of a lithium
alkylamide obtained by the reaction of Li3N with EDA for 3 days, instead of less than 1 h
in our cases [32]. So far, Beumel et al. obtained only a white suspension, by an equimolar
synthesis between lithium and EDA, but without achieving a total reaction of a completely
solid lithium amide [33]. The powder diffractograms of the total reaction between lithium
and DETA (Figure 1b) and LiDAP (Figure 1c) show diffraction peaks characteristic of
crystalline LiDETA and LiDAP, respectively. A lithium atom replaces a hydrogen atom
on one of the two primary amino groups. We formalized the general reaction equation in
Figure 1d.

When the lithium metal is below stoichiometry relative to EDA, DETA, or DAP, the
resulting alkylamide salt remains in solution in the excess solvent. Immersed in this reaction
medium, the fluoropolymers (PTFE, PVDF, and Nafion) quickly take on a black color.

2.2. Reactivity of Lithium Alkylamides towards the C-F Bond in PTFE

As expected and confirmed theoretically by the dual descriptor isosurfaces related to
lithium alkylamides (Figure 1e–h) within the framework of conceptual density functional
theory (CDFT) [34–36], the alkylamide group (bearing the biggest red lobe) is a favorable
site for an electrophilic attack (Table 1).

On the contrary, lithium (blue lobe) is a favorable site for nucleophilic attacks. Indeed,
the local reactivity descriptors f +, f−, and fo (Fukui indices) related to nucleophilic, elec-
trophilic, and radical attacks can be gathered via the condensed dual descriptor ∆f to reveal
reactive sites at a glance [37,38]. However, the biggest contribution of the blue isolated lobe
in front of the lithium atom comes from f +, but the contribution of fo is not negligeable at all
(no contribution from f−). Lithium alkylamides are very reactive towards PTFE, as shown
by local descriptors, but are highly dependent on their aggregation in a solution [39–44].
In all cases (LiEDA, LiDETA, and LiDAP), lithium has the highest positive ∆f value, thus
targeting an F whose ∆f value is negative in PTFE. Thus, the reactivity of LiEDA, LiDETA,
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and LiDAP was tested on PTFE, polyvinylidene fluoride (PVDF), and Nafion. Based on
these results, we can propose the following mechanism (Scheme 1):
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Figure 1. Synthesis of lithium alkylamides, their reactive centers, and the crystal structure of
LiEDA. The XRD structure of (a) LiEDA synthesized from the fast reaction between Li and EDA in
stoichiometric proportions. The powder XRD of (b) LiDETA and (c) LiDAP. (d) The synthesis scheme
of LiEDA, LiDETA, and LiDAP by the reaction of lithium with EDA, DETA, or DAP, respectively.
Isosurface maps of dual descriptors (∆f ) for (e) LiEDA, (f) LiDETA, (g) LiDAP, and (h) PTFE. Positive
and negative regions of the dual descriptor ∆f are represented as blue and red colors, respectively.
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Table 1. Condensed Fukui functions and condensed dual descriptors. Condensed Fukui function f
and condensed dual descriptor ∆f calculations based on Hirshfeld charges of LiEDA, LiDETA, LiDAP,
and PTFE (relaxed separately) in a gas phase for lithium salts and in a solid phase (crystal cell) for
PTFE at the B3LYP/6-31G** level of theory. The units used are elementary charge e.

Atom f+ f− fo ∆f

LiDETA
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Scheme 1. Suggested reaction mechanism between a fluoropolymer and the lithium alkylamide. Scheme 1. Suggested reaction mechanism between a fluoropolymer and the lithium alkylamide.

