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From Slot Mereology To A Mereology Of
Slots
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Abstract. In 2013, Bennett proposed a mereological theory in which the parthood relation is defined on the basis of two
primitive relations: a is a part of b iff a fills a slot owned by b. However, this theory has issues counting how many parts an
entity has. We explore the various counting problems and propose a new theory to solve them. Keeping the core idea of Bennett’s
slots, this theory introduces mereological relations between slots. This theory enables us to solve all known counting problems
and to go beyond the limits of Bennett’s theory by theorising expected features of mereological theories: supplementation
principles and mereological sum and fusion. The theory is illustrated on ontological issues on the nature of structural universals
and informational entities.
Keywords: mereology, slot mereology, supplementation, mereological sum, mereological fusion, structural universal,
informational entity

1. Introduction

Bennett (2013) proposed a new mereological theory that allows a whole to have the same part multiple
times. In this theory, the parthood relation is analysed in terms of two relations: having a slot, and
filling a slot. More precisely, a is a part of b iff a fills a slot of b. Thus, b can have the same part a
several times by a filling several slots of b. Bennett motivated her theory by a problem, exposed by
Lewis (1986), that appears with structural universals, namely universals composed of other universals.
Indeed, a structural universal can have the same universal as a part multiple times. Bennett illustrates
her theory by using the example of the methane molecule universal, following Lewis (1986). In her
theory, the methane molecule universal CH4 can have the hydrogen atom universal H as a part four
times, reflecting the structure of methane molecules. Structural universals have been debated by, among
others, Armstrong (1986), Bigelow (1986), Fisher (2018), Masolo and Vieu (2018) and Garbacz (2020),
in articles discussing mereological theories for structural universals, including Bennett’s slot mereology.
Fisher (2013) and Garbacz (2016) offered the principal analyses of slot mereology following Bennett’s
seminal work. Note, however, that slot mereologies inspired by Bennett’s work are not restricted to
structural universals and can be applied to other entities, such as informational entities (see (Barton
et al., 2020a), (Barton et al., 2020b) and (Barton et al., 2022)). In some of her examples, Bennett even
suggested to apply it to material particulars. This theory is inspired by a role-based analysis in which
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the slots would be identified with roles and the fillers with the role-players, although Bennett does not
propose a complete account of roles in terms of slot mereology and does not exploit any well-developed
formal ontology of roles (such as (Masolo et al., 2004) or (Loebe, 2007)).1

In earlier work (Tarbouriech et al., 2021), we revised Bennett’s theory. However, this proposal had
problems that we will explore and fix here. Some parts of the present paper are adapted from this previous
paper (most of Sections 2 and 3 with a notable exception for Section 3.2.3).

Despite its aim to account for having a part multiple times, as we will show, Bennett’s proposal has
counter-intuitive implications involving counting parts. As we will see in Section 3, whatever counting
criterion we choose, there are cases for which we get unwanted results, that is, results that do not follow
the isomorphism principle between a universal and its instances expressed by Lewis (1986).2 We will
thus propose a radical revision and an extension of Bennett’s theory that solves such problems. We
will illustrate our theory using the METHANE example, occasionally completed by other examples of
structural universals and informational entities when needed.

In Section 2, we present Bennett’s theory and use this theory to represent the structure of the
METHANE universal. The problems of this theory and of our previous theory are exposed in Section 3.
We explore the three identified problems with various examples. Finally, we develop a new solution in
Section 4 and show some examples in Section 5. Sections 6 and 7 end this paper with a discussion and
a conclusion.

The theorems presented in this paper have been proved using Coq, a proof assistant (for more details,
see (Bertot and Casteran, 2004)).3

2. Slot Mereology

Slot mereology separates the parthood relation into two primitive relations: being a parthood slot
of and filling a parthood slot, respectively named Ps and F. As we have just seen, this theory was
motivated by the possibility of a whole having the same part multiple times. For example, a structural
universal can have the same universal as a part multiple times (e.g. CH4 having H as a part four times),
or an informational entity particular4 can have the same informational entity particular as a part multiple
times (e.g. the phrase ‘a cat and a dog’ having the word ‘a’ as a part twice). Thus, one would expect
this theory to enable a correct count of the number of appearances of each part (even if Bennett does not
discuss countability). However, the system fails in that respect, as we will see. Let us first present the
system.

1Appealing to roles in order to represent mereological structure appears in medieval philosophy. Martin (2019) shows how
Abaelard, in his various texts, defines the notion of principal part as a part that plays a “functional and structural role in the
constitution” of a whole.

2See Section 3 and (Fisher, 2018) for more on the isomorphism principle.
3The Coq file is available at https://gitlab.irit.fr/melodi/ctarbouriech/-/blob/main/slot_mereology.v.
4The point of view on informational entities adopted here follows the work of Barton et al. (2020a), Barton et al. (2020b)

and Barton et al. (2022). Thus, we differentiate the informational entity particular from its concretisations, for instance, when
written on paper. The informational entity particulars discussed here (letters, words, sentences) share many properties with
universals of non-informational entities - in particular, they can be multi-localised.

https://gitlab.irit.fr/melodi/ctarbouriech/-/blob/main/slot_mereology.v
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2.1. Presentation of the System

Bennet’s theory is based on the two primitive relations Ps and F. Five relations are defined on this
basis, as presented in Table 1. The definitions, axioms and theorems from Bennett’s paper (2013) are
respectively identified by “BD”, “BA” and “BT”, followed by a number.

Table 1
Slot Mereology Definitions

Number Name Definition

BD1 Parthood P(a,b)≜ ∃s(Ps(s,b)∧F(a,s))
BD2 Proper Parthood PP(a,b)≜ P(a,b)∧¬P(b,a)
BD3 Overlap O(a,b)≜ ∃c(P(c,a)∧P(c,b))
BD4 Slot-overlap5 Os(a,b)≜ ∃s(Ps(s,a)∧Ps(s,b))
BD5 Proper Parthood Slot PPs(s,a)≜ Ps(s,a)∧¬F(a,s)

Eight axioms constrain the system, presented in Table 2. Axiom BA5 makes slots inheritable.

Table 2
Slot Mereology Axioms

Number Description Axiom

BA1 Only Slots are Filled F(a,s)→∃b(Ps(s,b))
BA2 Slots Cannot Fill F(a,s)→¬∃b(Ps(a,b))
BA3 Slots Don’t Have Slots Ps(s,a)→¬∃t(Ps(t,s))
BA4 Improper Parthood Slots ∃s(Ps(s,a))→∃t(Ps(t,a)∧F(a, t))
BA5 Slot Inheritance [Ps(s,b)∧F(a,s)∧Ps(t,a)]→ Ps(t,b)

BA6 Mutual Occupancy is Identity
(Ps(s,b)∧F(a,s))∧
(Ps(t,a)∧F(b, t))→ a = b

BA7 Single Occupancy6 Ps(s,a)→∃!b(F(b,s))

BA8 Slot Strong Supplementation
∃s(Ps(s,a))∧∃t(Ps(t,b))→
[¬(∃u(Ps(u,a)∧F(b,u)))→
∃v(Ps(v,b)∧¬Ps(v,a))]

If s is a slot of a, we say that s is a “direct slot” of a iff there is no proper part b of a such that s is also
a slot of b. If s is a slot of a that is not a direct slot, we call it a “non-direct slot”. Note that in the absence
of any discreteness axiom, direct slots are not guaranteed.

Definition 1 (Direct Slot). DPs(s,a)≜ Ps(s,a)∧¬∃b(PP(b,a)∧Ps(s,b))

We will call “filler” an entity that fills a slot. Axiom BA4 implies that anything that has at least one
slot is also a filler. At this point, we can make some remarks:

• Being a proper slot (Definition BD5) is not an intrinsic property of slots, but a relational property:
the same slot can be a proper slot of a filler and an improper slot of another filler.

5The relation is called SO in Bennett’s theory.
6A typographical mistake in Bennett’s paper has been corrected, following Garbacz (2016).
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• Even though every whole that has a proper part also has an improper slot (Axiom BA4), the converse
is not true: a filler can have an improper slot without having any proper parts.

• Although Bennett’s paper does not mention this possibility, nothing in her system prevents a filler
from having several improper slots.

• There are no axioms stating that everything is either a slot or a filler. So there can be other things.

Table 3 presents Bennett’s theorems that are used in this paper.

Table 3
Slot Mereology Theorems

Number Description Theorem

BT7 Transitivity P(a,b)∧P(b,c)→ P(a,c)
BT8 Anti-Symmetry P(a,b)∧P(b,a)→ a = b
BT9 Conditional Reflexivity ∃s(Ps(s,a))→ P(a,a)

BT13 Slot Weak Supplementation PP(a,b)→∃s(Ps(s,b)∧¬Ps(s,a))

BT14 Slot Extensionality6 ∃c(PP(c,a))∨∃d(PP(d,b))→
[a = b ↔∀s(PPs(s,a)↔ PP(s,b))]

2.2. Representing the Methane Molecule

Any methane molecule particular is composed of five atoms: one carbon and four hydrogens, each
bound to the carbon atom. Moreover, any carbon atom particular has six electrons, and each hydrogen
atom particular has one electron.7 Using slot mereology, the universal METHANE is described as having
five proper slots, one for the CARBON universal and four for the HYDROGEN universal. The current
structure is described by Facts (1)8 and pictured in Figure 1, where a oo

s represents Ps(s,a), a
s repre-

sents F(a,s) and a
s || represents Ps(s,a)∧F(a,s) (the same notation will be used in following figures).

Note that Axiom BA4 entails that S0 exists and is an improper slot of METHANE.

Ps(Si,METHANE) 0 ⩽ i ⩽ 5 F(HYDROGEN,Si) 2 ⩽ i ⩽ 5
F(METHANE,S0) F(CARBON,S1)

(1)

METHANE

S0

1144 OO jj mm




CARBON

S1

HYDROGEN

S2

HYDROGEN

S3

HYDROGEN

S4

HYDROGEN

S5

Fig. 1. Representation of METHANE and its parts, CARBON and HYDROGEN

7Note that atoms also have other parts, such as nuclei, but for simplicity, we only represent electrons in this example. The
reasoning we will develop for electrons also applies to other parts such as nuclei. Furthermore, the specific problems of identity
raised by quantum mechanics are ignored (see (French, 2019)).

8The formulas that use index i are compact notations for several formulas. This notation is used in the remainder of the paper.
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Let us represent the electrons of each atom. Each carbon atom has six electrons, and each hydrogen
atom has one. So, in our case, the universal CARBON owns six slots filled with ELECTRON, whereas the
universal HYDROGEN owns only one, as described by Facts (2).

F(ELECTRON,S12)∧Ps(S12,HYDROGEN)
F(ELECTRON,Si)∧Ps(Si,CARBON) 6 ⩽ i ⩽ 11 (2)

One thing to keep in mind is the fact that even if there are four slots of METHANE filled by HYDRO-
GEN, there is only one universal of HYDROGEN, which has only one slot filled by ELECTRON. Bennett’s
Axiom BA5 states that wholes inherit slots from their parts. In our case, this means that METHANE

inherits from CARBON and HYDROGEN their slots filled by ELECTRON. METHANE inherits six slots
from CARBON and only one slot from HYDROGEN. Considering that METHANE has no other slots filled
by ELECTRON, METHANE has in total seven slots filled by ELECTRON.

According to Axioms BA4 and BA5, there are two additional slots, called S13 and S14, that are im-
proper slots of CARBON and HYDROGEN, respectively (see Facts (3)). For readability, we do not present
the full mereological structure of METHANE here. Nonetheless, other examples are presented, with a full
representation of the mereological structure, in Section 5.

Ps(S13,CARBON) Ps(S14,HYDROGEN)
F(CARBON,S13) F(HYDROGEN,S14)

(3)

Regarding improper slots S13 and S14, there are two possibilities: either those two slots are differ-
ent from the ones previously mentioned, or some of them are identical to some of the previously
mentioned slots. In this example, we chose the first possibility: S13 and S14 are different from all the
other slots. All the slots of CARBON and HYDROGEN are inherited by METHANE, due to Axiom BA5:
Ps(Si,METHANE) (6 ⩽ i ⩽ 14). Note that it is also the case for improper slots.

3. Counting the Parts

3.1. Counting Criteria

“Counting how many times filler A has filler B as a part” means counting the number of appearances
of B in A. But what counts as a genuine appearance? As Bennett’s theory includes improper slots, we
can define two counting criteria. The first counting criterion, C1, enables us to count the number of
different slots owned by A that are filled by B, whether they are also owned by B (and are thus improper
slots of B) or not. The second counting criterion, C2, enables us to count the number of different slots
owned by A that are filled by B and that are not owned by B (that is, that are not improper slots of B).
Note that it means that, according to C2, A is part of itself zero times, even though A has improper slots.
Therefore C2 is only relevant when counting proper parts.

The results obtained with the two criteria will be compared to the result obtained when analysing a
methane molecule particular, following the isomorphism principle proposed by Lewis (1986). A methane
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molecule has as parts one carbon atom particular, four hydrogen atom particulars and ten electron par-
ticulars.9 Thus, we expect from our mereological theory and counting criterion to lead to the methane
molecule universal METHANE having as parts the carbon atom universal CARBON once, the hydrogen
atom universal HYDROGEN four times and the electron universal ELECTRON ten times.

3.2. Counting Problems

Bennett’s theory raises two issues concerning the countability of parts: the first one stems from the
existence of improper slots, and a second one from slots of parts. Ultimately, as we will see, both are
caused by the Slot Inheritance Axiom BA5. Finally, we will show that the solution we proposed earlier
(Tarbouriech et al., 2021), besides fixing original counting problems, added a new problem.

3.2.1. Improper Slot Problem
Let us say we want to count the number of times HYDROGEN is part of METHANE. METHANE has five

different slots filled with HYDROGEN: four direct slots (S2 to S5) and one inherited slot (S14), the latter
being the improper slot of HYDROGEN itself. HYDROGEN is part of METHANE five times according to
C1 and four times according to C2.10 By comparing those results with the expected result when we count
how many hydrogen particulars belong to a particular of methane molecule, we can state that criterion
C2 leads to a correct result, whereas criterion C1 leads to an incorrect result.

Among the possible models of slot mereology, Figure 2 illustrates three models worthy of interest. In
these models, b is proper part of a (thus, they are distinct). Here is an informal description of the three
models:

(2i) a has only one slot s that is filled by b and this slot is not owned by b;
(2ii) a has only one slot s that is filled by b and this slot is also owned by b (and thus, is an improper

slot of b);
(2iii) a has exactly two different slots s and t that are filled by b. One of these slots (say t) is also owned

by b.

a
��u

OO

b
s

(i)

a
��u

OO

b
s
ss

(ii)

a
��u

?? ``

b
s

b
t
ss

(iii)

Fig. 2. Three possible models of slot mereology

From the facts represented in Figure 2, we can deduce the following facts:

9As noticed by a reviewer, in some common understanding of chemistry, only atoms are considered as bona fide parts of
molecules, and electrons are only considered when analysing bonding between atoms. The chemistry examples of this paper
mainly serve to illustrate the formal theory, in particular parthood transitivity, and should not be considered as providing a
detailed account of mereology in chemistry. If the ELECTRON universal is not to be considered as a part of molecule universals,
further work might be needed to address parthood transitivity issues among universals, similarly as when applying classical
mereology to represent parthood relations among concrete particulars (see, e.g., (Vieu, 2006)).

10Different results from the ones presented here are possible if a different representation of the slot structure of the methane
molecule is used, as discussed below regarding models 2ii and 2iii in Figure 2.
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• in model 2i, according to both C1 and C2, b is part of a once;
• in model 2ii, by C1, b is part of a once. However, by C2, b is part of a, but zero times;
• in model 2iii, by C1, b is part of a twice. However, by C2, b is part of a once.11

According to the counting criteria, we get different results for models (2ii) and (2iii). Since it is
obviously absurd for b to be part of a, but zero times, C2 is inappropriate. Thus, we have showed that
neither C1 (by the METHANE example) nor C2 (by examples of Figure 2) can be compatible with
Bennett’s theory. Therefore, we will investigate how Bennett’s theory can be fixed so that parts can be
counted correctly. But we first need to explore a second, related, issue.

3.2.2. Parts of Parts Problem
The second problem stems from the parts of the parts. Let us say we want to count how many times

ELECTRON is part of METHANE. If we do so, we will find six slots inherited from CARBON (namely
S6, S7, S8, S9, S10, S11) and one slot inherited from HYDROGEN (namely S12), that is, seven slots in total.
C1 would thus lead to METHANE having ELECTRON as a part seven times, whereas C2 would lead to
it having ELECTRON as a part at most seven times (depending on whether some of those slots also are
improper slots of ELECTRON, see model (2iii) in Figure 2). This result is different from the expected
result of ELECTRON being part of METHANE ten times.

3.2.3. Problems Of Copy-Slot Mechanism
In earlier work (Tarbouriech et al., 2021) we removed Bennett’s Slot Inheritance BA5, adopted an

anti-inheritance axiom, clarified the axiomatisation of improper slots, and developed the “copy-slot
mechanism” as a solution for the two counting problems. The idea we developed in that work is that
slots were no longer inherited but rather that the mereological structure of fillers was duplicated every
time the filler occupies a slot, i.e., the slots of the filler were duplicated to be slots of the whole. The
original slot and the duplicated slot have the same content: only their owners change. We introduced two
relations copied_from and copied_through to implement this copy mechanism. Consider the structure of
the dihydrogen, namely a molecule composed of two hydrogen atoms. The representation in Figure 3i,
based on Bennett’s theory alone, is not satisfactory, as it leads to an incorrect count of the number of oc-
currences of the ELECTRON and HYDROGENNUCLEUS12 universal, as we have just seen for METHANE.
The structure pictured in Figure 3ii is a model of the theory that encompasses the copy-slot mechanism.
The structure of the HYDROGEN universal (namely slots S3 and S4) is repeated twice: once for each of
the slots in which the HYDROGEN universal occur (slots S1 and S2). By further constraining improper
slots, we fixed the first problem (Improper Slot Problem). With the copy-slot mechanism, we fixed the
second counting problem (Parts of Parts Problem).

However, the copy-slot mechanism has a flaw. This flaw leads to an excessive duplication of slots,
and by extension to a wrong count of parts. Figures 4i and 4ii represent the same structure of the string
“cats”. The first one does not have copy-slots, the second does.13 By looking at the second figure, we
see that “cats” owns two slots S7 and S13 filled by “c”, whereas it should only have one. This is because
of the multiple levels in the mereological structure: S7 is a slot copied from the structure of “cat”,
while S13 is copied from the structure of “ca”. The copy-slot mechanism misses a feature ensuring

11s and t are filled by the very same universal. In contrast to Bennett’s figures in which slots can be drawn one inside another,
we chose to separate them, even if it means repeating the filler.

