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Abstract— One of the initial motivations for reservoir 

computing was the effort to understand how recurrent 

connectivity could explain observations of neural activity 
patterns in the prefrontal cortex of behaving primates.  

Recurrent connections provide for the projections of inputs into 

a high dimensional space.  In individual reservoir units, this 

results in activation patterns that display non-linear mixtures of 
inputs and abstract internal states, referred to as mixed 

selectivity, which has been identified as a key component of 

reservoir activity.  Interestingly it is also a key element in 
primate brain activity.  An equally prominent characteristic of 

primate brain activity is a temporal processing gradient, with 

fast input driven responses in sensory areas, and progressively 
prolonged time constants in increasingly associative cortical 

areas.  Recent research has explained a temporal integration 

hierarchy as a function of local connectivity within structured 

reservoirs.  As in the primate brain, areas that receive sensory 
input have fast integration.   Via local connections, this input 

driven activation flows through local connections to 

progressively distant areas, thus physically implementing the 
temporal integration gradient.  In the current research we test 

the hypothesis that this physical hierarchy will also produce a 

gradient in mixed selectivity in the structured reservoirs.  
Indeed, simulations demonstrate that reservoirs constrained by 

a connection distance rule produce a gradient of mixed 

selectivity, with mixed selectivity progressively increasing from 

input-driven to more distant associative areas.  This allows us to 
predict that the same kind of gradient for mixed selectivity 

should be observed in the human cortex.  In order to test this 

prediction, we exploited human brain activation data that 
included a form of multidimensional narrative structure that 

was well suited for characterizing mixed selectivity.  Applying 

the same analysis from the reservoir analysis, we observe the 
presence of mixed selectivity in human cortex, and evidence for 

a gradient from lower-level sensorimotor areas, to higher level 

integrative areas.  This research contributes to the 

characterization of the principals of computation in 

anatomically structured reservoirs and the human brain.   

Keywords—reservoir computing, exponential distance rule, 

EDR, temporal hierarchy, mixed selectivity  

I. INTRODUCTION  

The representation of extended spatiotemporal behavior 

constitutes a significant challenge for nervous systems [1].  It 

has long been known that the introduction of recurrent 

connections into neural networks provides a robust 

mechanism for representing spatiotemporal structure [2].  

Technical complexities related to credit assignment over 

multiple iterations renders learning in recurrent connections 

difficult [3].  A powerful method to simplify this complexity 

is to cut off the temporal horizon of recurrence, in a simple 

recurrent network [4].  An alternative simplification, which 

importantly places no cutoff on the depth of recurrence, is to 

keep fixed values for the recurrent connection weights, thus 

fully exploiting the dynamical properties of the network 

which can be compared to those in the primate brain [5].  

Indeed, in this early manifestation of reservoir computing, the 

use of fixed recurrent connections was implemented towards 

the objective of explaining the origin of complex neuronal 

responses that had been observed in frontal cortex of the 

behaving primate [6].  This was one of the first manifestations 

of mixed selectivity, now known to be a key mechanism for 

high dimensional neural representations for flexible 

cognition [7]. 

 

Fig. 1. Temporal integration hierarchy in structured reservoir computing.  

W_in - Input matrix, which projects input to the first 300 of the 1000 
reservoir units.  W matrix- the reserovir connectivity matrix, with weights 

established based on an exponential distance rule (EDR) where connection 
probability falls exponentially with distance.  Weights are predominantly 
along the diagonal, corresponding to predomnance of conections to close 

neighbors.  Hierarcy – integration time constants measuring the convergence 
time of neurons in narrative integration task.  Each box represents the mean 

from a group of 100 successive neurons looking at neurons 300-1000 which 
do not receive direct input.  Note the gradient of increase in integration time 
constants for neurons that are successively distant from the input.  Modified 

from [8] with permission. 