2.3. Surface and Spectroscopic Characterizations

Depending on the reaction time between the alkylamide and PTFE, PVDF, or Nafion,
the fluoropolymer can be modified either on the surface or in depth (Figure 2a–i). As
evidenced by scanning electronic microscopy (SEM), after 6 h, the attack of PTFE is more
visible on its cross-section (darker grey area in Figure 2f) compared to the pristine one
(Figure 2e). For this purpose, the sample was cut after being frozen in liquid nitrogen to
access to a clean slice and observe the width attacked by the chemical modification. The
untreated width of pristine PTFE (Figure 2a) is about 1.4 ± 0.1 mm on average, and that of
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the upper treated part is 319 ± 1 µm. The width of the sample is originally 2 mm; we can
assume that the cutting, even under liquid nitrogen, has flattened the material, as the total
width of the sample is 1.6 ± 0.1 mm on this image. The chemical treatment has reduced the
thickness. This gives us a more precise description of how the sample is affected by the
treatment and how the latter operates.
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Figure 2. SEM images of (a) a PTFE surface modified by (b) LiEDA, (c) LiDETA, (d) LiDAP. (e) PTFE
cross-sections (f) modified by LiEDA. (g) Pristine Nafion modified by (h) LiEDA and (i) LiDETA.

The X-ray photoelectron spectroscopy (XPS) measurements on a PTFE surface modi-
fied by alkylamides clearly show a decrease in the atomic % of fluorine bound to carbon
after 6 h, with a carbon-to-fluorine ratio varying from 1.2 to 0.28, respectively (Table 2).
Pristine PTFE samples contain C and F atoms in a 1:2 ratio in the form of -CF2- bonds, while
this ratio is about 7:2 for modified PTFE.

Table 2. Chemical composition (atomic %) of the surface, estimated based on XPS survey spectra.

Sample Carbon Fluorine Lithium Nitrogen Oxygen

PTFE 35.3 64.5 - 0.1 0.1

PTFE LiEDA 36.6 30.8 18.8 7.7 5.3

PTFE LiDETA 75.1 6.0 0.5 4.1 13.8

PVDF 54.2 40.8 - 0.1 4.8

PVDF LiEDA 71.2 2.5 0.5 12.8 12.2

PVDF LiDETA 84.0 1.4 0.1 7.5 6.9
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Table 2. Cont.

Sample Carbon Fluorine Lithium Nitrogen Oxygen

Nafion 31.9² 60.0 - 0.1 7.5

Nafion LiEDA 20.3 13.0 12.4 6.0 4.8

Nafion LiDETA 60.6 14.0 0.9 13.2 8.5

The strong signals of -CF2- and -CF3 from pristine PTFE between 292 and 294 eV
disappear after LiEDA etching (Figure 3a–c) [45]. This is the same trend for PVDF etched
by LiEDA (Figure 3d–f), while the peak is damped for Nafion etched by LiEDA or LiDETA
(Figure 3g–i). Two configurations are possible at 286 eV: C-N and C-O; the N1s peak at
399.5 eV corresponds to C-N (Figure 3h) [46].
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Figure 3. Surface analysis by XPS. XPS spectra of PTFE modified by LiEDA for (a) C1s, (b) N1s, and
(c) F1s. XPS spectra of PVDF modified by LiDETA for (d) C1s, (e) N1s, and (f) F1s. XPS spectra of
Nafion modified by LiEDA for (g) C1s, (h) N1s, and (i) F1s.