12Here, we will not describe the mereological structure of HYDROGENNUCLEUS and consider it as a mereological atom.
13Only entities useful for the current reasoning are pictured in the figures. It is possible to consider other entities, such as

“at” or “ct”, but they are not necessary to expose the problem.
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(i) In Bennett’s theory
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E
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S4

(ii) In Copy-Slots Theory

Fig. 3. The mereological structure of DIHYDROGEN represented in Bennett’s and Copy-Slots theories. H2 is DIHYDROGEN, H
is HYDROGEN, HN is the HYDROGENNUCLEUS and E is ELECTRON. (A dotted arrow represents the copied_from relation. A
dashed arrow represents the copied_through relation.)

unicity. As a solution, we will propose a new system. Even though the relations copied_from and copied_
through are discarded, the core idea of the copy-slot mechanism is preserved. This new system also
works by considering that the mereological structure of each filler should be duplicated as many times
as necessary, as we will see shortly.

Ps(S3,cat) F(c,S3) copied_from(S3,S1) copied_through(S3,S5)
Ps(S4,cat) F(a,S4) copied_from(S4,S2) copied_through(S4,S5)
Ps(S7,cats) F(c,S7) copied_from(S7,S3) copied_through(S7,S9)
Ps(S8,cats) F(a,S8) copied_from(S8,S4) copied_through(S8,S9)
Ps(S10,cats) F(ca,S10) copied_from(S10,S5) copied_through(S10,S9)
Ps(S11,cats) F(t,S11) copied_from(S11,S6) copied_through(S11,S9)
Ps(S13,cats) F(c,S13) copied_from(S13,S1) copied_through(S13,S10)
Ps(S14,cats) F(a,S14) copied_from(S14,S2) copied_through(S14,S10)

(4)
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Fig. 4. A partial view on the mereological structure of “cats” without and with copy-slots
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3.2.4. Conclusion of the Counting Problems
The two original counting problems are in fact caused by the same axiom of slot inheritance BA5,

which i) makes improper slots inheritable and ii) does not make the subparts inheritable multiple times.
Since this axiom was presumably introduced by Bennett to allow parthood transitivity, we will need to
replace it by alternative axioms that do not lead to the same problems, while still ensuring parthood
transitivity. Also, we will make sure that the excessive duplication flaw is fixed.

4. Defining A Mereology Of Slots

Our analysis above suggests that the theory lacks axioms that could ensure correct counting results
according to our counting criteria. After giving a more precise and restrictive characterisation of what
slots are, we will develop a mereology of slots, that is a theory of mereological relations between slots.

4.1. On the Nature of Slots

4.1.1. Slot Definition
We add the unary predicate S, that states that something is a slot, defined by Definition 2.14

Definition 2 (Slot). S(s)≜ ∃a(Ps(s,a))

Bennett defines a slot as “a location in a mereological nexus” and “an aspect of the mereological
structure of a whole” (Bennett, 2013, p. 87). We restrict those definitions by stating that a slot is a
holistic aspect of the mereological structure of a whole, i.e., a contextual mereological location in a
unique whole. Therefore, it depends existentially on this whole, as explained below in Section 4.1.2.

In our theory, we consider slots as inner elements of wholes that characterise different contexts in
which parts occur.15 As inner elements of a whole, that is, as elements of its mereological structure,
they are not shareable with other wholes, as imposed by Axiom 1 below. This is in contradiction with
Bennett’s axiomatisation since in her theory, slots can have multiple owners because of slot inheritance.

Axiom 1 (Single Owner). ∀a,b,s(Ps(s,a)∧Ps(s,b)→ a = b)

We showed in the previous section that slot inheritance is the origin of counting problems. By impos-
ing that slots have a single owner, slot inheritance is no longer possible, as demonstrated by Theorem 116

below. Therefore, we reject Bennett’s Slot Inheritance BA5. Consequently, as BT7 is the only theorem
of Bennett’s theory that was proved with BA5, we will need to show that it is still a theorem of our
theory when the relevant axioms will be added.

Theorem 1 (Anti-Inheritance). ∀a,b,s, t([a ̸= b∧Ps(s,b)∧F(a,s)∧Ps(t,a)]→¬Ps(t,b))

14Our definitions, axioms and theorems are denoted using the full word and a number. Therefore, they can be distinguished
from Bennett’s.

15To follow the analogy with roles that inspired Bennett’s theory, those contexts can be seen as relational roles. In this view,
we consider that slots correspond to fully saturated roles, such as “President of the United States”, as opposed to the unsaturated
role “President”. For more on role saturation, see Masolo et al. (2004).

16In earlier work (Tarbouriech et al., 2021), a similar formula, introduced as an axiom, did not include a ̸= b in its premises.
However, this led to only two models: the empty model and the model with one filler and its improper slot.
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Proof. Let a and b be two different fillers (a ̸= b) and s and t two slots such that a is a part of b by filling its slot s (Ps(s,b)∧
F(a,s)) and t is a slot of a (Ps(t,a)). We want to prove that t cannot be a slot of b (¬Ps(t,b)). Suppose that t is a slot of b
(Ps(t,b)). Because t is a slot of a and b, we know by A1 that a = b. Contradiction. Therefore, t cannot be a slot of b. □

In the remainder, we will sometimes call slots “occurring contexts”. Consider the two following def-
inite descriptions: “the universal of hydrogen that fills s2” and “the universal of hydrogen that fills s3”.
Those two descriptions are misleading. By reading them, one could assume the existence of two differ-
ent universals of hydrogen, which does not make sense. Indeed, what is intended here is to refer to two
occurrences of the same universal, HYDROGEN, in the slots s2 and s3. Those two different occurrences
exist because there are two different slots. Those slots are “occurring contexts” of the universal within a
given universal, the owner of the slots. Those occurring contexts are not intrinsic properties of the uni-
versals filling the slots. An occurring context characterises the inner structures of an entity larger than
the filler of this context.

We add two relations, namely SO and SF, respectively defined by Definition 3 and Definition 4,
where SO(s, t) means “s has the same owner as t” and SF(s, t) means “s has the same filler as t”. These
relations state that two slots have the same owner, for the former, and the same filler, for the latter. They
are trivially conditionally reflexive, symmetric, and because the owner and the filler of a slot are unique,
transitive.

Definition 3 (Same Owner). SO(s, t)≜ ∃a(Ps(s,a)∧Ps(t,a))

Definition 4 (Same Filler). SF(s, t)≜ ∃a(F(a,s)∧F(a, t))

Now that slots only have one owner, the two counting criteria C1 and C2 are equivalent when counting
proper parts. Note that with anti-inheritance, the distinction between direct and non-direct slots is not
relevant anymore: all slots are direct (but see Section 4.2 to see how this distinction is recovered).

Since slot inheritance was instrumental in Bennett’s theory to derive important theorems, we will
adopt instead what we call an operation of “contextualisation” between slots. Consider the following
example: some entity a has a slot s filled by b, and b owns a slot t filled by c. In Bennett’s theory, with
slot inheritance, the slot t will also be a slot of a. Here, instead of inheriting t, we posit that a has a slot u
filled by c, which is a copy of t, contextualised by s. Contextualisation will fix the flaw of the copy-slot
mechanism, as we will see in Section 4.2.

But first, let’s address some questions about slots’ nature that are barely touched in Bennett’s paper:
are slots existentially dependent on their owners? On their fillers? And what are improper slots?

4.1.2. Existential Dependencies of Slots
Even though Bennett explores the existential dependencies of entities on their slots and parts, she says

nothing about the existential dependencies of slots on their owners and fillers.
In Bennett’s theory, slots can be related to fillers by two relations: Ps and F. Therefore, a specific

slot can be owned by some fillers and filled by some other (or identical) fillers. Does a slot existentially
depend on its owner? Or on its filler? And if so, what is the nature of this dependency?

Bennett’s theory asserts that all slots have an owner (BA1). As we already said in the previous section,
in our theory, a slot is an inner element of a single whole (Axiom 1). Therefore, the facts that slots
always have an owner and are elements of their single owner’s mereological structure suggest that slots
existentially depend on their unique owner. Thus, although we do not formally account for the modal
aspect of dependence in our theory, we can assume that slots are specifically dependent on their owner:
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the existence of a specific slot depends on the existence of its owner. If the owner would disappear, the
slot would also cease to exist.

We just pointed out that slots are inner elements of their owner. They have another important charac-
teristic in Bennett’s theory: they are always filled (BA7). Bennett also points out that the content of a
slot can change over time: a slot can have two different fillers at two different times. Thus, a slot does
not specifically depend on its filler. This raises the question of whether a slot generically depends on its
fillers across time, which we will not address here as we leave the complex issue of mereological change
for further work.

4.1.3. Properness Of Slots
Bennett’s theory proposes Definition BD5 to define proper slots. The definition states that some slot s

is a proper slot of a if it is a slot of a and a does not fill s. Therefore, an improper slot is a slot owned
and filled by the same entity, as defined by Definition 5.

Definition 5 (Improper Slot). IPs(s,a)≜ Ps(s,a)∧F(a,s)

In Bennett’s theory, the properness of a slot is a property relative to an owner of this slot. Therefore,
a slot can be an improper slot of a filler a and, at the same time, a proper slot of a filler b. However,
in our theory, Axiom 1 makes it impossible for a slot to have multiple owners. Therefore, proper and
improper slots form a partition of slots, i.e. slots are either proper or improper, but not both, as expressed
by Lemma 2, where ⊕ is the XOR connective.

Lemma 2 (Either Proper or Improper). ∀s[S(s)→∃!a(PPs(s,a)⊕ IPs(s,a))]

Proof. Let s be a slot. s has an owner a (Definition 2), and this owner is unique (Axiom 1). Either a fills s, and therefore s is
an improper slot, or a does not fill s, and therefore s is a proper slot of a. □

Bennett does not explicitly state why she admitted improper slots. However, as she clearly aims to mimic
classical extensional mereology, she needs some sort of parthood reflexivity and improper parthood
relation. Improper slots make the parthood relation conditionally reflexive (BT9), and we note that they
are not used for any other purpose in Bennett’s paper. Therefore, we can presume that improper slots are
introduced only for the conditional reflexivity of parthood

Using Axiom 1 and Definitions of P (BD1) and PP (BD2), we can deduce Lemma 3, which states that
a proper part of a is filler of a proper slot of a. This ensures that every proper part of a whole fills a slot
of this whole, without owning this slot. This excludes models like the one pictured in Figure 2ii.

Lemma 3 (Proper Parts iff Proper Slots). ∀a,b(PP(b,a)↔∃s(PPs(s,a)∧F(b,s)))

Proof. Let a and b be two fillers.
Let us first suppose that b is a proper part of a. By definition of proper parthood BD2, P(b,a)∧¬P(a,b). From P(b,a) and

definition BD1, we deduce the existence of a slot s such that Ps(s,a)∧F(b,s). We want to prove that 1) s is a proper slot of a
and that 2) b fills s, which is already in the hypotheses. s is a slot of a. If a does not fill s, then s is a proper slot of a. Suppose
that a fills s. According to BA7, a = b. Contradiction: b is a proper part of a. Therefore a does not fill s.

Let us now suppose that there is some s that is a proper slots of a and that is filled by b. We want to prove that b is a part
of a and that a is not a part of b. b fills a slot of a. Thus, by BD1, b is a part of a. Suppose now that a is a part of b. By
antisymmetry (BT8), a = b. Thus a fills s: contradiction as s is a proper slot of a. Therefore a is not a part of b. □
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Bennett’s Axiom BA4 ensures that anything that possesses a slot has an improper slot (and therefore
is part of itself). Bennett justifies the conditional reflexivity by stating that “the reflexivity of parthood is
restricted to things that have parthood slots. That’s because [BA3] and the definition of parthood entail
that parthood slots cannot have parts at all” (Bennett, 2013, p. 94). This certainly justifies why slots are
not part of themselves, but it does not justify why fillers without slots are not part of themselves. We
found no other justifications for this in Bennett’s paper. Garbacz (2016) made the same observation. We
therefore complement Bennett’s Axiom BA4 by adding that every filler has an improper slot, in line
with what Garbacz proposed in his Axiom 9: we thus add Axiom 2 to the theory and broaden Bennett’s
Theorem of conditional reflexivity BT9 as Lemma 4.

Axiom 2 (Additional Improper Slot). ∀a,s(F(a,s)→∃t(IPs(t,a)))

Lemma 4 (General Conditional Reflexivity). ∀a,s(Ps(s,a)∨F(a,s)→ P(a,a))

Proof. This is a trivial consequence of BD1, BA4 and Axiom 2. □

In Bennett’s theory, nothing excludes that an entity has an improper slot several times. Remember
that we determine the number of slots of a universal by considering the number of parts of a particular
that would instantiate this universal (isomorphism principle, see Section 3.1). For example, a particular
of METHANE has arguably itself as a part only once. From this viewpoint, METHANE should have a
unique improper slot. More generally, we add the following Axiom 3 asserting that a filler has at most
one improper slot.

Axiom 3 (Unique Improper Slot per Filler). ∀a,s, t(IPs(s,a)∧ IPs(t,a)→ s = t)

With Axiom BA6, Bennett introduces anti-symmetry, i.e., if a is part of b by filling its slot s and b is
part of a by filling its slot t, then a = b. With Axiom 3, we can assert that, besides a = b, we also have
s = t, as expressed by Theorem 5.

Theorem 5 (Mutual Occupancy is Slot Identity). ∀a,b,s, t(Ps(s,b)∧F(a,s)∧Ps(t,a)∧F(b, t)→ s = t)

Proof. Let s and t be two slots, and a and b two fillers such that (Ps(s,b)∧F(a,s))∧ (Ps(t,a)∧F(b, t)). By BA6, we know
that a = b. Therefore, by Definition 5, s and t are improper slots of a (IPs(s,a)∧ IPs(t,a)). By Axiom 3, s = t. □

To sum up, so far we removed slot inheritance by removing Bennett’s Axiom BA5 and clarified what
slots are in our theory, i.e., non-shareable elements of mereological structures. We also made clear the
differences between proper and improper slots. We kept axioms BA1 to BA4 and BA6 to BA8 in our
theory, which will be used, with our Axioms 1 to 3 as a basis for the operation of contextualisation
between slots and mereology of slots that we will now present.

The theory we propose and that will be developed in the remainder of this paper is summarised in
Appendix A. As explained above, the removal of Bennett’s axiom BA5 implies that we will need to show
that BT7 is a theorem of our theory. Nonetheless, other Bennett’s theorems presented in Appendix A are
not dependent on BA5 and still hold with the axioms we considered in the remainder of the paper, as do
all of Theorems 1 and 5 and Lemmas 2 to 4 demonstrated in this section.
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4.2. Slot Contextualisation

Now that we further explained what slots are in our theory, let us look at our solution to make parthood
transitive. We keep the core idea developed with the copy-slot mechanism: the mereological structure
of a filler should be duplicated as many times as the filler occupies a slot. In this paper, as seen in
Section 4.1.1, the idea is to use slots as occurring contexts of parts. Instead of using the relations copied_
from and copied_through, we want a theory in which we can assert about the Figure 3ii that S5 and S6
are respectively the results of S3 and S4 being contextualised by S1. In the same way, we want to say that
S7 and S8 are the results of S3 and S4 being contextualised by S2.

In Figure 5, b is a part of a by filling s, and c is part of b by filling t. In this configuration, we want
b’s parts to also be parts of a, i.e., we want c to be a part of a. The slot t cannot be inherited by a, as it
would be in Bennett’s theory: t is a slot of b and only b. However, c should fill a slot of a because it fills
a slot of b, which itself fills a slot of a. For this, we introduce the relation of slot contextualisation. In our
example, slot contextualisation relates a slot u of a to s and t. We say that u is the “contextualisation of t
by s”. The relation of slot contextualisation is abbreviated CoS: CoS(u,s, t) means that u is the result of
the contextualisation of t by s. Furthermore, we want this relation to only hold between slots, we want
slots u and s to have the same owner and we want slots u and t to have the same filler. From now on,

•rr represents, in figures, the contextualisation with the arrow head, the black dot and the arrow
tail respectively linked to u, s and t in CoS(u,s, t).

a66
OO

c
•

jj
u

b
OO

s

c
t

Fig. 5. An example of contextualisation

As already mentioned, the contextualisation is a relation between three slots, as imposed by Axiom 4.

Axiom 4 (Domains of Contextualisation). ∀s, t,u(CoS(u,s, t)→ S(u)∧S(s)∧S(t))

The existence of the contextualisation is implied by the existence of some filler a such that one of
the slots is a slot of a, and the other one is filled by a. This condition of existence is captured by the
predicate Cb, defined by Definition 6: Cb(t,s) reads “t is contextualisable by s”. Axiom 5 states that a
slot t is contextualisable by a slot s if and only if a contextualisation u of t by s exists.

Definition 6 (Contextualisable by). Cb(t,s)≜ ∃a(F(a,s)∧Ps(t,a))

Axiom 5 (Contextualisable iff Contextualisation Exists). ∀s, t[Cb(t,s)↔∃u(CoS(u,s, t))]

We also impose, with Axiom 6, that the contextualisation is unique. Consequently, we will use the
notation s◦ t as a binary function that gives the resulting slot of t contextualised by s, in other words, the
contextualisation of t by s.
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Axiom 6 (Unicity of Contextualisation). ∀s, t,u,v(CoS(u,s, t)∧CoS(v,s, t)→ u = v)

We will now use the notation u = s◦ t instead of the statement CoS(u,s, t), and in the context in which
t is contextualisable by s, we will simply use s◦ t.17

We can deduce from this that if s ◦ t and t ◦ s exist, then s = t. In other words, in the general case
where s and t are different, if the contextualisation s ◦ t exists, then t ◦ s does not. This is expressed by
Theorem 6.

Theorem 6 (Symmetric Contextualisation is Slot Identity). ∀s, t,u,v(u = s◦ t ∧ v = t ◦ s → s = t)

Proof. Let s, t, u and v be four slots such that u = s ◦ t and v = t ◦ s. By Axiom 5, we know there are a and b such that
F(a,s)∧Ps(t,a) and F(b, t)∧Ps(s,b). By T5, s = t. □

Let us now introduce Axioms 7 and 8 to prevent some unwanted contextualisations. Axiom 7 ensures
that if s◦ t and s◦u are equal, then t = u, i.e. it ensures that when an entity a is part of another entity c by
filling a slot s, there are as many slots of a as there are slots of c that are the results of a contextualisation
by s. Otherwise, it would be possible for the contextualisations of two different slots of the same entity
a to be identical, as pictured in Figure 6i. In such a case, a could have two slots filled by b which by
contextualisation could lead to only one slot of c filled by b; this would obviously not lead to the correct
result when counting how many times b is part of c.

In addition, we would like to ensure that a contextualisation of an improper slot s by some slot t results
in t. Otherwise, in the example pictured by Figure 6ii, a would be part of c three times instead of once.
However, it is possible to adopt a weaker axiom, more similar to Axiom 7 and to use it to demonstrate
such a proposition. This adopted axiom is Axiom 8 and the resulting theorem is Theorem 8, presented
further below.