The current research pursues this axis of investigation in 

reservoir computing, which is to identify parallels between 

dynamic processing in the reservoir network itself, and 

analogous processing in neurons of living brains.  Here we 

focus on dynamic properties derived from the connectivity 

structure of the reservoir as illustrated in Figure 1.  In this 



 

 

context, over the last decade, increasing research has 

characterized a temporal processing hierarchy in human 

neural processing of narrative (e.g., [9-12]).  Such research 

has revealed that the hierarchical temporal event structure of 

narrative corresponds to a form of anatomical or structural 

hierarchy in the human brain.  Fine grained temporal event 

structure tends to be processed in posterior and temporal 

input-driven areas of the brain, including visual and auditory 

cortices, while more integrated and temporally extended 

narrative event structure is processed in progressively more 

frontal and associative brain regions including the medial 

prefrontal cortex and angular gyrus (e.g., [9-12]).   Such 

observations about temporal processing of narrative structure 

provide predictions and challenges for reservoir computing 

models.  In this context, [13] demonstrated how a reservoir 

network represented narrative structure, including a 

continuous distribution of narrative integration time 

constants in the recurrent units.  The units were distributed 

throughout the network, and the gradient was revealed by 

sorting the neurons by their integration time constant. 

In order to produce a gradient of temporal processing 

inherent to the network, the recurrent connection matrix was 

structured based on an exponential distance rule, where the 

probability of neurons being connected decreased 

exponentially with their distance [8].  This led to a 

hierarchical gradient of narrative integration time constants 

observed with increasing distance from the input neurons (see 

Fig. 1).  This is elaborated in section IB.  The current research 

will examine whether there is a relation between mixed 

selectivity in the reservoir and cortex (IA) and this temporal 

processing gradient (IB), and test predictions about the 

presence of such a mixed selectivity gradient in the human 

brain. 

A. Mixed selectivity in cortex and reservoir computing 

Reservoir computing is a powerful tool for modeling 

complex spatiotemporal structure e.g. [14], but it is an equally 

if not more powerful tool for modeling the neural activity in 

the cerebral cortex of behaving primates [15, 16].  This is 

because one of the principal defining characteristics of both 

reservoirs and primate cortex [17] is the abundance of local 

recurrent connections.  Recurrent connections are the 

physical substrate that projects the inputs into a high 

dimensional representational space.  If one were to examine 

the activation patterns of individual reservoir neurons during 

a sequence processing task, these patterns would be difficult 

to interpret, precisely because they encode these high 

dimension mixtures of task related variables.  Interestingly, 

the same is true when examining the activity of individual 

neurons in the cortex of primates that perform sequencing 

tasks.  Barone and Joseph [6] trained monkeys to visually 

observe and then physically reproduce each of six possible 

three-element sequences made up of targets left, right and up 

in a spatial array.  They recorded neurons near the cortical 

frontal eye fields and observed an interesting high 

dimensional mixture of activity related to spatial location, 

and sequential rank of targets that the moneys saw and then 

touched.  An early instantiation of reservoir computing in [5] 

demonstrated that these same higher dimensional mixtures of 

space and sequential order were found in the neurons of the 

recurrent neural network trained to perform the same spatial 

sequencing task. 

In [16] such high dimensional neural activity was referred 

to as mixed selectivity.  These authors compared reservoir 

neurons to primate neural recordings, and concluded that 

mixed selectivity is a necessary characteristic of neural 

encoding for cognitive functions that require high 

dimensional representations.  More recently [15] compared 

reservoir units and behaving primates in an search-repeat task 

that required searching amongst 4 spatial targets to find the 

rewarded one, and then repeating this reward until the shift 

of reward to a new target.  This allowed analysis of variance 

(ANOVA) attributable to the factors 1) spatial target, 2) 

search vs repeat mode.  Interestingly, mixed selectivity was 

demonstrated both in the frontal cortex of animals and in the 

reservoir as a significant interaction between these two 

factors, e.g., neurons that prefer the upper left target, but only 

in the repeat phase.  Given this characterization of mixed 

selectivity we consider the temporal hierarchy in more detail. 

 

B. The temporal hierarchy in cortex and reservoirs 

  
A temporal hierarchy was recently characterized for 

narrative processing in the human cortex using fMRI [10].  In 
order to measure a narrative integration time constant, two 
groups of subjects were presented with an intact and 
scrambled narrative, respectively.  These stimuli to the two 
groups were organized such that at one point in time, the 
groups began to receive the same input sentence, whereas 
previously they had been receiving two different sentences.  
At this transition from different to same inputs, the activations 
of brain regions in the two groups began to gradually converge 
to a common, aligned, pattern of activity.  The time constant 
of this narrative integration revealed a hierarchical 
organization across the cortex  [10]. 