The IR attenuated total reflectance (IR-ATR) and Raman spectroscopies evidence
shows clear differences between the modified fluoropolymers and their pristine form with
the presence of new bands (Figure 4): -NH2 (around 3300 cm−1), -CH2 (2920, 2850, and
1470 cm−1), and -NH (1588 cm−1, visible for LiEDA, Figure 4a). The -CF2 bands of pristine
PTFE fade after etching or disappear (Figure 4d), as also observed by Raman spectroscopy.
These bands can be related to the monofluorinated aliphatic group, -CH2- alkane, vinyl
CH stretching, substituted alkyne -C≡C-H stretching (2137 cm−1), or, probably, reactions
with THF (2550 cm−1) and N-H stretching [47]. The modification of Nafion leads to the
presence of amino groups (3377 and 1572 cm−1 in the IR-ATR mode) on its surface without
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removing the sulfo group (727, 804, 972, and 1060 cm−1, Figure 4b), making modified
Nafion a zwitterionic membrane. The same conclusions drawn from PTFE and Nafion can
be made for PVDF (Figure 4c). The presence of -CH2 (in the range 3020–2920 cm−1), -NH2
(around 3250 cm−1), and -NH- (~1560 cm−1) bands is due to defluorination and amination
by lithium alkylamides in their respective synthesis solvent. The sulfonic group is more
visible by IR-ATR (S=O stretching at 1211, 1182, and 1070 cm−1) than by XPS.
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Figure 4. Vibrational analysis by IR-ATR and Raman spectroscopies of PTFE, PVDF, and Nafion
modified by lithium alkylamides. (a) IR-ATR spectra of pristine PTFE and its chemical modifications
by LiEDA and LiDETA. (b) IR-ATR spectra of pristine Nafion and its chemical modifications by
LiEDA and LiDETA. (c) IR-ATR spectra of pristine PVDF membrane and its chemical modifications
by LiEDA, LiDETA, and LiDAP. (d) Raman spectra of pristine PTFE and PTFE and its chemical
modifications by LiEDA and LiDETA as well as EDA solvent (excitation 785 nm).

In addition, lithium alkylamide salts synthesized from an equimolar reaction between
lithium and EDA, DETA, or DAP are soluble in THF. When dissolved in this solvent, they
react with fluoropolymers.

The presence of carbon sp2 and sp confirms the drastic rearrangement of the fluo-
ropolymer surface (Figure 2) with the shortening of bonds. The chemical modification by
lithium alkylamide produces contact angle lowering (Figure 5). This indicates a rise in the
surface free energy. PTFE becomes less hydrophobic and sees its surface energy increased
by three and six when modified by LiEDA and LiDETA, respectively. Furthermore, me-
chanical stress is then produced by the shortening of the surface bonds relative to those
in the bulk, causing visible deformations. For instance, there is a contraction of the PFTE
samples of approximately 14% after 6 h of treatment by LiEDA.
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Figure 5. Surface free energy and corresponding contact angle values (in blue). The error bars are
calculated with the propagation of uncertainty using first-order Taylor expansion applied to Fowkes’
theory formulas [11].

According to Fowkes’ theory (see Section 3.5), PTFE LiEDA appears to present a stiffer
surface, with a modulus of 1.73 ± 0.30 GPa, compared to bulk PTFE, with a modulus of
1.31 ± 0.10 GPa. This latter is higher than the tensile Young’s modulus we can find in the
literature (0.4 GPa). PTFE LiDETA shows no significative differences with the bulk material,
with a modulus of 1.37 ± 0.08 GPa.

Contrary to Fluoroetch etchant, LiEDA PTFE presents a higher modulus than bulk
PTFE, which could be explained by the shortening of the bond’s lengths, replacing C-F
bonds by multiple bonds (Equation (5)). These bonds are stiffer in molecular chains, which
impacts the material at a macroscale. LiDETA does not appear to have such a radical
effect on the mechanical behavior of the PTFE surface, since no significant differences
were observed. Thus, LiDETA seems to be a milder etchant than LiEDA in terms of
mechanical properties.

2.4. Energy Dispersive Spectroscopy Measurements

A better understanding of the degree of amination of modified fluoropolymers by
LiEDA or LiDETA comes from energy dispersive X-ray spectroscopy (EDX) measurements
during SEM observations (Figure 6). Indeed, the direct identification and quantification of
amino groups at an aminated surface by XPS is not possible when the amino groups coexist
with a manifold of other nitrogen containing species with similar chemical shifts [48–50].
This is the case for nitrogen adsorbed from air on bare PTFE, even after vacuum treatment,
as shown at 0.4 keV (Figure 6a), where nitrogen is expected. After the chemical treatment by
LiEDA (Figure 6b) or LiDETA (Figure 6c), the fluorine peak intensity decreases drastically,
especially upon LiDETA modification. The expected C/F ratio of 0.5 for bare PTFE becomes
4 for PTFE modified by LiEDA and 14 for PTFE modified by LiDETA.