Axiom 7 (Injectivity to the Left). ∀s, t,u,v(v = s◦ t ∧ v = s◦u → t = u)

Axiom 8 (Injectivity to the Right). ∀s, t,u,v(v = t ◦ s ∧ v = u◦ s ∧ ∃a(IPs(s,a)) → t = u)

c
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33
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(i) Injectivity to the left
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a
t s

a• // •oo
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a
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(ii) Injectivity to the right by improper slot
(s is represented by labels on dashed arrows.)

Fig. 6. Injectivities of Contextualisation: unwanted models with t ̸= u

17In proofs, we will often omit reference to Axiom 5 for this last use.
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Axiom 8 ensures that if s is an improper slot and v = t ◦ s = u◦ s, then u = t. However, this axiom does
not ensure that t = v. For this, we will introduce Axiom 9, an axiom of associativity. There is moreover
another motivation to introduce it. Consider the example given in Figure 4, reinterpreted using contextu-
alisation. We know that S7 = S9 ◦S3 and S13 = S10 ◦S1. Among the slots used in these contextualisations,
some are also results of contextualisation: S3 = S5 ◦S1 and S10 = S9 ◦S5. By replacing S3 and S10 in the
first two equations, we get S7 = S9 ◦(S5 ◦S1) and S13 = (S9 ◦S5)◦S1. If we want to avoid slot duplication,
as exposed in the copy-slot mechanism, we want that S7 = S13, i.e., S9 ◦ (S5 ◦S1) = (S9 ◦S5)◦S1. This is
enabled by Axiom 9, which intuitively states that if t ◦u and s◦ (t ◦u) exist, then s◦ t and (s◦ t)◦u exist
and s◦ (t ◦u) = (s◦ t)◦u, and vice versa.

Axiom 9 (Contextualisation Associativity).

∀s, t,u,v[∃w(v = s◦w ∧ w = t ◦u)↔∃x(v = x◦u ∧ x = s◦ t)]

This axiom means that there are two “paths” from u to v=(s◦t)◦u= s◦(t ◦u), as pictured respectively
by Figures 7i and 7ii.18 In Figure 7i, t is contextualised by s to get (s ◦ t), filled by the same filler as t,
which owns u. Thus, (s◦ t)◦u exists. In Figure 7ii, u is contextualised by t to get (t ◦u). And this slot,
owned by the filler of s, is contextualised by s to get s ◦ (t ◦ u). Associativity implies that (s ◦ t)◦ u and
s◦ (t ◦u) are identical.
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t
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t ◦u

d
u

(ii) s◦ (t ◦u)

Fig. 7. Associativity: (s◦ t)◦u = s◦ (t ◦u)

Slots of various properness can be contextualised together. We can distinguish three specific non-
disjoint cases: 1) both slots are improper slots (Left-and-Right-Improper Contextualisation, see Theo-
rem 7); 2) the first operand is an improper slot (Improper Slot Is Right Neutral Element, see Theorem 8);
3) the second operand is an improper slot (Improper Slot Is Left Neutral Element, see Theorem 9).

The only slots that can be contextualised by themselves are improper slots. This is because of the
condition expressed by Axiom 5 (Contextualisable iff Contextualisation Exists). Therefore, a slot s is
improper iff s = s◦ s is true, as expressed by Theorem 7.

Theorem 7 (Left-and-Right-Improper Contextualisation). ∀s(∃a(IPs(s,a))↔ s = s◦ s)

18Figure 7 is subdivided into two figures for readability: they are two partial views of the same model.
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Proof. Left-to-right: let a be a filler and s its improper slot (IPs(s,a)). By definition, this means that Ps(s,a)∧F(a,s). Ac-
cording to Axiom 5, the slot s ◦ s exists. By Axiom 4, we know that s ◦ s is owned by some b (Ps(s ◦ s,b)). And by Single
Occupancy Axiom (BA7), we know that there is a c that fills s ◦ s (F(c,s ◦ s)). We want to show that s = s ◦ s. We will show
that a = b = c, and conclude that, as there can only be one improper slot per filler, s = s◦ s.

Let us first show that a = c. We know by Axiom 2 that c has an improper slot t (Ps(t,c)∧F(c, t)). With F(c,s◦ s)∧Ps(t,c),
we know that (s◦ s)◦ t exists. By Contextualisation Associativity (Axiom 9), s◦ t exists. Thus, by Axiom 5, there is a d that
fills s and owns t (F(d,s)∧Ps(t,d)). However, we know that s is already filled by a and that a slot can only be filled by
one filler (BA7), therefore a = d. We also know that t is owned by c and d, i.e. a. However, there can only be one owner
(Axiom 1), therefore, a = c = d. One of the consequences is that s = t, as s and t are improper slots of a and that there is only
one improper slot per filler.

Let us prove that a = b. We know that s◦ (s◦ s) exists. Therefore by Axiom 5, there is a e that fills s and owns s◦ s. By BA7
(Single Occupancy), a = e. By Axiom 1 (Single Owner), e = b. So a = b.

We know that s and s ◦ s are filled and owned by a, i.e. they are a’s improper slots. However, there is only one improper
slot per filler. Therefore, s = s◦ s.

Right-to-left: let s be a slot such that s = s◦ s. By Axiom 5, we know that there is an a such that Ps(s,a)∧F(a,s), which is,
by definition, IPs(s,a). □

Theorems 8 and 9 show that improper slots act as neutral elements when contextualisation is defined.
The converses, i.e. neutral elements of contextualisation are improper slots, will be demonstrated below
by Theorems 14 and 15.

Theorem 8 (Improper Slot Is Right Neutral Element). ∀a,s, t(IPs(s,a)∧F(a, t)→ t = t ◦ s)

Proof. Let s and t be two slots and a be a filler such that s is the improper slot of a (IPs(s,a)) and a fills t (F(t,a)). According
to Theorem 7, s = s◦ s. According to Axiom 5, there is a u such that u = t ◦ s. So u = t ◦ (s◦ s). By associativity (Axiom 9),
we know that u = (t ◦ s)◦ s. So u = u◦ s. Finally, as t ◦ s = u◦ s, by Axiom 8, t = u. Thus t = t ◦ s. □

Theorem 9 (Improper Slot Is Left Neutral Element). ∀a,s, t(IPs(s,a)∧Ps(t,a)→ t = s◦ t)

Proof. Let s and t be slots, and a a filler, such that s is the improper slot of a (IPs(s,a)) and t is a slot of a (Ps(t,a)). With
Theorem 7, we know that s = s◦ s. By Axiom 5 (Contextualisable iff Contextualisation Exists), there is a u such that u = s◦ t.
So u = (s◦ s)◦ t, which, by Contextualisation Associativity (Axiom 9), gives u = s◦ (s◦ t). So u = s◦u. Finally, as s◦ t = s◦u,
by Axiom 7, t = u. Thus t = s◦ t. □

Theorem 10 states that if a slot s is the result of a contextualisation of some slot by t and t is the result
of a contextualisation of some slot by s, then s = t.

Theorem 10 (Mutual Contextualisation is Identity). ∀s, t,u,v(s = t ◦u ∧ t = s◦ v → s = t)

Proof. Let s, t, u and v be slots such that s = t ◦u and t = s◦v. By replacing s by t ◦u in t = s◦v, we know that t = (t ◦u)◦v.
By Contextualisation Associativity (Axiom 9), we know t = t ◦ (u◦v). With the same reasoning, we know s = s◦ (v◦u). With
Theorem 6, u = v. So, by replacing v by u, we know that s = t ◦ u and t = t ◦ (u ◦ u). u being an improper slot, we know by
Theorem 7 that u = u◦u. So t = t ◦u. Therefore by Unicity of Contextualisation (Axiom 6), s = t. □

As said when introducing contextualisation, the resulting slot and the contextualising slot should have
the same owner. This is guaranteed by Theorem 11. Furthermore, the resulting slot and the contextualised
slot have the same filler, as expressed by Theorem 12.

Theorem 11 (Contextualisation Same Owner). ∀u,s, t(u = s◦ t → SO(u,s))
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Proof. Let u, s and t be such that u = s◦ t. By Axiom 4, we know that u, s and t are slots, i.e. they have an owner. We call a
the owner of u (Ps(u,a)). The owners of s and t are not useful for this proof, so we ignore them. By BA4, we know that a as an
improper slot v (IPs(v,x)). By Improper Slot Is Left Neutral Element (Theorem 9), we know that u = v◦u. So u = v◦ (s◦ t).
By Contextualisation Associativity (Axiom 9), u = (v◦ s)◦ t. As there is a contextualisation v◦ s, we know by Axiom 5 that
there is a b that fills v (F(b,v)) and owns s (Ps(s,b)). The slot v is filled by a and b, which gives, by BA4, that a = b. This
means that s and u are both owned by a, i.e. they have the same owner. □

Theorem 12 (Contextualisation Same Filler). ∀u,s, t(u = s◦ t → SF(u, t))

Proof. Let u, s and t be such that u = s◦ t. By Axiom 4, we know that u, s and t are slots. With BA7, we know there is a a
that fills t. We want to prove that a also fills u.

By Axiom 2, a has an improper slot v. According to Axiom 5, t ◦v exists. According to Axiom 5, there is a b that fills s and
owns t. According to Theorem 11, t ◦ v and t have the same owner. This owner being unique (Axiom 1), t ◦ v is owned by b.
Therefore, s◦ (t ◦v) exists. By Contextualisation Associativity (Axiom 9), s◦ (t ◦v) = (s◦ t)◦v = u◦v. So, by Axiom 5, there
is something that fills u and owns v. With Axiom 1, there is only one owner, namely a. Therefore, u is filled by a. As a fills t
and u, by Definition 4, SF(u, t). □

We mentioned earlier that because we removed BA5, we would need to prove BT7 using our new
theory. Here is a proof of it, using contextualisation.

Theorem 13 (Parthood Transitivity). ∀a,b,c(P(a,b)∧P(b,c)→ P(a,c))

Proof. Let a, b and s be three fillers such that a is a part of b and b is a part of c. We want to prove that a is a part of c,
i.e. that there is some slot owned by c and filled by a. By definition of parthood (BD1), there are two slots s and t such that
F(a,s)∧Ps(s,b) and F(b, t)∧Ps(t,c). According to Axiom 5, as b fills t and owns s, there is a slot u such that u = t ◦ s. By
Theorem 12, u and s have the same filler, i.e. a. By Theorem 11, u and t have the same owner, i.e. c. Therefore, u being filled
by a and owned c, a is a part of c. □

As already mentioned before, Theorems 14 and 15 show that neutral elements are improper slots.

Theorem 14 (Right Neutral Element Is Improper Slot). ∀s, t(t = t ◦ s →∃a(IPs(s,a)∧F(a, t)))

Proof. Let s and t be two slots such that t = t ◦ s. According to Axiom 5 (Contextualisable iff Contextualisation Exists), there
is a filler a that fills t and owns s. According to Theorem 12 (Contextualisation Same Filler) and BA7 (Single Occupancy), s
and t have the same filler, i.e. a. The slot s is filled and owned by a, so by Definition 5, s is the improper slot of a. □

Theorem 15 (Left Neutral Element Is Improper Slot). ∀s, t(t = s◦ t →∃a(IPs(s,a)∧Ps(t,a)))

Proof. Let s and t be slots such that t = s◦ t. According to Axiom 5 (Contextualisable iff Contextualisation Exists), there is a
filler a that fills s and owns t. According to Theorem 11 (Contextualisation Same Owner) and Axiom 1 (Single Owner), s and
t have the same owner, i.e. a. The slot s is filled and owned by a, so by Definition 5, s is the improper slot of a. □

Theorem 16 shows that if s and t are contextualisable by u, then for all v, s is a contextualisation of t
by v iff (u◦ s) is a contextualisation of (u◦ t) by v.

Theorem 16 (Contextualisation Stable under Contextualisation).

∀s, t,u(Cb(s,u)∧Cb(t,u)→∀v(s = t ◦ v ↔ u◦ s = (u◦ t)◦ v))
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Proof. Let s, t and u be slots such that s and t are contextualisable by u. Let v be a slot. We want to prove that s = t ◦ v ↔
u◦ s = (u◦ t)◦ v.

Left-to-right: suppose that s = t ◦v. Let us prove that u◦ s = (u◦ t)◦v. First, let us prove that (u◦ t)◦v exists. For it to exist,
according to Axiom 5, there must be some filler that fills u◦ t and owns v. According to Axiom 5, s = t ◦ v implies that there
is a filler a that fills t and owns v. Let us show that a fills u◦ t. According to Theorem 12 (Contextualisation Same Filler), u◦ t
and t have the same filler, i.e. a. Therefore, as there is a filler that fills u◦ t and owns v, (u◦ t)◦ v exists.

Let us now prove that (u◦ t)◦v equals u◦ s. By Axiom 9 (Contextualisation Associativity), (u◦ t)◦v = u◦ (t ◦v). Using the
fact that s = t ◦ v, we get that (u◦ t)◦ v = u◦ s.

Right-to-left: suppose that u ◦ s = (u ◦ t) ◦ v. Let us prove that s = t ◦ v. By Axiom 9 (Contextualisation Associativity),
u◦ s = u◦ (t ◦ v). By Axiom 7 (Injectivity to the Left), s = t ◦ v. □

Definition 1 defines what a direct slot is on the basis of Bennett’s theory, in particular by using mul-
tiple owners for the same slot. However, since A1 prevents any slot from having multiple owners, this
definition is not relevant anymore. Direct slots can be redefined using slot contextualisation: a direct
slot is a slot that is not the result of the contextualisation of a proper slot by another proper slot; put
differently, a direct slot s can be equal to t ◦u only if t, u, or both are improper slots (which implies that
if one of them is not an improper slot, it is identical to s).

Definition 7 (Direct Slot — With Contextualisation).

DP’s(s,a)≜ Ps(s,a)∧∀t,u[s = t ◦u → (∃b(IPs(t,b)))∨ (∃c(IPs(u,c)))]

We defined the slot contextualisation relation and operator in order to recontextualise parts when
they should be inherited. After stating the domain and existential conditions of contextualisation, we
explained why it should be unique and associative. After exploring special cases of contextualisation,
we demonstrated expected properties, such as, in contextualisation u = s◦ t, u and s have the same owner,
and u and t have the same filler. We also proved that parthood transitivity holds. Exploiting this relation
of slot contextualisation, we will define in the next sections basic mereological relations between slots.

4.3. Slot Parthood

We first define slot (general) parthood, then slot proper parthood.

4.3.1. Slot General Parthood
If u = s ◦ t, as in Figure 5, the two slots s and u of the same owner a cannot be seen as representing

two non-overlapping locations in the mereological structure of a. In fact, u = s ◦ t counts as a copy
of t, which is a slot of the filler of s. Matching the parthood relation between c (the filler of t) and
b (the filler of s), we propose to consider u (the contextualisation of t by s) as a part of s and define
a parthood relation between slots (PoS) on the basis of the contextualisation relation, as expressed by
Definition 8. Lemma 17 gives the domain and the range of the relation. As we will see, this will enable
the characterisation of a classical mereology among slots of the same owner.

Definition 8 (Part of Slot). PoS(u,s)≜ ∃t(u = s◦ t)

Lemma 17 (PoS Domain and Range). ∀s, t(PoS(s, t)→ S(s)∧S(t))
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Proof. By Definition 8 and Axiom 4. □

The relation PoS is conditionally reflexive, anti-symmetrical and transitive, as respectively expressed
by Theorems 18 to 20. Except for the restriction to slots in reflexivity, these are the properties expected
from a parthood relation, such as in classical mereology (Varzi, 2019).

Theorem 18 (Conditional PoS Reflexivity). ∀s(S(s)→ PoS(s,s))

Proof. Let s be a slot and a its owner (Ps(s,a)). By BA7, we know that there is a b that fills s (F(b,s)). By Axiom 2, b has an
improper slot t (Ps(t,b)∧F(b, t)). By Axiom 5 (Contextualisable iff Contextualisation Exists) and Theorem 8 (Improper Slot
Is Right Neutral Element), we know that s◦ t = s. By Definition 8, PoS(s,s). □

Theorem 19 (PoS Anti-Symmetry). ∀s, t(PoS(s, t)∧PoS(t,s)→ s = t)

Proof. Derives directly from Theorem 10 (Mutual Contextualisation is Identity). □

Theorem 20 (PoS Transitivity). ∀s, t,u(PoS(s, t)∧PoS(t,u)→ PoS(s,u))

Proof. Let s, t and u be slots such that PoS(s, t) and PoS(t,u). By Definition 8, there are v and w such that s= t ◦v and t = u◦w.
By replacing t in the expression of s, we get s=(u◦w)◦v. According to Axiom 9, the contextualisation is associative, therefore
s = u◦ (w◦ v). By Definition 8, PoS(s,u). □

Two slots standing in a PoS relation have the same owner, as expressed by Theorem 21. Furthermore,
all slots are slots of a iff they are slot-parts of their a’s improper slot, as expressed by Theorem 22.

Theorem 21 (PoS Same Owner). ∀s, t(PoS(s, t)→ SO(s, t))

Proof. Derives directly from Theorem 11 (Contextualisation Same Owner). □

Theorem 22 (Slots iff Slot-Parts of Improper Slot). ∀a,s(IPs(s,a)→∀t(Ps(t,a)↔ PoS(t,s)))

Proof. Let a be a filler and s its improper slot (IPs(s,a)). Let t be a slot.
Left-to-right: suppose that t is a slot of a. By Theorem 9 (Improper Slot Is Left Neutral Element), t = s ◦ t. Therefore, by

Definition 8, PoS(t,s).
Right-to-left: suppose that t is a slot-part of s. By Theorem 21, s and t have the same owner. Therefore, t is a slot of a. □

The mereology we are currently defining has an uncommon characteristic. Indeed, the relation of
slot-parthood PoS is locally restricted. As showed by Theorems 21 and 22, this relation can only hold
between slots of the same owner and all slots of a filler are parts of its improper slots.19 Thus, there are
as many separated mereological structures as slot-owners. Two slots owned by different entities cannot

19As we will see in Section 4.7 and especially with Theorem 62, it means that improper slots are local universes. For a given
owner, there is nothing bigger than its improper slot, i.e. the improper slot is not a proper part of something. Therefore, this
mereological theory does not have junks, as defined in (Varzi, 2019, § 4.2) or (Cotnoir and Varzi, 2021, pp. 220-229).
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be mereologically related. Similarly, we will later introduce other mereological relations that can also
only hold between slots of the same owner (Theorems 28, 34 and 45).

Moreover, the mereological structure of slots and the mereological structure of fillers constrain each
other, as expressed by Theorem 23. For any pair of slots t and s, if t, filled by b, is a slot-part of s, filled
by a, then b is a part of a. However, if b is a part of a, it is not true that for every pair of slots respectively
filled by b and a, the first slot is a part of the second one. As a matter of fact, these two slots do not
necessarily fulfil the contextualisation conditions. As an example, consider two molecule universals:
METHANE and CARBONDIOXIDE. Both have the universal CARBON as a part, as it fills a slot of each.
The slot of METHANE filled by CARBON is not a slot-part of the improper slot of CARBONDIOXIDE.
Reciprocally, the slot of CARBONDIOXIDE filled by CARBON is not a slot-part of the improper slot of
METHANE. What we can state is that if b is a part of a, then, there are (at least) two slots respectively
filled by b and a with the first one being a part of the second; in particular, this will be satisfied with the
improper slot of a.

Theorem 23 (Slot Structure and Filler Structure constrain Each Other).

∀a,b(∃s, t(PoS(t,s)∧F(a,s)∧F(b, t))↔ P(b,a))

Proof. Left-to-right: let a and b be two fillers, and s and t be two slots, such that F(b, t), F(a,s) and PoS(t,s). By Definition 8,
there is a u such that t = s◦u. By Theorem 12 (Contextualisation Same Filler) and BA7 (Single Occupancy), t and u have the
same filler, namely b. By Axioms 5 (Contextualisable iff Contextualisation Exists) and BA7, we know that there is an entity
filling s and owning u, and this entity is a. Therefore, Ps(u,a) and F(b,u). By BD1, this means that P(b,a).

Right-to-left: let a be a filler and b a part of a (P(b,a)). According to BA4, there is a s that is the improper slot of a
(IPs(s,a)). By the Parthood Definition (BD1), there is a t such that F(b, t)∧Ps(t,a). According to Theorem 22, t is a slot-part
of s. □

Theorem 24 states that PoS is stable under contextualisation, i.e. u is a slot-part of t iff s◦u is a slot-part
of s◦ t.

Theorem 24 (PoS Stable under Contextualisation).

∀s, t,u(Cb(t,s)∧Cb(u,s)→ (PoS(u, t)↔ PoS(s◦u,s◦ t)))

Proof. Let s, t, u such that t and u are contextualisable by s.
Left-to-right: suppose that u is a slot-part of t (PoS(u, t)). Therefore, there is a v such that u = t ◦ v. Thus, by Theorem 16,

s◦u= s◦(t ◦v). By Contextualisation Associativity (Axiom 9), s◦u=(s◦t)◦v. By Definition 8, this means that PoS(s◦u,s◦t).
Right-to-left: suppose that s◦u is a slot-part of s◦ t (PoS(s◦u,s◦ t)). Therefore, there is a v such that s◦u = (s◦ t)◦ v. By

associativity, s◦u = s◦ (t ◦ v), i.e. by Theorem 16, u = t ◦ v. By Definition 8, this means that PoS(u, t). □

4.3.2. Slot Proper Parthood
With the relation PoS, we can define the relation of proper parthood between slots PPoS, as expressed

in Definition 9. This definition follows that of proper parthood in classical mereology.

Definition 9 (Proper Part of Slot). PPoS(s, t)≜ PoS(s, t)∧ s ̸= t

As is the case in classical mereology, this relation is irreflexive, asymmetrical and transitive, as ex-
pressed by Theorems 25 to 27. Furthermore, two slots in a PPoS-relation share the same owner, as stated
by Theorem 28.
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Theorem 25 (PPoS Irreflexivity). ∀s(¬PPoS(s,s))

Proof. Derives directly from Definition 9. □

Theorem 26 (PPoS Asymmetry). ∀s, t(PPoS(s, t)→¬PPoS(t,s))

Proof. Derives directly from Definition 9 and Theorem 19. □

Theorem 27 (PPoS Transitivity). ∀s, t,u(PPoS(s, t)∧PPoS(t,u)→ PPoS(s,u))

Proof. Derives directly from Definition 9 and Theorems 19 and 20. □

Theorem 28 (PPoS Same Owner). ∀s, t(PPoS(s, t)→ SO(s, t))

Proof. Derives directly from Definition 9 and Theorem 21. □

A slot can be in relation PPoS with either a proper or an improper slot. These two possibilities are
pictured in Figure 8. Figure 8i is identical to Figure 5, adding the PPoS(u,s). Figure 8ii highlights an
important feature of contextualisation by improper slots: every proper slot of a filler a is a slot-proper-
part of a’s improper slot, as expressed by Theorem 29.
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//
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t

(i) PPoS(u,s): proper part of proper slot (u = s◦ t)

a
��

OO OO

s

b

•

�� t

(ii) PPoS(t,s): proper part of improper slot (t = s◦ t)

Fig. 8. PPoS relation according to whole properness (dotted arrows represent the PPoS relation)

Theorem 29 (Proper Slots iff Proper Parts Of Improper Slot).

∀a,s(IPs(s,a)→∀t(PPs(t,a)↔ PPoS(t,s)))

Proof. Let a be a filler and s its improper slot (IPs(s,a)). Let t be a slot. We want to prove that PPs(t,a)↔ PPoS(t,s).
Left-to-right: suppose t is a proper slot of a (PPs(t,a)). We want to prove PoS(t,s)∧ s ̸= t. With Theorem 22 (Slots iff

Slot-Parts of Improper Slot), PoS(t,s). s and t cannot be identical, as the same slot would be proper and improper, which is
not possible according to Lemma 2 (Either Proper or Improper). Thus s ̸= t.

Right-to-left: suppose t is proper slot-part of s (PPoS(t,s)). We want to prove that t is a proper slot of a, i.e. it is a slot of a,
but it is not filled by a. By Theorem 28, s and t have the same owner, thus Ps(t,a). Suppose that t is filled by a, making t an
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improper slot of a. By Axiom 3, s = t. However, as PPoS(t,s), s ̸= t: contradiction. Therefore, t is not filled by a. □

Theorem 30 shows that proper parthood relations between slots and proper parthood relations between
fillers constrain each other.

Theorem 30 (Slot Structure and Filler Structure constrain Each Other — Proper Part).

∀a,b(∃s, t(PPoS(t,s)∧F(a,s)∧F(b, t))↔ PP(b,a))

Proof. Let a and b be two fillers.
Left-to-right: let s and t be two slots such that t is a slot-proper-part of s, a fills s and b fills t. According to Theorem 23,

b is a part of a. According to BD2, we have to prove that a is not a part of b to finish the proof. Suppose that a is a part of b.
With BT8, P is anti-symmetric. Therefore, a = b. According to Definition 9, as PPoS(t,s), PoS(t,s) and s ̸= t. Furthermore,
with Definition 8, there is some u such that t = s ◦ u. With Axiom 5 and BA7, there is a single entity that fills s and owns u,
i.e. a. With Theorem 12 and BA7, t and u are filled by the same entity, i.e. a. The slot u, being owned and filled by a, is its
improper slot. By Theorem 8, s = s ◦ u. Finally, with Axiom 7, s = t: contradiction. Therefore a is not a part of b, and thus,
PP(b,a).

Right-to-left: suppose that b is a proper part of a. According to BD2, b is a part of a and a is not a part of b. According to
Theorem 23 and P(b,a), there are two slots s and t such that s is a slot-part of t, a fills s and b fills t. According to Definition 9,
we have to prove s ̸= t to fulfil the proof. Suppose that s = t. Therefore, because F(a,s), F(b, t) and Single Occupancy (BA7),
a = b. Contradiction: b is a proper part of a and they cannot be identical. Therefore, s ̸= t. □

Theorem 31 states that PPoS is stable under contextualisation, i.e. if u is a slot-proper-part of t, then
s◦u is a slot-proper-part of s◦ t.

Theorem 31 (PPoS Stable under Contextualisation).

∀s, t,u(Cb(t,s)∧Cb(u,s)→ (PPoS(u, t)↔ PPoS(s◦u,s◦ t)))

Proof. Let s, t and u be slots such that t and u are contextualisable by s.
Left-to-right: suppose that u in a slot-proper-part of t. By Definition 9, u is a slot-part of t and is different from t. We want

to prove that s◦u is a slot-proper-part of s◦ t, i.e. that s◦u is a slot-part of s◦ t and that s◦ t ̸= s◦u. By Theorem 24 (PoS Stable
under Contextualisation), we know that PoS is stable under contextualisation. Therefore, s ◦ u is a slot-proper-part of s ◦ t.
Suppose now that s◦ t = s◦u. By Axiom 7 (Injectivity to the Left), we infer that t = u. Contradiction. Therefore, s◦ t ̸= s◦u,
and PPoS(s◦u,s◦ t).

Right-to-left: suppose that s◦u is a slot-proper-part of s◦ t. We want to prove that u is a slot-proper-part of t, i.e. that u is a
slot-part of t and that u and t are different. By Definition 9, s◦u is a slot-part of s◦ t. Therefore, by Theorem 24, u is a slot-part
of t. We want to prove u ̸= t. By Definition 9, s ◦ u ̸= s ◦ t. Suppose that u = t. Thus s ◦ t ̸= s ◦ t: contradiction. Therefore,
u ̸= t. □

With slot contextualisation, we defined the relations of slot-parthood and slot-proper-parthood. Those
relations have the same properties as the relations of ground mereology, as Varzi (1996) calls it: slot-
parthood is (conditionally) reflexive, antisymmetric and transitive, while slot-proper-parthood is irreflex-
ive, asymmetric and transitive. We also showed that both relations also have the same-owner property
and are stable under contextualisation. Finally, we showed that slot-mereological structure and filler-
mereological structure are linked and partially constrain each other. With these relations, we can enrich
further the mereology of slots, by defining the slot-overlap relation.
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4.4. Overlap

4.4.1. Bennett’s Theory
In her theory, Bennett defines two overlap relations: the overlap on fillers BD3 and the overlap on

slots BD4. The first relation is the classic overlap relation of mereology. However, in the examples we
are interested in, this relation is not that relevant. Indeed, if we consider the structural universals of
molecules, all those universals are overlapping, because they all have as a part the universal of ELEC-
TRON.20 The second relation introduced by Bennett, at first sight, seems more interesting: two fillers
are slot-overlapping if they share a slot. However, the relevance of this relation is also questionable:
remember that in Bennett’s theory, the improper slots are also inherited. So, in our examples of univer-
sals of molecules, each of them inherits the improper slot of the ELECTRON universal. Therefore, they
are all slot-overlapping on this improper slot. One could posit that the universal of ELECTRON does
not have an improper slot. But the problem remains: the universal of ELECTRON fills some slots of,
for example, CARBON. Therefore, all universals of molecules that have the universal of CARBON as a
part slot-overlap with each other. Once again, the problem here ultimately lies in the Slot Inheritance
Axiom BA5. In our theory, as a slot has a unique owner, Bennett’s relation of slot-overlap between fillers
collapses to the identity on fillers. Fortunately, the slot-mereological structure we have just introduced
enables us to grasp a more adequate notion of overlap.

A second problem with Bennett’s overlap is about model ambiguity. Consider the two strings “xyz”
and “xyyz”. The mereological structure pictured in Figure 9 is compatible with Bennett’s theory, where
X can be either “xyz” or “xyyz”. “xy” and “yz” are overlapping in the general sense of having a common
part (namely “y”). But from the mereological structure pictured on this figure, there is no way to know
whether “xy” and “yz” are overlapping in the sense of sharing the same occurrence of “y” (as in the
whole “xyz”) or not (as in the whole “xyyz”). While a model in which there are two different slots filled
by “y”, one owned by “xy” and the other by “yz”, can exclusively represent “xyyz”, we cannot find a
model exclusive to “xyz” that contains slots filled by “xy”, “y”, and “yz”. The model pictured in Figure 9
seems to be such a model for “xyz”, but it is ambiguous, as previously showed.
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Fig. 9. Bennett’s slot-overlap (and overlap) between xy and yz

4.4.2. Slot-Overlap
With the slot parthood relation PoS, we can define the relation of overlap between slots OoS, as

expressed in Definition 10, following the classical definition of overlap (see for example (Varzi, 2019)).

20See Footnote 9 for questioning this assertion. Anyway, the very same reasoning applies to other groups of universals, e.g.
all organic molecules overlap over CARBON.
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Definition 10 (Overlap of Slot). OoS(s, t)≜ ∃u(PoS(u,s)∧PoS(u, t))

Figure 10 pictures two configurations in which s and t slot-overlap on u: in Figure 10i, s and t are
filled by the same entity b. On the contrary, in Figure 10ii, s and t have different fillers, namely b and d.
Unlike Bennett’s slot-overlap, this overlap of slots is less pervasive as it is restricted to slots of the same
whole and corresponds more closely to our preformal intuition.
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(i) Same filler for s and t
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(ii) Different fillers for s and t

Fig. 10. Slot-overlap between s and t

With our relation of overlap of slots and with the existence of contextualisations, the model ambiguity
depicted in Figure 9 with Bennett’s theory disappears: we have either the model in Figure 11i for the
string “xyz” or the model in Figure 11ii for the string “xyyz” (slots for parts “x” and “z” in “xy” and
“yz” and their contextualisations are omitted for readability). The model in Figure 11i cannot represent
“xyyz” as there is only one slot filled by “y” in the whole.
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(i) s and t are slot-overlapping: string “xyz”
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(ii) s and t are not slot-overlapping: string “xyyz”

Fig. 11. Non-ambiguous models for “xyz” and “xyyz”

This relation is conditionally reflexive and symmetrical, as expressed by Theorems 32 and 33. Except
for the premise in Theorem 32, these theorems are common theorems of classical mereology.

Theorem 32 (Conditional OoS Reflexivity). ∀s(S(s)→ OoS(s,s))

Proof. Relation PoS is reflexive, therefore, by definition OoS is also reflexive. □

Theorem 33 (OoS Symmetry). ∀s, t(OoS(s, t)→ OoS(t,s))
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Proof. According to the Definition 10 and the commutativity of the AND logical operator. □

Two overlapping slots have the same owner, as showed by Theorem 34.

Theorem 34 (OoS Same Owner). ∀s, t(OoS(s, t)→ SO(s, t))

Proof. Let s and t be two slots such that OoS(s, t). According to Definition 10, we know ∃u(PoS(u,s)∧PoS(u, t)). With
Theorem 11 (Contextualisation Same Owner) and Axiom 1 (Single Owner), SO(s, t). □

As expressed by Lemma 35, if two slots overlap, they also overlap with the slots the other one is part
of.

Lemma 35 (Overlap with Part Implies Overlap with Whole).

∀s, t,u(OoS(u, t)∧PoS(t,s)→ OoS(u,s))

Proof. Let s, t and u be three slots such that OoS(u, t)∧PoS(t,s). By Definition 10, we know that there is a v such that
PoS(v,u)∧PoS(v, t). By Theorem 20 (PoS Transitivity), we know that PoS(v,s). Therefore, there is a common slot-part between
u and s, namely v. By definition, OoS(u,s). □

Lemma 36 expresses the fact that all the slots of any filler a overlap with a’s improper slot.

Lemma 36 (Slot-Overlap With Improper Slot). ∀a,s, t(IPs(s,a)∧Ps(t,a)→ OoS(s, t))

Proof. Let a be a filler, s its improper slot (IPs(s,a)) and t one of its slots (Ps(t,a)). According to Theorem 18 (Conditional
PoS Reflexivity), PoS(t, t). According to Theorem 22 (Slots iff Slot-Parts of Improper Slot), PoS(t,s). By Definition 10,
OoS(s, t). □

From the definition of OoS, we can deduce that every slot s that is a slot-part of a slot t overlaps with
that slot, as stated by Lemma 37.

Lemma 37 (PoS Implies OoS). ∀s, t(PoS(s, t)→ OoS(s, t))

Proof. Let s and t be slots such that PoS(s, t). We want to prove that there is a slot that is a slot-part of s and t. The slot s
fulfils these requirements. It is a slot-part of t by hypothesis. And the slot-part relation being reflexive, it is also a slot-part of
itself. □

Theorem 38 states that OoS is stable under contextualisation, i.e. if t and u overlap, then s◦ t and s◦u
overlap.

Theorem 38 (OoS Stable under Contextualisation).

∀s, t,u(Cb(t,s)∧Cb(u,s)→ (OoS(t,u)↔ OoS(s◦ t,s◦u)))
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Proof. Let s, t and u be slots such that t and u are contextualisable by s.
Left-to-right: suppose that u slot-overlaps with t (OoS(t,u)). By Definition of OoS (Definition 10), we know there is a v

such that PoS(v, t)∧PoS(v,u). By Theorem 21 (PoS Same Owner), v has the same owner as t, thus v is contextualisable by
s. By Theorem 24 (PoS Stable under Contextualisation) and PoS(v, t)∧PoS(v,u), we deduce PoS(s◦ v,s◦ t)∧PoS(s◦ v,s◦u).
Therefore, by Definition 10, OoS(s◦ t,s◦u).

Right-to-left: suppose that s◦ t overlaps with s◦u. By Definition D10, there is a v′ such that PoS(v′,s◦ t) and PoS(v′,s◦u).
By Definition 8, there is vt and vu such that v′ = (s ◦ t) ◦ vt = (s ◦ u) ◦ vu. By Contextualisation Associativity (Axiom 9),
s◦ (t ◦ vt) = s◦ (u◦ vu). Thus, by Axiom 7, t ◦ vt = u◦ vu. Let us call v the slot equal to t ◦ vt and u◦ vu. By Definition 8, v is a
slot-part of t and u. Thus, t and u overlap. □

With Theorem 23, we showed cross-constraints between PoS relations between slots and P relations
between fillers. Theorem 39 expresses a constraint from the OoS relations between slots towards the O
relations between fillers. However, unlike Theorem 23, we did not find interesting constraints from O
relations between fillers towards OoS relations between slots. Indeed, if two entities a and b overlap, it
means that they have a common part c, but in two different slots s and t, as slots cannot have multiple
owners. Nothing ensures that there are two slots u and v such that u◦ s = v◦ t.

Theorem 39 (Slot-Overlap Constrains Overlap between Fillers).

∀a,b,s, t(OoS(s, t)∧F(a,s)∧F(b, t)→ O(a,b))

Proof. Let s and t be two slots and a and b their respective fillers. Suppose that s and t slot-overlap (OoS(s, t)). By Defini-
tion 10, it means that there is a slot u that is a slot-part of both s and t. By Lemma 17 and BA7, there is some filler c that fills
u. By Theorem 23, c is a part of a and b. Therefore, by BD3, a and b are overlapping. □

We defined a slot-overlap relation, which has the same properties as in classical mereology: (condi-
tionally) reflexive and symmetric. Furthermore, this relation also has the same-owner property and is
stable under contextualisation. Those basic mereological relations PoS and OoS will now be used to
introduce supplementation principles in the next section.

4.5. Supplementation Principles

Bennett’s BA8 is an adaptation of classical strong supplementation into slot mereology. It is used in
the proofs of Slot Weak Supplementation (BT13) and Slot Extensionality (BT14). However, Garbacz
(2016) showed that this move has multiple problems, as BT13 does not capture the idea of Weak Sup-
plementation and BT14 actually is not a theorem of Bennett’s theory. Therefore, Garbacz proposed a
revision of the theory. We can even go further than Garbacz’s reasoning by noticing that BA8 is actually
a theorem of the theory.21

In the following sections, we first analyse Garbacz’s proposal, then we propose an axiomatisation of
supplementation in our own theory.

21Here follows a proof that BA8 is a theorem, using only Bennett’s axioms.