The presence of oxygen at 0.5 keV on bare PTFE is due to its adsorption from air. In
contrast, the oxygen peak intensity increases with LiDETA and LiEDA treatment, respec-
tively. There is a competition between lithium alkylamides and absolute ethanol reaction
during the first washing step, followed by rinsing with water. The presence of -OH groups
is visible by IR-ATR at about 3400 cm−1 on the spectra (Figure 3).

EDX mapping against the presence of elements on the surface of bare PTFE (Figure 7),
PTFE modified by LiEDA (Figure 8), and PTFE modified by LiDETA (Figure 9) provides
insight into their quantity and their distribution at the magnification scale of 100 µm.
Globally, in Figures 7–9, the elemental distributions are quite uniform.
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The yield of amination is linked to the N element after chemical modifications, as
listed in Table 3. This amination process also leads to alcohol functionalization during the
washing and rinsing processes, as observed by IR-ATR spectroscopy but also by EDS. The
yield of defluorination is linked to the F element in Table 3, with the best efficiency for
LiDETA treatment.
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Figure 8. EDS mapping of C, N and O elements of the surface of PTFE modified by LiEDA.
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Table 3. Elemental analyses of the surface of bare PTFE, PTFE modified by LiEDA, and PTFE modified
by LiDETA.

PTFE LiEDA-Modified PTFE LiDETA-Modified PTFE

Element Weight % Atom % Weight % Atom % Weight % Atom %

C K 17.2 ± 0.3 24.5 ± 0.4 23.2 ±0.4 29.5 ± 0.5 33.5 ± 0.4 40.3 ± 0.5

N k - - 15.2 ± 1.7 16.5 ± 1.9 16.1 ± 2.0 16.6 ± 2.1

O K 5.4 ± 0.8 5.8 ± 0.8 30.2 ± 2.4 28.8 ± 2.3 33.6 ± 2.2 30.4 ± 2.0

F K 77.4 ± 1.5 69.7 ± 1.3 31.4 ± 2.1 25.2 ± 1.7 16.8 ± 1.7 12.8 ± 1.3

The amination process of PTFE by lithium alkylamides, as well as the other fluoropoly-
mers tested as a proof of concept, is a one-pot process which could be an interesting method
for the remediation of PFAS. Indeed, the only byproduct is LiF, which precipitates.

3. Materials and Methods
3.1. Materials

All the chemicals are from Sigma-Aldrich (St. Quentin Fallavier, France). The PTFE
and PVDF foils (2 mm thickness) are from Goodfellow (Lille, France) and of the highest
purity without additives. Nafion membrane is from Sigma-Aldrich (France). All the
pristine and modified surfaces were cleaned in absolute ethanol, rinsed in Millipore water
under ultrasonication three times for 5 min, and dried in an oven for 1 h at 50 ◦C prior
to the experiment in the glove box. The glove box (Jacomex, Dagneux, France) is under a
permanent argon stream with oxygen and water traces under 1 ppm.

3.2. Experimental Conditions for the Reaction between PTFE, PVDF or Nafion, and
Lithium Alkylamides

In the glove box under argon stream, a piece of 1 cm2 of PTFE, PVDF, or Nafion was
placed in a Duran flask with a screw closure containing 10 mL of the solvent (EDA or DETA
or DAP). Then, 0.2 mol of lithium is added under stirring with a glass-coated stirring rod
at 1 bar and 20 ◦C for 6 h.