Proof. Let a and b be two fillers such that both have a slot. Suppose that there are no slot owned by a and filled by b, i.e.
suppose that b is not a part of a. Let us call this H1. We want to prove that there is some slot that is a slot of b but not a slot of
a. From the assumptions, b has a slot. Thus, by BA4, there is a slot u that is an improper slot of b. Suppose that u is owned by
a: contradiction with H1. Therefore, u is owned by b, but not by a. □
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First of all, let us note that the main motivation behind Bennett’s slot mereology and ours is to represent
entities that can have a same part multiple times. Therefore, we do not want supplementation over fillers.
Indeed, the DIHYDROGEN molecule universal has as proper part the HYDROGEN atom universal (twice),
but there is no proper part of DIHYDROGEN that does not overlap with HYDROGEN.

4.5.1. Bennett’s Theory and Garbacz’s Revisions
Bennett’s Slot Strong Supplementation (BA8)22 intuitively states that “if a and b have parthood slots,

and b is not a part of a, then b has a parthood slot that isn’t a parthood slot of a” (Bennett, 2013, p. 96).
Cotnoir (2015) states that this axiom is too weak, and sees it as a slot version of Varzi’s Strong Company
(2019). This axiom is used in the proof of BT13.

Garbacz (2016) showed why Bennett’s proof of BT13 is invalid: the premise of BT13 (PP(a,b)) does
not imply the premises of BA8 (∃s(Ps(s,a))∧∃s(Ps(s,b))). Indeed, a being a proper part of b implies
that b has a slot, but tells us nothing about a having a slot. Garbacz thus offers two solutions: weaken
BA8 or introduce a new axiom that states that every filler has a slot, which can be improper. We already
discussed the second solution and consequently added Axiom A2.

Garbacz noted that even though Bennett’s proof is not correct, BT13 still is a theorem of the theory.
Indeed, the Slot Weak Supplementation Theorem states that “if a is a proper part of b, then b has a
parthood slot s that isn’t a parthood slot of a” (Bennett, 2013, p. 97). As a is a proper part of b, it occupies
one of the slots of b. According to Axiom BA4, b has an improper slot (let us call it t). Slot t cannot be
owned by a, otherwise, by Axiom BA6 (Mutual Occupancy Is Identity), a and b would be equal, which
would contradict the fact that a is a proper part of b. So, in every case, Slot Weak Supplementation is
satisfied thanks to the existence of the improper slot of b. Note that if the slot s of b filled by a is not an
improper slot of a (that is, it is not owned by a), it is true that Ps(s,b)∧¬Ps(s,a), and thus the Slot Weak
Supplementation is satisfied. As Garbacz noted, “instead of being a form of supplementation, [BT13] is
a consequence of the specific form of the reflexivity of slot parthood: each object that has slots fills a
slot in itself”.

Moreover, Garbacz (2016) showed that BT14 is not a theorem of Bennett’s theory. Indeed, Garbacz
gives a model of the theory, pictured in Figure 12, in which all of Bennett’s axioms are satisfied, but not
BT14. Consequently, Garbacz proposed three revisions of BA8 to be able to prove BT14.

a
��
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<<
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vv

u

Fig. 12. Garbacz’s counter-example

Garbacz’s final revision of BA8 is exposed in (5). Intuitively, it means that if b has a proper slot and b
is not a part of a, then there is a proper slot of b that is not a proper slot of a.

∀a,b[∃s(PPs(s,b))→ (∄t(Ps(t,a)∧F(b, t))→∃u(PPs(u,b)∧¬PPs(u,a))] (5)

22As proved above, BA8 is an unnecessary axiom of Bennett’s theory. However, in order to correctly render Cotnoir’s and
Garbacz’s views, BA8 is treated as an axiom in this section. Furthermore, as BA8 is a theorem, Garbacz did not actually propose
a revision, but an extension of Bennett’s theory.
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4.5.2. Slot Supplementation
Our Single Owner Axiom (Axiom 1) makes Garbacz’s revisions of BA8 vacuously true theorems.

Therefore, we have to find a new axiomatic formulation for slot strong supplementation. Like in clas-
sical mereology, we have introduced here notions of parthood, proper parthood and overlap relations
between slots. This means that we can adapt the Strong Supplementation axiom of classical mereology,
as expressed by Axiom 10 below. We previously explained that in our mereology, the mereological re-
lations can only hold between slots of the same owner. However, in the Slot Strong Supplementation
Axiom, we need not impose that s and t have the same owner. Indeed, if they do not have the same
owner, none of the possible slot-parts of t can overlap with s, and in particular, t does not overlap with
s. Thus, the axiom is trivially true in that case.

Axiom 10 (Slot Strong Supplementation).

∀s, t[S(s)∧S(t)→ (¬PoS(t,s)→∃u(PoS(u, t)∧¬OoS(u,s)))]

From this axiom, we can deduce a theorem of Slot Weak Supplementation, expressed by T40. This
theorem states that if a whole has a proper slot, then it must have another slot that does not overlap with
the first one.

Theorem 40 (Slot Weak Supplementation). ∀s, t(PPoS(s, t)→∃u(PoS(u, t)∧¬OoS(u,s))

Proof. Let s and t be two slots such that PPoS(s, t), i.e. PoS(s, t)∧ s ̸= t. From PoS(s, t), and PoS Anti-Symmetry (Theo-
rem 19), we deduce ¬PoS(t,s). From ¬PoS(t,s) and Slot Strong Supplementation (Axiom 10), we deduce ∃u(PoS(u, t)∧
¬OoS(u,s)). □

We can also prove theorems of OoS-Extensionality (Theorem 41) and PPoS-Extensionality (Theo-
rem 42). For Theorem 41, the premise S(s)∧ S(t) is necessary: without it, ∀u,OoS(s,u) ↔ OoS(t,u)
would be vacuously true for every pair of fillers, leading to all fillers being equal.

Theorem 41 (OoS-Extensionality). ∀s, t[S(s)∧S(t)→ (∀u,OoS(s,u)↔ OoS(t,u))→ s = t]

Proof. Let s and t be two slots such that ∀u,OoS(s,u)↔ OoS(t,u) (let us call this H1). We want to prove that s = t. Suppose
that s is different from t (s ̸= t). Either PoS(t,s) or ¬PoS(t,s).

Suppose first that PoS(t,s). By Definition 9, we know PPoS(t,s). According to the Slot Weak Supplementation Theorem 40,
there is a u such that PoS(u,s)∧¬OoS(u, t). With PoS(u,s) and Lemma 37 (PoS Implies OoS), we know that OoS(u,s). By
H1, we deduce that OoS(u, t). Contradiction: u does and does not overlap t. Suppose now that ¬PoS(t,s). By Slot Strong
Supplementation Axiom 10, there is an u such that PoS(u, t)∧¬OoS(u,s). By the same reasoning, we also get a contradiction:
u does and does not overlap s.

Thus, s = t. □

Theorem 42 (PPoS-Extensionality).

∀s, t[∃u(PPoS(u,s)∨PPoS(u, t))→ (∀u,PPoS(u,s)↔ PPoS(u, t))→ s = t]
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Proof. Let s and t be two slots such that one of them as a slot-proper-part u, and that ∀u,PPoS(u,s)↔ PPoS(u, t) (let us call
this H1). We want to prove that s = t. Suppose that s is different from t. Either PoS(t,s) or ¬PoS(t,s).

Suppose first that PoS(t,s). Therefore, by Definition of PPoS (Definition 9), PPoS(t,s), and by H1, PPoS(t, t). Contradic-
tion, as PPoS is irreflexive (Theorem 25).

Suppose thus that ¬PoS(t,s). According to Slot Strong Supplementation (Axiom 10), there is a v such that PoS(v, t)∧
¬OoS(v,s). Suppose that t and v are different. By definition, PPoS(v, t), and by H1, PPoS(v,s). However, v does not overlap s
(¬OoS(v,s)). Contradiction. Thus t = v, and ¬OoS(t,s). However, u is a slot-part of s and t: by hypothesis, it is a slot-part of
one of them, and by H1, it is also a slot-part of the other one. Therefore, OoS(t,s). Contradiction.

Thus s = t. □

We added the Slot Strong Supplementation axiom and proved Slot Weak Supplementation and OoS-
Extensionality. Thanks to our mereological relations among slots, this axiom and these theorems are
syntactically similar or identical to those of classical mereology. Compared to Bennett’s theory, our
supplementation correctly captures the spirit of supplementation and extensionality. In the next section,
we will develop further our mereology of slots and introduce the sum of slots.

4.6. Sum of Slots

4.6.1. Bennett’s Theory
In her theory, Bennett did not propose any sum operator. However, she made three remarks about

sums.
First, she noted that a fully unrestricted axiom of unrestricted sum is not reasonable. Indeed, she

argues that in her theory, slots cannot be parts of anything, so there cannot be sums involving slots. In
our theory, slots can be parts of other slots. Yet, they cannot be parts of fillers. Therefore, we follow
Bennett here: unrestricted sum is off the table.

Second, slots being put aside, she argues that sums of fillers cannot be unique. Bennett gives an
example of two things a and b that might have multiple sums: a+ b, a+ a+ b. Moreover, keeping
our molecule universal examples, we could think of molecules that are not bonded in the same way.
As pointed out by Lewis (1986) and McFarland (2018), butane and isobutane have the same chemical
formula, i.e. the same parts (C4H10), but are isomers, i.e. their parts are arranged in different ways. Also,
as illustrated by Bennett’s example above, there are entities that have the same parts but not the same
number of them. For example, METHANE and ETHANE (CH4 and C2H6) have the same atom universals
as parts, but in different quantities. If a sum of fillers were to exist, it cannot be idempotent, as it would
make METHANE and ETHANE the same entity. Nonetheless, even a non-idempotent sum would not be
enough as it would not enable us to differentiate BUTANE and ISOBUTANE universals.

Third, she argues that a non-idempotent sum of fillers would entail that the world is junky (i.e. every-
thing is a proper part of something else), and thus, there is no universe. She gives the following example
(Bennett, 2013, p. 99):

“To see this, imagine a world with two simple fillers, a and b. Almost unrestricted composition entails
that they have a fusion; call it c. But if every two or more things have a fusion, then every composite
must fuse with each and all of its own proper parts. So c and a must compose something, as must c
and b, and c and a and b (also known as d).”

As she argues, in classical extensional mereology, Strong Supplementation entails that all “compos-
ites” of a and b are identical. Importantly, our axiom of Slot Strong Supplementation does not entail
the same conclusion. Indeed, in our theory, different entities which own different slots may have the
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same entities as part, whether with the same multiplicities (like BUTANE or ISOBUTANE) or not (like
METHANE and ETHANE).

For these reasons, Bennett’s formal system is silent on sums. We agree with Bennett on her entire
reasoning about sums of fillers. However, there is one point where our visions diverge: Bennett’s theory
does not have a parthood relation over slots, but our theory does. In the following section, we will show
how sums over slots can be introduced in our theory.

4.6.2. Slot-Sum
We introduce the relation SoS1 to capture the intuition of sum of slots. SoS1(u,s, t) means that u is a

sum of s and t. We first define SoS1 and SoS2 following Propositions 392 and 393 in Varzi (2019). The
definitions are given by Definitions 11 and 12. We will show that these two definitions are equivalent, as
proved by Theorem 44. The domains of SoS1 is given by Lemma 43.

Definition 11 (Sum with Parthood).

SoS1(u,s, t)≜ PoS(s,u)∧PoS(t,u)∧∀v(PoS(v,u)→ OoS(s,v)∨OoS(t,v))

Definition 12 (Sum with Overlap). SoS2(u,s, t)≜ ∀v(OoS(u,v)↔ OoS(s,v)∨OoS(t,v))

Lemma 43 (Domains of Sum). ∀s, t,u(SoS1(u,s, t)→ S(s)∧S(t)∧S(u))

Proof. Trivially by Definition 11 and Lemma 17. □

Theorem 44 (SoS1 and SoS2 are Equivalent). ∀s, t[SO(s, t)→∀u(SoS1(u,s, t)↔ SoS2(u,s, t))]

Proof. Let s and t be two slots with the same owner. Let u be a slot.
Left-to-right: suppose SoS1(u,s, t). By Definition 11, s and t are slot-parts of u and ∀v(PoS(v,u)→ OoS(s,v)∨OoS(t,v))

(let us call this H). We want to prove ∀v(OoS(u,v) ↔ OoS(s,v)∨ OoS(t,v)). Let w be a slot. We want to prove that 1)
OoS(u,w)→ OoS(s,w)∨OoS(t,w) and 2) OoS(s,w)∨OoS(t,w)→ OoS(u,w).

1) Suppose that u and w overlap. By Definition 10, there is a x that is slot-part of u and w. According to H, x overlaps s or t.
Suppose that x overlaps s. Therefore, by Lemma 35 (Overlap with Part Implies Overlap with Whole), OoS(s,x) and PoS(x,w),
we deduce that OoS(s,w). Similarly, we can show that if x overlaps t, then w overlaps t.

2) Suppose that s overlaps w. By Lemma 35 and PoS(s,u), we deduce that w and u overlap. The same reasoning holds if
we suppose that t and w overlap: w overlap u.

Right-to-left: suppose SoS2(u,s, t), i.e. ∀v(OoS(v,u)↔ OoS(v,s)∨OoS(v, t)) (let us call this H). We want to prove that 1)
s and t are slot-parts of u and that 2) ∀v(PoS(v,u)→ OoS(s,v)∨OoS(t,v).

1) Let us prove that s is a slot-part of u. Suppose that that s is not a slot-part of u. Therefore, by the Slot Strong Supplemen-
tation (Axiom 10), there is a v that is a slot-part of s and that does not overlap u. v being a slot-part of s, both are overlapping,
by Lemma 37. According to H, as v overlaps s, it overlaps u. Contradiction: by Slot Strong Supplementation, it cannot overlap
u. Therefore, s is a slot-part of u. A similar reasoning proves that t is slot-part of u.

2) Let v be a slot-part of u. By Lemma 37, v and u are overlapping. With H, OoS(v,s)∨OoS(v, t). □

SoS1 and SoS2 being equivalent, we will use SoS1 in the remainder. However, every true proposition
involving SoS1 is also true when substituting SoS2 for SoS1. Axiom 11 is the only axiom we will accept
involving the sum relation. It ensures that a sum of two slots exists if they have the same owner. The
addition of this axiom will be enough to derive classical properties of binary sum.

Axiom 11 (Sum Existence). ∀s, t(SO(s, t)→∃u(SoS1(u,s, t)))
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Slots can only be summed within the same mereological structure, i.e. if they have the same owner.
Therefore the resulting slot also has the same owner. This is stated by Theorem T45.

Theorem 45 (Sum Same Owner). ∀s, t,u[SoS1(u,s, t)→∃a(Ps(u,a)∧Ps(s,a)∧Ps(t,a))]

Proof. Let u, s and t be slots such that SoS1(u,s, t). By Definition 11, we know PoS(s,u)∧PoS(t,u). By Theorem 21 (PoS
Same Owner) and Axiom 1 (Single Owner), we know that s, t and u have the same owner. □

Slot Strong Supplementation ensures the unicity of the sum, as showed by Theorem 46. The unicity
being proved, we will use the operator + to represent sums of slots: s+ t is a binary function that returns
the sum of s and t. Furthermore, we will use the notation u = s+ t instead of SoS1(u,s, t).

Theorem 46 (Sum Unicity). ∀s, t,u,v(SoS1(u,s, t)∧SoS1(v,s, t)→ u = v)

Proof. Let s, t, u and v be four slots such that u and v are both sums of s and t. We want to prove u = v. According to OoS-
Extensionality (Theorem 41), if we prove ∀w(OoS(u,w)↔ OoS(v,w)), then we have u = v. Both sums being equivalent, let
us use the Definition 12: we know that ∀w(OoS(u,w)↔ OoS(s,w)∨OoS(t,w)) and ∀w(OoS(v,w)↔ OoS(s,w)∨OoS(t,w)).
Therefore, we know that ∀w(OoS(u,w)↔ OoS(v,w)), and that u = v. □

The sum of slots is idempotent and commutative, as expressed by Theorems 47 and 48. Those prop-
erties are standard results of mereology (Propositions 41, 42 and 43 of Varzi (2019)).

Theorem 47 (Sum Idempotence). ∀s(S(s)→ s+ s = s)

Proof. Let s be a slot and a its owner (Ps(s,a)). We have to prove that s+s= s, which means, by Definition 12, ∀v(OoS(v,s)↔
OoS(v,s)∨OoS(v,s)), which is tautologically true. Thus s+ s = s. □

Theorem 48 (Sum Commutativity). ∀s, t(SO(s, t)→ s+ t = t + s)

Proof. By Definition 12 and the commutativity of the OR operand. □

The following explores the various existing theorems resulting from the use of the slot-sum and con-
textualisation operators with the relations PoS and OoS. We consider the ◦ operator to have a higher
priority than the + operator. Therefore s◦ t +u has to be interpreted as (s◦ t)+u. The first four lemmas
(Lemmas 49 to 52) are similar to Theorems 44, 45, 46 and 47 of Varzi (2019). They illustrate how slot-
sum and PoS work together. Lemma 49 states that if s+ t exists, then s is a slot-part of s+ t. Lemma 50
states that if t +u exists and s is a slot-part of t, then s is a slot-part of t +u. Lemma 51 states that if s+ t
is a slot-part of u, then s is a slot-part of u. And Lemma 52 states that s is a slot-part of t if and only if
s+ t = t.

Lemma 49. ∀s, t(SO(s, t)→ PoS(s,s+ t))
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Proof. By Definition 11. □

Lemma 50. ∀t,u[SO(t,u)→∀s(PoS(s, t)→ PoS(s, t +u))]

Proof. Let s, t and u be three slots such that t and u have the same owner and that s is part of t. By Lemma 49, t is slot-part
of t +u. Thus, by PoS Transitivity (Theorem 20), PoS(s, t +u). □

Lemma 51. ∀s, t[SO(s, t)→∀u(PoS(s+ t,u)→ PoS(s,u))]

Proof. Let s, t and u be three slots such that s and t have the same owner and s+ t is slot-part of u. By Definition 11,
PoS(s,s+ t). By PoS Transitivity (Theorem 20), PoS(s,u). □

Lemma 52. ∀s, t(PoS(s, t)↔ s+ t = t)

Proof. Left-to-right: let s be a slot-part of t (PoS(s, t)). We want to prove s+ t = t, that is, by Definition 12, ∀v(OoS(v, t)↔
OoS(v,s)∨OoS(v, t)), which is tautologically true. Thus s+ t = t.

Right-to-left: let s and t be slots such that s+ t = t. By Definition 11, PoS(s, t). □

The following Theorem 53 describes the behaviour of overlap combined with sums. It states that
something overlaps the contextualisation of the sum of two operands by a slot s iff it overlaps the con-
textualisation of one of the operands by s.

Theorem 53 (Overlaps the Contextualised Sum iff Overlaps one of the Contextualised Operands).

∀s, t,u[Cb(t,s)∧Cb(u,s)→∀v(OoS(v,s◦ (t +u))↔ OoS(v,s◦ t)∨OoS(v,s◦u))]

Proof. Let s, t and u be slots such that t and u are contextualisable by s. By Axiom 5 (Contextualisable iff Contextualisation
Exists), s ◦ t and s ◦ u exist. By Axiom 11 (Sum Existence), t + u exists, and by Theorem 45, t + u is a slot of a. Finally, by
Axiom 5, s◦ (t +u) exists. Let v be a slot.

Left-to-right: suppose that v and s◦ (t +u) overlap. We want to prove that v overlaps s◦ t or s◦u. By Definition 10 (OoS),
there is a w that is a slot-part of v and s◦ (t +u). w being a slot-part of s◦ (t +u), we know by Definition 8 (PoS), that there
is a w1 such that w = (s ◦ (t + u)) ◦w1, i.e., by Contextualisation Associativity (Axiom 9), w = s ◦ ((t + u) ◦w1). Let w2 be
(t + u) ◦w1. By definition, w2 is a slot-part of t + u. The definition of sum (Definition 11) states that every slot-part of t + u
overlaps t or u. So w2 overlaps (1) t or (2) u.

(1) If w2 overlaps t: with Theorem 38 (OoS Stable under Contextualisation), as we know OoS(w2, t), we know that OoS(s◦
w2,s◦ t), i.e. OoS(w,s◦ t). By definition of OoS, there is a w3, slot-part of w and s◦ t. Let us prove that w3 is a slot-part of v.
We know that w3 is slot-part of w, and that w is slot-part of v, therefore, by PoS Transitivity (Theorem 20), w3 is slot-part of
v. Thus OoS(v,s◦ t).

(2) By the same reasoning applied to u, OoS(v,s◦u).
That is, in every cases, OoS(v,s◦ t)∨OoS(v,s◦u).
Right-to-left: suppose that v overlaps s ◦ t, i.e. there is a w slot-part of v and s ◦ t. We want to prove that v and s ◦ (t + u)

overlap, i.e. that there is a shared slot-part. Let us prove that this shared slot-part is w. As w being a slot-part of v is one of the
hypotheses, we only have to prove that w is a slot-part of s◦ (t +u). As w is a slot-part of s◦ t, we know that there is a w′ such
that w = (s◦ t)◦w′. With Contextualisation Associativity (Axiom 9), we get w = s◦ (t ◦w′). t being a slot-part of t +u, there
is a t ′ such that t = (t +u)◦ t ′. So, we can write, by replacing t by (t +u)◦ t ′ in w = s◦ (t ◦w′), that w = s◦ (((t +u)◦ t ′)◦w′).
Finally, by Associativity, we get that w = (s◦ (t +u))◦ (t ′ ◦w′), which is, by Definition 8, that w is a slot-part of s◦ (t +u). A
similar reasoning leads to the fact that if OoS(v,s◦u), then OoS(v,s◦ (t +u)). □
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Let us focus on the distributivity of contextualisation over the sum. In the first step, we prove that left
distributivity holds, presented by Theorem 54. In the second step, we discuss why right distributivity is
unwanted in our theory.

Theorem 54 (Left Distributivity). ∀s, t,u[Cb(t,s)∧Cb(u,s)→ (s◦ (t +u) = s◦ t + s◦u)]

Proof. Let s, t and u be slots such that t and u are contextualisable by s. We want to prove that s ◦ (t + u) and s ◦ t + s ◦ u
are identical. To do so, we will use the OoS-Extensionality (Theorem 41). Therefore, we have to prove that for every v that
overlaps one, it also overlaps the other one (∀v(OoS(v,s◦ (t +u))↔ OoS(v,s◦ t + s◦u))). Let v be a slot.

Left-to-right: suppose v overlaps s ◦ (t + u). We want to prove that v overlaps with s ◦ t + s ◦ u. By Theorem 53, we know
that v overlaps s◦ t or s◦u. In both cases, by Definition 12, we know that v overlaps s◦ t + s◦u.

Right-to-left: suppose that v overlaps s ◦ t + s ◦ u. We want to prove that v overlaps with s ◦ (t + u). By Definition 12, we
know that v overlaps s◦ t or s◦u. In both cases, by Theorem 53, we know that v overlaps s◦ (t +u).

We proved that ∀v(OoS(v,s◦ (t +u))↔ OoS(v,s◦ t + s◦u)), therefore by OoS-Extensionality, s◦ (t +u) = s◦ t + s◦u. □
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Fig. 13. Counter-example to right distributivity

In this theory, we do not want right distributivity of contextualisation over the sum. Take the example
pictured by Figure 13. Consider the sum of t and u, i.e. the slot (t + u). This slot is filled by an entity
c, that has two slots t ′ and u′, such that t = (t +u)◦ t ′ and u = (t +u)◦u′. From the first equality, if we
admit right distributivity, t ◦ t ′ and u ◦ t ′ would exist and t would be identical to t ◦ t ′+ u ◦ t ′. However,
neither t ◦ t ′ nor u◦ t ′ exist, as the conditions of existence are not fulfilled: there is no entity that fills t or
u and owns t ′.

In fact, the only case where the right distributivity holds, i.e. (s+ t) ◦ u = s ◦ u+ t ◦ u (call this H) is
true, is when s = t. If so, s+ t = s+ s = s, and by replacing t, we get s◦u = s◦u+ s◦u. The sum being
idempotent, this is a tautology. However, it is possible to go further: if (s+ t)◦u, s◦u and t ◦u exist (so
without positing H) then s = t. This is the result of Theorem 56. Before proving it, consider Lemma 55
that shows that if s and a sum of s and another slot are filled by the same filler, they are equal.

Lemma 55 (Same Filler of Operand and Sum Implies Identity). ∀s, t(SF(s,s+ t)→ s = s+ t)

Proof. Let s and t be two slots such that they have the same filler. Let us call this filler a. By Definition 11, s is a slot-part of
s+t. So by Definition 8, there is a slot s′ such that s=(s+t)◦s′. According to Theorem 12 (Contextualisation Same Filler) and
BA7 (Single Occupancy), s and s′ have the same filler, i.e. a. According to Axioms 5 (Contextualisable iff Contextualisation
Exists) and BA7, there is something that fills s+ t and owns s′, i.e. a. The slot s′ is owned and filled by a. So by Definition 5,
s′ is the improper slot of a. Finally, by Theorem 8 (Improper Slot Is Right Neutral Element), as s′ is an improper slot, we
deduce, from s = (s+ t)◦ s′, that s = s+ t. □
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Theorem 56 (Right Distributivity Is Trivial). ∀s, t,u(Cb(s+ t,u)∧Cb(s,u)∧Cb(t,u)→ s = t)

Proof. Let s, t and u be three slots such that (s+ t)◦u, s◦u and t ◦u exist. We want to prove that s = t. According to Axiom 5
(Contextualisable iff Contextualisation Exists), there are three fillers a, b and c such that a fills s+ t and owns u, b fills s and
owns u and c fills t and owns u. Furthermore, by Axiom 1 (Single Owner), a = b = c. According to Lemma 55, as s and s+ t
are filled by the same filler, s = s+ t. In the same way, we deduce that t = s+ t. Therefore, s = t. □

We show with Lemma 57 that if s and t are slot-parts of u, then s+ t is a slot-part of u.

Lemma 57 (Sum is Slot-Part if Operands are Slot-Parts). ∀s, t,u(PoS(s,u)∧PoS(t,u)→ PoS(s+ t,u))

Proof. Let s, t and u be three slots such that s and t are slot-parts of u (PoS(s,u)∧PoS(t,u)), i.e. there are s′ and t ′ such that
s = u◦ s′ and t = u◦ t ′. According to Theorem 21 (PoS Same Owner) and Axiom 1 (Single Owner), s, t and u share the same
owner. Therefore, according to Axiom 11 (Sum Existence), s+ t exists. We know that s+ t = (u ◦ s′)+ (u ◦ t ′). With Left
Distributivity (Theorem 54), we get that s+ t = u◦ (s′+ t ′), i.e. that PoS(s+ t,u). □

We then prove that slot-sum is associative, as demonstrated by Theorem 58.

Theorem 58 (Sum Associativity). ∀s, t,u[SO(s, t)∧SO(t,u)→ (s+ t)+u = s+(t +u)]

Proof. Let s, t and u be three slots that have the same owner. SoS1 and SoS2 being equivalent, let us use SoS2. By Definition 12,
(s+ t)+u is:

(a) ∀v(OoS(v,s+ t)↔ OoS(v,s)∨OoS(v, t))
(b) ∀v(OoS(v,(s+ t)+u)↔ OoS(v,s+ t)∨OoS(v,u))

By using (a) to partially rewrite (b), we get ∀v(OoS(v,(s+ t)+u)↔ OoS(v,s)∨OoS(v, t)∨OoS(v,u) (1).
Similarly, from s+(t +u), we get ∀v(OoS(v,s+(t +u))↔ OoS(v,s)∨OoS(v, t)∨OoS(v,u)) (2).
From (1) and (2), we obtain ∀v(OoS(v,(s+ t)+u)↔ OoS(v,s+(t +u)), which, according to Theorem 41, entails (s+ t)+

u = s+(t +u). □

We can prove that sums are stable under contextualisation, i.e. that for some slots u, s and t that can
be contextualised by v, it is true that u = s+ t iff v◦u = v◦ s+ v◦ t, as showed by Theorem 59.

Theorem 59 (Sum Stable under Contextualisation).

∀s, t,u,v[Cb(u,v)∧Cb(s,v)∧Cb(t,v)→ (u = s+ t ↔ (v◦u) = (v◦ s)+(v◦ t))]

Proof. Let s, t, u and v be slots such that u, s and t are contextualisable by v. By Definition 6 and Axiom 1, there is a unique
a that is the filler of v and the owner of u, s and t. According to Theorem 24 (PoS Stable under Contextualisation), we have
PoS(s,u)↔ PoS(v◦s,v◦u) and PoS(t,u)↔ PoS(v◦t,v◦u) (call them H1 and H2). We want to prove that u = s+t ↔ (v◦u) =
(v◦ s)+(v◦ t).

Using Definition 11, it is [PoS(s,u)∧PoS(t,u)∧∀v′(PoS(v′,u)→ OoS(s,v′)∨OoS(t,v′))]↔ [PoS(v◦s,v◦u)∧PoS(v◦ t,v◦
u)∧∀v′(PoS(v′,v◦u)→ OoS(v◦s,v′)∨OoS(v◦ t,v′))]. Using H1 and H2, it can be rewritten as [PoS(v◦s,v◦u)∧PoS(v◦ t,v◦
u)∧∀v′(PoS(v′,u)→OoS(s,v)∨OoS(t,v))]↔ [PoS(v◦s,v◦u)∧PoS(v◦t,v◦u)∧∀v′(PoS(v′,v◦u)→OoS(v◦s,v′)∨OoS(v◦
t,v′))], which can simplified into ∀v′(PoS(v′,u)→OoS(s,v′)∨OoS(t,v′))↔∀v′(PoS(v′,v◦u)→OoS(v◦s,v′)∨OoS(v◦t,v′))

Left-to-right: suppose that ∀v′(PoS(v′,u)→ OoS(s,v′)∨OoS(t,v′)) (call this H). Let w′ be a slot such that PoS(w′,v ◦ u),
i.e. there is a x such that w′ = (v ◦ u) ◦ x. We want to prove OoS(v ◦ s,w′)∨OoS(v ◦ t,w′). We have w′ = (v ◦ u) ◦ x. By
Axiom 9, we get w′ = v◦ (u◦ x). Let w be u◦ x. Given w′ = v◦w, by Theorem 38, the goal OoS(v◦ s,v◦w)∨OoS(v◦ t,v◦w)
is equivalent to OoS(s,w)∨OoS(t,w). By Definition 8, w = u ◦ x gives PoS(w,u). By H and PoS(w,u), we prove the goal
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OoS(s,w)∨OoS(t,w).
Right-to-left: suppose that ∀v′(PoS(v′,v ◦ u) → OoS(v ◦ s,v′) ∨ OoS(v ◦ t,v′)) (call this H). We want to prove that

∀v′(PoS(v′,u) → OoS(s,v′)∨OoS(t,v′)). Let w be a slot such that PoS(w,u). Let us prove that OoS(s,w)∨OoS(t,w) Ac-
cording to Theorem 21, u and w have the same owner, i.e. a. Therefore, w is contextualisable by v. By Theorem 38, the
goal OoS(s,w)∨OoS(t,w) is equivalent to OoS(v ◦ s,v ◦w)∨OoS(v ◦ t,v ◦w). By Theorem 24, PoS(w,u) is equivalent to
PoS(v◦w,v◦u), which, by H, gives OoS(v◦ s,v◦w)∨OoS(v◦ t,v◦w), i.e. the goal. □

We added a new relation of slot-sum, syntactically based on Varzi’s 392. After axiomatising the ex-
istence condition of the sum of slots, we highlighted the properties of the sum of slots: unicity, same-
owner, idempotence, commutativity, left distributivity, associativity and stability under contextualisation.
In the next section, we will take a step further by defining the fusion of slots.

4.7. Fusion of Slots

After having axiomatised the sum of slots, we look at mereological fusion. This has two goals. First,
fusion is a classical construct of mereological theories: adding it to our theory extends the coverage of
mereological concepts. Second, we expect the fusion to make provable one of our pre-formal intuitions,
left unproved until now: the fact that an improper slot is the “union”23 of all the slots of its filler.

While binary sum can be understood as an operation over a finite collection of entities where the
operands must be given in an extensional way (e. g. a+ b+ c), fusion operates over a collection of
entities given in an intensional way (e. g. the fusion of all the cats, or the fusion of all the slots of a given
filler), such a collection possibly being infinite.

As is the case with sum, there are multiple definitions of fusion in the literature (see (Varzi, 2019)
and (Cotnoir and Varzi, 2021)). While other definitions exist,24 we choose to use the definition of the
so-called Leśniewski fusions, as given by Definition Schema 13. In this schema, φ is a formula in which
the variable w should occur free. φ itself is not a variable in our (first-order) language; indeed, Definition
Schema 13 is not a simple definition but a definition schema. For readability, we use a predicate-like
notation, such as φ(w), even though φ is not to be understood as a predicate variable. The formula
FoSφ (z) should read as “z is the fusion of all the φ -ers”, where the term “φ -er” refers to an entity for
which the formula φ holds.

What does it mean for z to be the fusion of all φ -ers? According to the definition schema, which
contains two conjuncts, z is the fusion of all φ -ers iff 1) every φ -er is a slot-part of z and 2) every
slot-part of z overlaps with some φ -er.

Definition Schema 13 (Fusion of Slots).

FoSφ (z)≜ ∀w(φ(w)→ PoS(w,z))∧∀v(PoS(v,z)→∃w(φ(w)∧OoS(v,w)))

In the literature, multiple formulas enforcing the existence of fusion are often taken as axioms. The
Unrestricted Existence, presented in (6), ensures the existence of the fusion of the φ -ers, as long as there
is at least one φ -er. This condition avoids positing the existence of the fusion of a collection of zero
elements.

23The word “union” is used here to avoid using both the word “sum”, since our binary sum is not applicable to any (possibly
infinite) number of slots, as well as the word “fusion” which is yet to be formally defined.

24Other existing definitions are equivalent to the definition we choose under some conditions: for more details, see (Cotnoir
and Varzi, 2021, pp. 160-174).
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∃w(φ(w))→∃z(FoSφ (z)) (6)

This formula is problematic for multiple reasons: it enables the fusion of fillers, the fusion of slots and
fillers, and the fusion of slots that do not have the same owner. Indeed, as explored in Section 4.3 and
as stated by Theorems 21 and 34, our theory’s mereological relations only holds between slots that have
the same owner. Therefore, we conclude that Unrestricted Existence is not desirable to our theory.

The Restricted Existence, presented in (7), generally contains another premise, which states that all
φ -ers must satisfy some condition ψ .

(∃w(φ(w))∧∀w(φ(w)→ ψ(w))→∃z(FoSφ (z)) (7)

In our case, we identified two conditions: each φ -er must be a slot, and all φ -ers must have the same
owner. While a formula of the form ∀w(φ(w) → ψ(w)) can easily take into account that every w is a
slot, we do not see what formula can say that all slots have the same owner. Therefore, we propose a
slightly modified version as follows:

∃w(φ(w)) ∧ ∀w(φ(w)→ S(w)) ∧ ∃w(φ(w)∧∀v(φ(v)→ SO(w,v)))→∃z(FoSφ (z))

This formula states that 1) there is a φ -er, 2) every φ -er is a slot, and 3) there is a φ -er that has the
same owner as all other φ -ers. This formula can be simplified as in Axiom Schema 12, i. e. if there is a
φ -er and every φ -er have the same owner, then the fusion of these φ -ers exists.

Axiom Schema 12 (Fusion Existence). ∃w(φ(w)∧∀v(φ(v)→ SO(v,w)))→∃s(FoSφ (s))

The fusion of the φ -ers is unique, as proved by Theorem Schema 60.

Theorem Schema 60 (Fusion Unicity). ∃w(φ(w))→∀s, t(FoSφ (s)∧FoSφ (t)→ s = t)

Proof. Consider w such that φ(w) holds. Let s and t be fusions of the φ -ers. We want to show that s and t are equal. To do
so, let us use OoS-Extensionality: we now have to prove that s and t are slots and that ∀u,OoS(s,u)↔ OoS(t,u). By the first
conjunct of Definition Schema 13 and φ(w), w is a slot-part of s and t. According to Lemma 17 (PoS Domain and Range), s
and t are slots. We still have to prove ∀u,OoS(s,u)↔ OoS(t,u).

Let u be a slot. The proof is similar from left-to-right and right-to-left: suppose that s (resp. t) and u are overlapping.
Therefore, by Definition 10, there is some slot a such that a is a slot-part of s (resp. t) and u. According to the second conjunct
of Definition Schema 13, as a is a slot-part of s (resp. t), there exists some φ -er b that overlaps with a, i.e. there is some slot c
that is a slot-part of a and b. According to the first conjunct of Definition Schema 13, as b is a φ -er, it is a slot-part of t (resp.
s). At this point, we know that c is a slot-part of a and b, which are respectively parts of u and t (resp. s). Therefore, by PoS
Transitivity, c is a common slot-part of u and t (resp. s), i.e. u and t (resp. s) are overlapping. □

Theorem 61 shows that slot-sum, defined in Section 4.6.2, is equivalent to the fusion of a collection
of two slots. This means that binary slot-sum is a particular of fusion, and therefore that Axiom 11 is an
instantiation of Axiom Schema 12 and so redundant.