3.3. Analytical Methods

XPS: The surface chemical structure was analyzed by X-ray photoelectron spectroscopy
using a Thermofisher Scientific Nexsa spectrometer (Waltham, MA, USA) with a monochro-
matic Al-Kα X-ray source (hν = 1486.6 eV, spot size = 400 µm). The use of a low-energy
electron flood gun was necessary for the analysis. The photoelectron detection was carried
out perpendicularly to the sample surface using a constant energy analyzer mode (pass en-
ergy 20 eV), and spectra were recorded with a 0.1 eV energy step size. Binding energies were
referenced to the hydrocarbon (C–C and/or C–H) C1s peak set at 284.8 eV. Quantification
was performed based on the photopeak areas after a Shirley type background subtraction
using the Thermofisher Scientific Avantage© software (v6)and its “ALTHERMO1” library
for sensitivity factor collection.

IR-ATR: The IR-ATR characterizations were performed on the ATR 4X module of the
Jasco FT-IR 4X spectrophotometer (Tokyo, Japan) equipped with a Ge crystal (32 scans).

Raman: The Raman analyses were performed using the BWTEK confocal microRaman
spectrometer (Plainsboro, NJ, USA) equipped with a high-quantum-efficiency CCD array
and deep cooling (−25 ◦C) for high dynamic range detection using a ×20 objective lens.
The acquisitions were carried out in the backscattered direction, with an integration time of
30 s. Three spectra were collected at each location and averaged to reduce the noise level
using an excitation source of a 785 nm wavelength and 10% of the 500 mW output power.

Microscopy: Scanning electronic microscope (SEM) imaging was carried out by a
Hitachi SU 8320 (Tokyo, Japan), and the samples were coated with approximately 6 nm of
carbon using a Quorum Q150T S Plus vacuum evaporator (QuorumTech, Lewes, UK).
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Contact angle: The contact angles were measured in air using an Easy Drop DSA100
(KRUSS, Hamburg, Germany), and the images were acquired using the Drop Shape Anal-
ysis software (v1.91.0.2). The measurements were performed at room temperature with
a series of ten deionized water (W) and diiodomethane (DIM) drops of 10 µL as testing
liquids to evaluate contact angles. These angles were used to calculate the total surface
energy (σs), by the determination of its polar (σP

S ) and dispersive (σD
S ) terms, according to

Fowkes’ theory [51].
XRD: Diffraction data were collected on a Nonius KappaCCD diffractometer equipped

with a nitrogen stream low-temperature system (Oxford Cryosystems, Oxford, UK). The X-
ray source was a graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) in a sealed tube.

3.4. Ab Initio Calculations

The local reactivity descriptors f +, f−, and fo (Fukui indices) related to nucleophilic,
electrophilic, and radical attacks were calculated following the condensed dual descriptor
∆f to reveal reactive sites at a glance [37,38]. They were computed at the B3LYP/6-31G**
level of theory and post-processed with Multiwfn 3.7 [35,36,52].

3.5. Contact Angle Measurements

The contact angles were measured in air using an Easy Drop DSA100 (KRUSS, Ger-
many), and the images were acquired using the Drop Shape Analysis software. The
measurements were performed at room temperature with a series of ten deionized wa-
ter (W) and diiodomethane (DIM) drops of 10 µL as testing liquids in order to evaluate
contact angles. These angles were used to calculate the total surface energy (σs), by the
determination of its polar (σP

S ) and dispersive (σD
S ) terms, according to Fowkes’ theory [51].

Fowkes’ theory is the most widely used method for determining surface energy, as it uses
only two liquids, contrary to Owens/Wendt theory, which requires the choice of multiple
liquids. This makes it less easy to compare results for the latter method. Fowkes’s theory is
based on a two-component model, which supposes that the surface energy is the result of
the addition of its dispersive and polar component. A more recent method called Owens,
Wendt, Rabel, and Kaelbel (OWRK) is based on Fowkes’s theory and would also be suitable
for this study. The use of more than two liquids is recommended for the linear fit though.