Theorem 61 (Sum is a special Case of Fusion). ∀s, t,u(FoSw=s∨w=t(u)↔ SoS1(u,s, t))
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Proof. Let s, t and u be slots. We want to prove that FoSw=s∨w=t(u)↔ SoS1(u,s, t).
Left-to-right: suppose that u is the fusion of φ -ers such that φ is w = s∨w = t. By Definition Schema 13, ∀w(w = s∨w =

t)→ PoS(w,u) (call this H1) and ∀v(PoS(v,u)→∃w((w = s∨w = t)∧OoS(v,w)) (call this H2).
We want to prove that SoS1(u,s, t), i.e. PoS(s,u), PoS(t,u) and ∀v(PoS(v,u) → OoS(s,v) ∨ OoS(t,v)). PoS(s,u) and

PoS(t,u) are trivial using H1: if w is s or t, then PoS(w,u). Let us prove that ∀v(PoS(v,u) → OoS(s,v) ∨ OoS(t,v)).
Let v be a slot such that PoS(v,u). By H1, there is w such that (w = s ∨ w = t) ∧ OoS(v,w). By rewriting it, we got
(w = s∧OoS(v,w))∨ (w = t ∧OoS(v,w)), i.e. OoS(s,v)∨OoS(t,v).

Right-to-left: suppose that u = s+ t, i.e. PoS(s,u), PoS(t,u) and ∀v(PoS(v,u) → OoS(s,v)∨OoS(t,v)) (call this H). We
want to prove that u is the fusion of the φ -ers, i.e. ∀w(w = s∨w = t)→ PoS(w,u) (call this G1) and ∀v(PoS(v,u)→∃w((w =
s∨w = t)∧OoS(v,w)) (call this G2).

G1: let w be a slot such that w = s∨w = t. We want to prove that PoS(w,u). This is trivial, given that both s and t are
slot-parts of u.

G2: let v be a slot such that PoS(v,u). We want to prove that there is some w such that (w = s∨w = t)∧OoS(v,w), or,
rewritten the same way it was previously, OoS(v,s)∨OoS(v, t). This is trivial, given that PoS(v,u) and H. □

Theorem 62 shows that if an entity a has some slot, its improper slot is the sum of its slots. The
proposition ∀t(IPs(t,a)↔ FoSPs(w,a)(t)) is equivalent to the current consequent of the theorem, as both
improper slot and fusion are unique, by Axiom 3 and Theorem Schema 60.

Theorem 62 (Improper Slot is Fusion of Filler’s Slots).

∀a(∃s(Ps(s,a))→∃t(IPs(t,a)∧FoSPs(w,a)(t)))

Proof. Let a be a filler and s a slot of a. We want to prove that the improper slot of a is the fusion of a’s slots. Because a
owns s, we deduce by BA4 that there is a slot t that is the improper slot of a. Let us prove that t is the fusion of a’s slots.
According to Fusion’s Definition Schema 13, t is the fusion of a’s slots iff 1) ∀w(Ps(w,a)→ PoS(w, t)) and 2) ∀v(PoS(v, t)→
∃w(Ps(w,a)∧OoS(v,w))).

1) Let w be a slot of a. According to Theorem 22 (Slots iff Slot-Parts of Improper Slot), w is a slot-part of a’s improper
slot, i.e. w is a slot-part of t.

2) Let v be a slot such that v is a slot-part of t. Let us prove that there is a slot that is a slot of a and that slot-overlaps with
v. As a’s improper slot, t is a slot of a. Furthermore, as v is a slot-part of t, by Lemma 37, it overlaps with t.

In conclusion, if a has a slot, its improper slot is the fusion of its slots. □

Finally, Theorem Schema 63 shows that fusion is stable under contextualisation. It states that if s′ is
the contextualisation of s by t and that every φ -er can be contextualised by t, then s is the fusion of the
φ -ers iff s′ is the fusion of the contextualisations by t of the φ -ers.

Theorem Schema 63 (Fusion Stable under Contextualisation).

∀s, t[Cb(s, t)∧∀w(φ(w)→ Cb(w, t))→ (FoSφ (s)↔ FoS∃w′(w=t◦w′∧φ(w′))(t ◦ s))]

Proof. Let s and t be slots such that s is contextualisable by t and ∀w(φ(w) → Cb(w, t)) (call this H). We want to prove
FoSφ (s)↔ FoS∃w′(w=t◦w′∧φ(w′))(t ◦ s).

Left-to-right: suppose that s is the fusion of the φ -ers. By Definition Schema 13, ∀w(φ(w)→ PoS(w,s)) and ∀v(PoS(v,s)→
∃w(φ(w)∧OoS(v,w)) (call them H1 and H2). We want to prove that FoS∃w′(w=t◦w′∧φ(w′))(t ◦ s), i.e. that ∀w(∃w′(w = t ◦w′∧
φ(w′))→ PoS(w, t ◦ s)) and ∀v(PoS(v, t ◦ s)→∃w(∃w′(w = t ◦w′∧φ(w′))∧OoS(v,w))) (call them G1 and G2).

G1: let w and w′ be such that w = t ◦w′ and φ(w′). We want to prove PoS(w, t ◦ s). According to H1, as w′ is a φ -er, then
PoS(w′,s). Given that w = t ◦w′ and PoS(w′,s), by Theorem 24 (PoS Stable under Contextualisation), we get PoS(w, t ◦ s).

G2: let v be such that PoS(v,s′), i.e. by Definition 8, there is v′ such that v = s′ ◦ v′. We want to prove ∃w(∃w′(w =
t ◦w′∧φ(w′))∧OoS(v,w))). By Axiom 9, v = (t ◦ s)◦ v′ = t ◦ (s◦ v′). Let v′′ be s◦ v′. By Definition 8, PoS(v′′,s). By H2, we
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get that there is w′′ such that φ(w′′) and OoS(v′′,w′′). Given that w′′ is a φ -er, by H1, PoS(w′′,s). By Theorem 21, there is
some a such that Ps(w′′,a) and Ps(s,a). With Axiom 5 and s′ = t ◦ s, there is some b such that F(b, t) and Ps(s,b). Because
of Axiom 1 (Single Owner), a = b. As a owns w′′ and fills t, by Axiom 5, there is a w′′′ such that w′′′ = t ◦w′′. Our goal is
∃w(∃w′(w = t ◦w′ ∧ φ(w′))∧OoS(v,w))). There are w′′′ and w′′ such that w′′′ = t ◦w′′ and φ(w′′). We only need to prove
that OoS(v,w′′′). Given that v = t ◦ v′′ and w′′′ = t ◦w′′, by Theorem 38, we need to prove that OoS(v′′,w′′). This as already
proven.

Right-to-left: suppose that s′ is the fusion of the contextualisations by t of the φ -ers. By Definition Schema 13, ∀w(∃w′(w =
t ◦w′∧φ(w′))→ PoS(w,s′)) and ∀v(PoS(v,s′)→∃w(∃w′(w = t ◦w′∧φ(w′))∧OoS(v,w))) (call them H1 and H2). We want
to prove that FoSφ (s), i.e. ∀w(φ(w)→ PoS(w,s)) and ∀v(PoS(v,s)→∃w(φ(w)∧OoS(v,w)) (call them G1 and G2).

G1: let w be a φ -er. We want to prove that PoS(w,s). With H, there is a w′ such that w′ = t ◦w. Given that s′ = t ◦ s and
w′ = t ◦w, by Theorem 24, we get that PoS(w,s)↔ PoS(w′,s′). Therefore, to prove PoS(w,s), it is enough to prove PoS(w′,s′).
This can be proven using H1: w is a φ -er such that w′ = t ◦w, therefore PoS(w′,s′).

G2: let v′ be a slot such that it is a slot-part of s, i.e. there is a v such that v′ = s ◦ v. We want to prove that there is a φ -er
that overlaps with v′. s being contextualisable by t, let v′′ be v′′ = t ◦ v′ = s′ ◦ v = t ◦ s◦ v. By Definition 8, v′′ is a slot-part of
s′. Therefore, with H2, there are w and w′ such that w = t ◦w′, w′ is a φ -er and v′′ overlaps with w. As w′ is a φ -er, let us prove
that it overlaps with v′ to complete the proof. As OoS(v′′,w), i.e. OoS(t ◦ v′, t ◦w′), by Theorem 38, OoS(v′,w′). □

5. Back to the Original Problems

Until now, the theory developed in this paper has been illustrated using simple, often partial, models. In
this section, we propose to apply it to more realistic examples, in particular those used in Section 3, where
we exposed the counting problems. Section 5.1 explores the DIHYDROGEN universal as a first and basic
example. Section 5.2 illustrates how overlap works with the universal of two rooms with an adjoining
wall. Finally, Section 5.3 shows how to deal with overduplications, illustrated with the informational
entity “cats”. The first example will also be used to give examples of interesting properties of slot-sums.
The examples will be presented step by step: we will first show the mereological structures with only
direct slots; then we will apply contextualisation to represent the full structure.

5.1. The DIHYDROGEN Universal

This section illustrates the theory using the DIHYDROGEN, previously presented in Figure 3. The
DIHYDROGEN universal has two proper slots S1 and S2 filled by the HYDROGEN universal and one
improper slot SH2 . The HYDROGEN universal has two proper slots S3 and S4, respectively filled by the
ELECTRON and the HYDROGENNUCLEUS universals, and one improper slot SH. Finally, both ELEC-
TRON and HYDROGENNUCLEUS only have an improper slot (as before, we consider HYDROGENNU-
CLEUS as a mereological atom). Their four mereological structures are pictured in Figure 14, where only
improper and direct slots are represented.

H299 ee

�� SH2

H
S1

H
S2

(i) DIHYDROGEN

H99 gg
		 SH

E
S3

HN

S4

(ii) HYDROGEN

E
		 SE

(iii) ELECTRON

HN

�� SHN

(iv) HYDROGENNUCLEUS

Fig. 14. Direct slots of DIHYDROGEN (H2), HYDROGEN (H), ELECTRON (E) and HYDROGENNUCLEUS (HN)
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A partial view on the mereological structure of DIHYDROGEN is pictured in Figure 15. To simplify the
figure, neither the improper slots nor the contextualisations in which those improper slots are involved
are displayed. Some sums, like S5 +S7 are not represented.
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Fig. 15. A partial view on the mereological structure of DIHYDROGEN

In this example, the DIHYDROGEN universal has HYDROGEN as a part twice, and ELECTRON and
HYDROGENNUCLEUS two times each, as expected. Furthermore, there are no overduplications. How-
ever, this partial view does not represent all the slots of the DIHYDROGEN universal. In Figure 16, all
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(E, E)
OO

kk
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S6 +S8

H55<<

S2 = S7 +S8
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Fig. 16. A semi-lattice of sums of slots (dotted arrows represent the PPoS relation)

the slots of DIHYDROGEN are represented. The relation pictured by dotted arrows is not Ps, but PPoS.
Slots linked to the same slot all sum together to that targeted slot. For example, summing the slots S1,
S5+S7 and S6+S7 results in slot S5+S6+S7. Some slots are filled by entities whose nature is unknown.
For example, slot S5 +S8 is filled by something that has ELECTRON and HYDROGENNUCLEUS as parts
once each.25 However, this filler of S5 + S8 is not HYDROGEN. Indeed, we can adapt Bennett (2017)’s
argumentation for her Spatial Separation case. She argued convincingly that the electron of one hydro-
gen atom and the nucleus of another hydrogen atom do not sum up to an hydrogen atom. Similarly, in

25Our theory does not include any mereological sum on fillers. Such a sum would be by no means trivial, as developed in
Section 4.6.1. Therefore, the content of these slots in this example is simply written as a list of their parts. This notation does
not belong to the language of our theory.
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the current theory, a slot filled by ELECTRON from one contextualisation of HYDROGEN (S1) and a slot
filled by HYDROGENNUCLEUS from a different contextualisation of HYDROGEN (S2) do not sum up to
a slot filled by HYDROGEN, as they do not come from the same contextualisation.26

Also, as it is unknown whether the filler of S5 +S8 and the one of S6 +S7 are identical, indexes have
been added to differentiate them. Those numbers only have a differentiating use, and not an ordering
one. The sum of all the slots of DIHYDROGEN is its improper slot SH2 .

5.2. The TWOADJOININGROOM Universal

Consider the universal whose instances are two two-wall rooms27 separated by an adjoining wall. We
consider the universals WALL, ROOM and TWOADJOININGROOM. The first one is atomic and only
has an improper slot SWALL. The second one has an improper slot SROOM and two slots S1 and S2 filled
by WALL. Finally, the last one has an improper slot STAR and two slots S3 and S4 filled by ROOM.
The mereological structures are pictured in Figure 17 where only improper slots and direct slots are
represented.

TAR44 jj
		 STAR

ROOM

S3

ROOM

S4

(i) TWOADJOININGROOM

ROOM55 ii


SROOM

WALL

S1

WALL

S2

(ii) ROOM

WALL



SWALL

(iii) WALL

Fig. 17. Direct slots of TWOADJOININGROOM (TAR), ROOM and WALL

There are four slots resulting of the contextualisation of a proper slot of ROOM by a proper slot of
TWOADJOININGROOM, namely S5 to S8. Those contextualisations are pictured in Figure 18. Improper
slots and contextualisations involving them are not displayed.
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Fig. 18. Full structure of TWOADJOININGROOM

If we want a universal isomorphic to its instances, the two occurrences of the universal ROOM within
the universal TWOADJOININGROOM are supposed to overlap. To do so, a slot resulting of a contextu-
alisation of some slot by S3 has to be the same as a slot resulting of a contextualisation of some slot by

26This conclusion is supported by the fact that for S5 +S8 to be filled by HYDROGEN, S5 +S8 must be the improper slot of
HYDROGEN (SH ) or one of its contextualisation. But it does not seem that we can rewrite S5 +S8 = (S1 ◦S3)+(S2 ◦S4) using
SH . Contrast this with S5 + S6 = S1 ◦ S3 + S1 ◦ S4. By Left Distributivity, it is S1 ◦ (S3 + S4), i.e. S1 ◦ SH . The latter being a
contextualisation of SH , it is filled by HYDROGEN.

27Although our world does not abound with two-wall rooms, this makes for a simple example. One may imagine a semi-
circular wall closed by a straight wall.
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S4. Let us say that S6 = S7. Figure 19 represents the correct structure of TWOADJOININGROOM, with
S3 and S4 overlapping on S6.
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Fig. 19. Full structure of TWOADJOININGROOM with overlapping slots

5.3. The Informational Entity “cats”

For this example, let us recursively decompose the string “cats” into two parts: all the letters except
the last one and the last letter, i.e. “cat” and “s”. The string “cat” is itself decomposed into “ca” and
“t”. Finally, “ca” is decomposed into “c” and “a”. The four letters only own an improper slot each,
respectively Sc, Sa, St and Ss. The string “ca” has an improper slot Sca and two proper slots S1 and S2
respectively filled by “c” and “a”. The string “cat” has an improper slot Scat and two direct proper slots
S3 and S4 filled by “ca” and “t”. Finally, the string “cats” has an improper slot Scats and two direct proper
slots S5 and S6 filled by “cat” and “s”. The mereological structures are pictured in Figure 20 where only
improper slots and direct slots are represented. In this figure and the following ones, some slots are not
pictured. For example, we can consider that “cats” also decomposes into “ca” and “ts”. However, for
simplicity, we do not explore every possibility here.

To explain the role of Axiom 9 (Contextualisation Associativity), in Figure 21, we first do not accept
it and show a model with overduplicated slots. Then, we show in Figure 22 how overduplications are
solved thanks to the adoption of Axiom 9. In these two last figures, contextualisations are not represented
as usual. For readability, the black dots used in all previous figures to represent the contextualising slots
are replaced by labels between square brackets on the dashed arrows ( oo [s] ).
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(iv) “c”, “a”, “t” and “s”

Fig. 20. Some relevant direct and improper slots of the informational entities
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As in the previous examples, improper slots and contextualisations involving them are not displayed.
The indirect slots of “cat” are S7 and S8 respectively equal to S3 ◦ S1 and S3 ◦ S2. Those of “cats” are
S9 = S5 ◦S3, S10 = S9 ◦S1, S11 = S9 ◦S2, S12 = S5 ◦S7, S13 = S5 ◦S8, and S14 = S5 ◦S4. These are all the
possible contextualisations by the proper slots initially considered.
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Fig. 21. A partial view of the structure of “cats” without the Associativity Axiom

However, in Figure 21, “cats” has two slots filled by “c” and two slots filled by “a”, where it should
only have one of each. This is because Contextualisation Associativity (Axiom 9) is not accepted here.
If we accept it, S10 = (S5 ◦S3)◦S1 = S5 ◦ (S3 ◦S1) = S12 and S11 = (S5 ◦S3)◦S2 = S5 ◦ (S3 ◦S2) = S13, as
pictured in Figure 22.
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Fig. 22. A partial view of the structure of “cats” with the Associativity Axiom

6. Discussion

6.1. Identity Based on Non-Mereological Relations

When it comes to identity criteria in classical mereological theories, the basic principle used is ex-
tensionality: if two things have exactly the same proper parts or overlap exactly the same entities, they
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are identical. However, for the entities considered in this paper (e.g. structural universals and informa-
tional entities), this is not adequate. Indeed, as pointed out above, METHANE, BUTANE and ISOBUTANE
have exactly the same parts: CARBON and HYDROGEN. Similarly, the words “cat”, “act” and “tact” are
composed of the same letters: “a”, “c” and “t”.

In the context of a mereological analysis of words, Carrara and Smid (2022) identify three identity
principles: Kind, Number and Order. Those principles are defined as follows (Carrara and Smid, 2022,
p. 178):

• Kind: “If two words do not have all the same letters, they are distinct.”
• Number: “If the number of letter instances in one word is different from the number of letter in-

stances in another, they are distinct.”
• Order: “If the order of letters in one word is different from the order of letters in another word, they

are distinct.”

In classic mereological theories, the negation of the premise of the generalisation of the first principle
to any entity is usually accepted as a necessary and sufficient identity condition. However, according
to Carrara and Smid (2022), this is not enough for word types: the negations of the three premises are
“individually necessary and jointly sufficient for the identity of word types”. With this joint criterion, we
can differentiate our previous examples: “cat”, “act” and “tact”. The two principles Kind and Number
are enough to differentiate “cat” and “tact”, but to differentiate “cat” and “act”, the three are needed.

These identity principles have been introduced for informational entities, but they can be adapted
to differentiate structural universals too. In fact, even though they were not clearly expressed, Lewis
discussed similar principles. Lewis (1986, p. 37) uses a variant of the Number principle to differentiate
METHANE and BUTANE:

“We might restore the talk of parts many times over; agree that two different things cannot be made
of the very same parts taken once each, but insist that two things can be made of the same parts if
there is a difference in how many times over some part is taken. Such is the difference between the
structural universals methane and butane.”

Furthermore, on page 38, Lewis describes the problem of identity between BUTANE and ISOBUTANE:

“Consider isobutane. Where butane has a straight chain, isobutane branches. Its molecules consist
of a central carbon atom bonded to three outlying carbon atoms; the central carbon atom is bonded
also to one hydrogen atom, and each outlying carbon atom is bonded to three hydrogen atoms. So the
structural universal isobutane consists of the universal carbon four times over, the universal hydrogen
ten times over, and the dyadic universal bonded thirteen times over — just like the universal butane.
But these two structural universals are different, as witness the different molecules that instantiate
them. Even if our adverbial differences made sense, they would not solve our problem.”