The method and the theory presented here are extracted from the well-described
KRUSS technical note TN306e. Fowkes’ theory is based on three fundamental equations
that describe interactions between solids and liquids. First, there is Young’s equation:

σS = σSL + σL cosθ (1)

wherein σL = the overall surface tension of the wetting liquid,
σS = the overall surface energy of the solid, σSL = the interfacial tension between the

solid and the liquid, and θ is the contact angle between the liquid and the solid.
From Dupre’s definition of adhesion energy, the following is obtained:

ISL = σS + σL − σSL (2)

wherein ISL = the energy of adhesion per unit area between a liquid and a solid surface.
Fowkes’ theory assumes that the adhesive energy between a solid and a liquid can

be interpreted as interactions between the dispersive components of the two phases and
interactions between the non-dispersive (polar) components of the two phases.

ISL = 2
[(

σD
L

)1/2(
σD

S

)1/2
+

(
σP

L

)1/2(
σP

S

)1/2
]

(3)

wherein σL
D = the dispersive component of the surface tension of the wetting liquid,

σL
P = the polar component of the surface tension of the wetting liquid, σS

D = the dispersive
component of the surface energy of the solid, and σS

P = the polar component of the surface
energy of the solid.
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These equations combined lead to the primary equation of the Fowkes’ surface en-
ergy theory: (

σD
L

)1/2(
σD

S

)1/2
+

(
σP

L

)1/2(
σP

S

)1/2
=

σL(cosθ + 1)
2

(4)

From this latter equation, a two-step determination is used. First, the component σD
s

is determined with a non-polar solvent, the one most used and used here is diiodomethane.
It is assumed that σP

L = 0 and σL = σD
L . The Equation (4) becomes

σD
S =

σL(cosθ + 1)²
4

(5)

with the σL value taken from the Kruss DSA database and θ obtained by the experiment.
The second step defines the polar component σP

s using water as the testing liquid. The
Equation (4) becomes

σP
s =

σ2
L(cosθ + 1)2 − 4σD

L σD
S

4σP
L

(6)

with σL, σD
L , and σP

L known from the Kruss DSA database and σD
S calculated before. θ is

obtained experimentally.
The surface energies obtained in Figure 5 describe the change in the bulk material into

less hydrophobic surfaces regarding the changes caused by LiEDA and that of hydrophilic
surfaces caused by LiDETA. Indeed, bulk PTFE sees its surface energy increased by three
for LiEDA and six for LiDETA.

4. Conclusions

In summary, the direct defluorination and amination of PTFE and, by extension,
fluoropolymer surfaces can be achieved simply and quickly as a one-pot synthesis under
mild conditions (20 ◦C, 1 bar) and an inert atmosphere (argon). The chemical process
involves dipping the fluoropolymer into a solution containing excess aliphatic di or triamine
(EDA, EDTA, or DAP) and lithium amide formed between the lithium and the aliphatic di
or triamine. Only a few hours are needed for surface modification. With prolonged contact,
the fluoropolymer bulk is attacked.

In stoichiometric conditions, both lithium and amine are consumed to form a solid
lithium alkylamide. When dissolved in THF, for instance, it leads to the irreversible
chemical etching of fluoropolymers such as PTFE, PVDF, or Nafion.

The defluorinative amination of the C-F bond is evidenced by spectroscopic analysis
such as XPS, IR-ATR, and microscopy (SEM). In contrast, the washing step with absolute
ethanol followed by water rinsing introduces the presence of -OH groups on the surface of
the modified fluoropolymers. This competes with amine functionalization.

Nevertheless, this reductive amination process can be regarded as a generalization
of the Billups–Birch and Benkeser reductions. It paves the way for many applications
based on fluoropolymers, but fluorinated compounds are concerned, while giving them a
new chemical impulse. All this work can be transposed to sodium alkylamide salts, thus
drastically reducing their cost.
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