Lewis clearly states that they have the same parts, and the same number of each parts, thus failing to
be different with the principles Kind and Number. Lewis states what the difference between BUTANE
and ISOBUTANE should be: “Where butane has a straight chain, isobutane branches”. Their difference
is thus based on how the parts are spatially arranged. Lewis examines whether this difference could be
accounted for mereologically, considering the BONDED universal as a part of the molecule universals.
But as he observes, considering as parts these relations between those entities does not solve the problem:
assuming that those universals have slots filled with BONDED, both BUTANE and ISOBUTANE would
have BONDED as a part the same number of times, i.e. 13 times. In fact, such a mereological approach
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does not fully capture the idea that the parts arrangement is relevant for the identity of the whole (Lewis
doesn’t draw this conclusion and simply dismisses the very idea of structural universals).

The identity of a whole is based on which entities are related with non-mereological relations such as
BONDED for molecule universals, and letter ordering for words. But for the same reason that motivates
Bennett to introduce slots to represent mereological relations, i.e. the lack of intrinsic contexts of atom
universals or letters (see Section 4.1.1), we observe that non-mereological relations like BONDED cannot
hold between fillers. Nevertheless, as previously explained, slots, being the occurring contexts for their
fillers within a whole, could instead be the relata of those non-mereological relations. This means that
our theory has all the potential required to formalise the general idea behind the third principle of Carrara
and Smid (2022).

In our theory, the generalised principle Kind could read “If two fillers do not have all the same parts,
they are distinct”, and the generalised principle Number could read “If two fillers have a different number
of slots filled by the same entity, they are distinct”. To be able to generalise the third principle Order, the
signature of our theory would need to be extended with non-mereological relations between slots.

Each domain needs its relevant non-mereological relations. An extension of our theory for the
molecule and atom universals with the BONDED relation requires an appropriate analysis of this re-
lation, which is not within the scope of this paper. For the order within informational entities, adapting
existing theories of mereology and order over intervals, such as Allen’s theory (1983), can be considered
for future work.

6.2. Slot Mereology, Particulars and Universals

We have used slot mereology to represent the structure of special entities, such as structural universals
and informational entities. The common property between these entities is the fact that they can have
the same entity as a part multiple times. However, we haven’t discussed the relevance of using slot
mereologies for entities that do not have this property, like material individuals. It might indeed be
considered as desirable to have a single theory for both universals and particulars. But one can wonder
whether it is feasible. We do not see any feature of the theory that would make impossible its use to
represent the structure of material individuals. However, an important advantage of slot mereologies is
to represent a context of appearance of an entity that is not intrinsically associated with this context,
as discussed in Section 4.1.1. This is not the case of material individuals, as such individuals can only
appear in one mereological context at a given time. Unless slots are reused for something else than
mereological purposes, for instance to represent roles, as suggested by Bennett, using slot mereologies
appears unnecessary for material individuals.

Nonetheless, slot mereologies enable the representation of the mereological structure of structural
universals. Now that mereological structures of universals and their instances are representable, it opens
up a field of investigation on the relations between the structures of universals and the structures of their
instances. This raises questions such as: is the structure of a universal really isomorphic to the structure
of its instances, as assumed by Lewis (1986) (see Section 3.1)? How could we ensure such isomorphism?
Further, how could we ensure some flexibility in this isomorphism, in particular to account for essential
and optional parts and for mereological change (e.g. if a cat loses its tail and has additional thumbs, does
it still instantiate the universal of CAT)? We could also consider questions related to counting parts: how
far does the number of parts of a universal constrain the number of parts of its instances?

This theory could also be linked to “silent change”, as presented by Grewe et al. (2016), in which an
assertion remains true at the universal level while the involved particulars may change: in this theory,
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a particular could keep the same slot structure while the fillers filling those slots might change. As
said above, we leave the complex issues of mereological change and of questioning the isomorphism
principle for further work.

7. Conclusion

In this paper we discussed Bennett’s slot mereology (Bennett, 2013), mainly illustrated on standard
examples of structural universals such as METHANE. We showed how Bennett’s theory tackles the prob-
lem of structural universals by splitting the parthood relation into two relations: Ps and F. However, we
also showed that this theory has counting problems: although it was intended to manage entities with the
same part multiple times, it generally leads to the wrong counting results. Bennett was aware that the
theory she proposed was a first sketch. And indeed, it raised some issues, such as the counting problems
and the difficulty to express some mereological principles, like supplementation, using slots.

In a previous paper, we proposed a theory that fixed Bennett’s counting problems, but which came
with its own problem. That theory added the claim that slots are inner elements of entities, i.e. they
cannot be shared or inherited. To compensate the removal of slot inheritance, we developed the copy-
slot mechanism, i.e. slots are copied as many times as needed to count correctly. However, our theory
presented an excessive amount of copies, which ultimately led to the wrong counting results.

In the present paper, we kept both ideas: Bennett’s idea of splitting parthood and our copy-of-inner-
elements idea. We first discussed the nature of slots: they have a single owner on which they are existen-
tially dependent and are either proper or improper. We then introduced the slot contextualisation relation
that relates together three slots. The use of this relation fixes the counting problems. However, we pushed
further by developing a mereological theory in which relations hold between slots. Therefore, we devel-
oped slot-(proper-)parthood, slot-overlap, slot-sum and slot-fusion. Finally, we were able to propose a
principle of slot strong supplementation that captures the idea of classical strong supplementation that
Bennett did not succeed to capture with hybrid relations between slots and fillers. Our theory can be ap-
plied to various domains: it offers a sound and richer representation framework for structural universals,
and it can be used to represent informational entities.

This work can be extended in several directions. In particular, relations between slots could help
capturing the structure of universals beyond mereology. The articulation between this theory and the one
developed by Barton et al. (2022) to account for the mereology of informational entities should also be
investigated.
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Appendix A. Overview of the Theory

This theory has three primitives: Ps, F and the contextualisation CoS.

Number Name Definition

BD1 Parthood P(a,b)≜ ∃s(Ps(s,b)∧F(a,s))
BD2 Proper Parthood PP(a,b)≜ P(a,b)∧¬P(b,a)
BD3 Overlap O(a,b)≜ ∃c(P(c,a)∧P(c,b))
BD4 Slot-overlap Os(a,b)≜ ∃s(Ps(s,a)∧Ps(s,b))
BD5 Proper Parthood Slot PPs(s,a)≜ Ps(s,a)∧¬F(a,s)

D1 Direct Slot DPs(s,a)≜ Ps(s,a)∧¬∃b(PP(b,a)∧Ps(s,b))
D2 Slot S(s)≜ ∃a(Ps(s,a))
D3 Same Owner SO(s, t)≜ ∃a(Ps(s,a)∧Ps(t,a))
D4 Same Filler SF(s, t)≜ ∃a(F(a,s)∧F(a, t))
D5 Improper Slot IPs(s,a)≜ Ps(s,a)∧F(a,s)
D6 Contextualisable by Cb(t,s)≜ ∃a(F(a,s)∧Ps(t,a))

D7 Direct Slot — With Contextualisation
DP’s(s,a)≜ Ps(s,a)∧∀t,u[s = t ◦u →
(∃b(IPs(t,b)))∨ (∃c(IPs(u,c)))]

D8 Part of Slot PoS(u,s)≜ ∃t(u = s◦ t)
D9 Proper Part of Slot PPoS(s, t)≜ PoS(s, t)∧ s ̸= t
D10 Overlap of Slot OoS(s, t)≜ ∃u(PoS(u,s)∧PoS(u, t))

D11 Sum with Parthood
SoS1(u,s, t)≜ PoS(s,u)∧PoS(t,u)∧
∀v(PoS(v,u)→ OoS(s,v)∨OoS(t,v))

D12 Sum with Overlap SoS2(u,s, t)≜ ∀v(OoS(u,v)↔ OoS(s,v)∨OoS(t,v))

DS13 Fusion of Slots
FoSφ (z)≜ ∀w(φ(w)→ PoS(w,z))∧∀v(PoS(v,z)→
∃w(φ(w)∧OoS(v,w)))
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Number Description Axiom

BA1 Only Slots are Filled F(a,s)→∃b(Ps(s,b))
BA2 Slots Cannot Fill F(a,s)→¬∃b(Ps(a,b))
BA3 Slots Don’t Have Slots Ps(s,a)→¬∃t(Ps(t,s))
BA4 Improper Parthood Slots ∃s(Ps(s,a))→∃t(Ps(t,a)∧F(a, t))
BA6 Mutual Occupancy is Identity (Ps(s,b)∧F(a,s))∧ (Ps(t,a)∧F(b, t))→ a = b
BA7 Single Occupancy Ps(s,a)→∃!b(F(b,s))

A1 Single Owner Ps(s,a)∧Ps(s,b)→ a = b
A2 Additional Improper Slot F(a,s)→∃t(IPs(t,a))
A3 Unique Improper Slot per Filler IPs(s,a)∧ IPs(t,a)→ s = t
A4 Domains of Contextualisation CoS(u,s, t)→ S(u)∧S(s)∧S(t)
A5 Contextualisable iff Contextualisation Exists Cb(t,s)→∃u(CoS(u,s, t))
A6 Unicity of Contextualisation CoS(u,s, t)∧CoS(v,s, t)→ u = v
A7 Injectivity to the Left v = s◦ t ∧ v = s◦u → t = u
A8 Injectivity to the Right v = t ◦ s∧ v = u◦ s∧∃a(IPs(s,a))→ t = u
A9 Contextualisation Associativity ∃w(v = s◦w∧w = t ◦u)↔∃x(v = x◦u∧ x = s◦ t)
A10 Slot Strong Supplementation S(s)∧S(t)→ (¬PoS(t,s)→∃u(PoS(u, t)∧¬OoS(u,s)))
A11 Sum Existence SO(s, t)→∃u(SoS1(u,s, t))

AS12 Fusion Existence ∃w(φ(w)∧∀v(φ(v)→ SO(v,w)))→∃s(FoSφ (s))
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Number Description Theorem/Lemma

BT8 Anti-Symmetry P(a,b)∧P(b,a)→ a = b
BT9 Conditional Reflexivity ∃s(Ps(s,a))→ P(a,a)
BT13 Slot Weak Supplementation PP(a,b)→∃s(Ps(s,b)∧¬Ps(s,a))

T1 Anti-Inheritance ∀a,b,s, t([a ̸= b∧Ps(s,b)∧F(a,s)∧Ps(t,a)]→¬Ps(t,b))
L2 Either Proper or Improper ∀s[S(s)→∃!a(PPs(s,a)⊕ IPs(s,a))]
L3 Proper Parts iff Proper Slots ∀a,b(PP(b,a)↔∃s(PPs(s,a)∧F(b,s)))
L4 General Conditional Reflexivity ∀a,s(Ps(s,a)∨F(a,s)→ P(a,a))
T5 Mutual Occupancy is Slot Identity ∀a,b,s, t(Ps(s,b)∧F(a,s)∧Ps(t,a)∧F(b, t)→ s = t)
T6 Symmetric Contextualisation is Slot Identity ∀s, t,u,v(u = s◦ t ∧ v = t ◦ s → s = t)
T7 Left-and-Right-Improper Contextualisation ∀s(∃a(IPs(s,a))↔ s = s◦ s)
T8 Improper Slot Is Right Neutral Element ∀a,s, t(IPs(s,a)∧F(a, t)→ t = t ◦ s)
T9 Improper Slot Is Left Neutral Element ∀a,s, t(IPs(s,a)∧Ps(t,a)→ t = s◦ t)

T10 Mutual Contextualisation is Identity ∀s, t,u,v(s = t ◦u∧ t = s◦ v → s = t)
T11 Contextualisation Same Owner ∀u,s, t(u = s◦ t → SO(u,s))
T12 Contextualisation Same Filler ∀u,s, t(u = s◦ t → SF(u, t))
T13 Parthood Transitivity ∀a,b,c(P(a,b)∧P(b,c)→ P(a,c))
T14 Right Neutral Element Is Improper Slot ∀s, t(t = t ◦ s →∃a(IPs(s,a)∧F(a, t)))
T15 Left Neutral Element Is Improper Slot ∀s, t(t = s◦ t →∃a(IPs(s,a)∧Ps(t,a)))

T16 Contextualisation Stable under Contextuali-
sation

∀s, t,u,s′, t ′(Cb(s,u)∧Cb(t,u)→
∀v(s = t ◦ v ↔ u◦ s = (u◦ t)◦ v))

L17 PoS Domain and Range ∀s, t(PoS(s, t)→ S(s)∧S(t))
T18 Conditional PoS Reflexivity ∀s(S(s)→ PoS(s,s))
T19 PoS Anti-Symmetry ∀s, t(PoS(s, t)∧PoS(t,s)→ s = t)
T20 PoS Transitivity ∀s, t,u(PoS(s, t)∧PoS(t,u)→ PoS(s,u))
T21 PoS Same Owner ∀s, t(PoS(s, t)→ SO(s, t))
T22 Slots iff Slot-Parts of Improper Slot ∀a,s(IPs(s,a)→∀t(Ps(t,a)↔ PoS(t,s)))
T23 Slot Structure and Filler Structure constrain

Each Other
∀a,b(∃s, t(PoS(t,s)∧F(a,s)∧F(b, t))↔ P(b,a))

T24 PoS Stable under Contextualisation
∀s, t,u(Cb(t,s)∧Cb(u,s)
→ (PoS(u, t)↔ PoS(s◦u,s◦ t)))

T25 PPoS Irreflexivity ∀s(¬PPoS(s,s))
T26 PPoS Asymmetry ∀s, t(PPoS(s, t)→¬PPoS(t,s))
T27 PPoS Transitivity ∀s, t,u(PPoS(s, t)∧PPoS(t,u)→ PPoS(s,u))
T28 PPoS Same Owner ∀s, t(PPoS(s, t)→ SO(s, t))
T29 Proper Slots iff Proper Parts Of Improper

Slot
∀a,s(IPs(s,a)→∀t(PPs(t,a)↔ PPoS(t,s)))

T30 Slot Structure and Filler Structure constrain
Each Other — Proper Part

∀a,b(∃s, t(PPoS(t,s)∧F(a,s)∧F(b, t))↔ PP(b,a))

T31 PPoS Stable under Contextualisation
∀s, t,u(Cb(t,s)∧Cb(u,s)
→ (PPoS(u, t)↔ PPoS(s◦u,s◦ t)))
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Number Description Theorem/Lemma

T32 Conditional OoS Reflexivity ∀s(S(s)→ OoS(s,s))
T33 OoS Symmetry ∀s, t(OoS(s, t)→ OoS(t,s))
T34 OoS Same Owner ∀s, t(OoS(s, t)→ SO(s, t))
L35 Overlap with Part Implies Overlap with

Whole
∀s, t,u(OoS(u, t)∧PoS(t,s)→ OoS(u,s))

L36 Slot-Overlap With Improper Slot ∀a,s, t(IPs(s,a)∧Ps(t,a)→ OoS(s, t))
L37 PoS Implies OoS ∀s, t(PoS(s, t)→ OoS(s, t))

T38 OoS Stable under Contextualisation
∀s, t,u(Cb(t,s)∧Cb(u,s)
→ (OoS(t,u)↔ OoS(s◦ t,s◦u)))

T39 Slot-Overlap Constrains Overlap between
Fillers

∀a,b,s, t(OoS(s, t)∧F(a,s)∧F(b, t)→ O(a,b))

T40 Slot Weak Supplementation ∀s, t(PPoS(s, t)→∃u(PoS(u, t)∧¬OoS(u,s))
T41 OoS-Extensionality ∀s, t[S(s)∧S(t)→ (∀u,OoS(s,u)↔ OoS(t,u))→ s = t]

T42 PPoS-Extensionality
∀s, t[∃u(PPoS(u,s)∨PPoS(u, t))
→ (∀u,PPoS(u,s)↔ PPoS(u, t))→ s = t]

L43 Domains of Sum ∀s, t,u(SoS1(u,s, t)→ S(s)∧S(t)∧S(u))
T44 SoS1 and SoS2 are Equivalent ∀s, t[SO(s, t)→∀u(SoS1(u,s, t)↔ SoS2(u,s, t))]
T45 Sum Same Owner ∀s, t,u[SoS1(u,s, t)→∃a(Ps(u,a)∧Ps(s,a)∧Ps(t,a))]
T46 Sum Unicity ∀s, t,u,v(SoS1(u,s, t)∧SoS1(v,s, t)→ u = v)
T47 Sum Idempotence ∀s(S(s)→ s+ s = s)
T48 Sum Commutativity ∀s, t(SO(s, t)→ s+ t = t + s)
L49 - ∀s, t(SO(s, t)→ PoS(s,s+ t))
L50 - ∀t,u[SO(t,u)→∀s(PoS(s, t)→ PoS(s, t +u))]
L51 - ∀s, t[SO(s, t)→∀u(PoS(s+ t,u)→ PoS(s,u))]
L52 - ∀s, t(PoS(s, t)↔ s+ t = t)

T53 Overlaps the Contextualised Sum iff Over-
laps one of the Contextualised Operands

∀s, t,u[∃a(F(a,s)∧Ps(t,a)∧Ps(u,a))
→∀v(OoS(v,s◦ (t +u))↔ OoS(v,s◦ t)∨OoS(v,s◦u))]

T54 Left Distributivity
∀s, t,u[∃a(F(a,s)∧Ps(t,a)∧Ps(u,a))
→ (s◦ (t +u) = s◦ t + s◦u)]

L55 Same Filler of Operand and Sum Implies
Identity

∀s, t(SF(s,s+ t)→ s = s+ t)

T56 Right Distributivity Is Trivial
∀s, t,u((s+ t)◦u = s+ t ◦u
∧s◦u = s◦u∧ t ◦u = t ◦u → s = t)

L57 Sum is Slot-Part if Operands are Slot-Parts ∀s, t,u(PoS(s,u)∧PoS(t,u)→ PoS(s+ t,u))
T58 Sum Associativity ∀s, t,u[SO(s, t)∧SO(t,u)→ (s+ t)+u = s+(t +u)]

T59 Sum Stable under Contextualisation
∀s, t,u,v(Cb(u,v)∧Cb(s,v)∧Cb(t,v)→
(u = s+ t ↔ (v◦u) = (v◦ s)+(v◦ t)))

TS60 Fusion Unicity ∃w(φ(w))→∀s, t(FoSφ (s)∧FoSφ (t)→ s = t)
T61 Sum is a special Case of Fusion ∀s, t,u(FoSw=s∨w=t(u)↔ SoS1(u,s, t))
T62 Improper Slot is Fusion of Filler’s Slots ∀a(∃s(Ps(s,a))→∀t(IPs(t,a)↔ FoSPs(w,a)(t)))

TS63 Fusion Stable under Contextualisation
∀s,s′, t(Cb(s, t)∧∀w(φ(w)→ Cb(w, t))→
(FoSφ (s)↔ FoS∃w′(w=t◦w′∧φ(w′))(t ◦ s))
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