In order to simulate this temporal processing hierarchy, as 
illustrated in Figure 1,[8] used a local connectivity rule for the 
reservoir and produced a gradient of narrative integration time 
constants across the reservoir neurons.   In order to measure 
this integration time constant, two identical reservoirs were 
presented with a sequence of 100-element word embeddings 
generated with wikipedia2vec [18], using transcriptions of  
from the narrative alignment task of [10].  Inputs to the two 
reservoirs were organized such that at one point in time, the 
networks began to receive the same input sequence, whereas 
previously they had been receiving two different input 
sequences.  As observed in the human brain [10], at this 
transition from different to same inputs, the activations of the 
reservoir units in the two identical reservoirs began to 
gradually converge to a common, aligned, pattern of activity.  
This is the alignment or integration time.  As illustrated in 
Figure 1, across sets of reservoir neurons grouped by index 
(groups of 100 from 0 to 999), there is a progressive increase 
in the integration time constant.  This is the temporal 
processing hierarchy that naturally results from the local 
connectivity. 

Chaudhuri [19] described similar results in recurrent 
network models in order to characterize the relation between 
network architecture and temporal processing.  He used an 
exponential distance rule to constrain connectivity and 
observed a progressive increase in the time constant for 
response along the resulting hierarchy.  This ability to create 
a temporal processing hierarchy, and the presence of mixed 



 

 

selectivity provides a context to test new hypotheses and 
predictions. 

C. Current research hypotheses,objectives & contributions 

Previous research has thus revealed two inherent 

properties of reservoir type networks and primate cortex.  The 

first is the prevalence of mixed selectivity responses [15, 16], 

and the second is the prevalence of temporal processing 

hierarchies e.g., [8-10].   In the temporal processing 

hierarchies, as one gets farther from the input driven neurons, 

activation becomes increasingly dominated by recurrent 

inputs, and the temporal integration time constants become 

increasingly elevated [8].  The contribution of this research is 

to elaborate and confirm an hypothesis and predictions 

regarding this processing gradient, and mixed selectivity.  

Recall that mixed selectivity is associated with the high 

dimensional projection created by recurrent connections.  In 

this context we hypothesize the degree of mixed selectivity 

will vary as a function of the ratio of recurrent vs. input driven 

activity that drives a neuron.  This allows us to predict that in 

the structured reservoir we should observe a gradient of 

increasing mixed selectivity, analogous to the gradient of 

integration time constants.  If this is confirmed, then we can 

further predict that we should see a similar gradient of mixed 

selectivity in the human cortex. 
 

II. MODELING MIXED SELECTIVITY IN THE STRUCTURED 

RESERVOIR 

We test the prediction of a gradient of mixed selectivity 

in the structured reservoir, using a reservoir computing 

framework for narrative where word embeddings are proxies 

for words, thus allowing narrative input as illustrated in Fig. 

2.  This is done using the structured reservoir from [8] which 

produces the observed temporal processing gradient.   We 

then test mixed selectivity in the neurons of the structured 

reservoir in order to determine if indeed there is a gradient for 

this effect as predicted. 

 

 

Fig. 2. Narrative Integration Reservoir.  Successive words in the input 
narrative are used to retreive the corresponding word embeddings from 

Wikipedia2vec, a word2vec model trained on the 2018 Wikipedia corpus.  
Successive word vectores are input to the 1000 unit reservoir model which 
performs a temporal-spatial transformation of temporal seqeunce of word 

inputs into a trajectory of spatial activation vectors. (From [8] with 
permission). 

A. Structured narrative integration reservoir 

The structured reservoir architecture is illustrated in Fig. 
2.  Our model is based on a classic echo state network with 
leaky integrator tanh units.  A set of recurrently connected 
nodes – the reservoir – is stimulated by inputs.  This produces 
a dynamic reverberation of activation throughout the reservoir 
as information propagates through the recurrent connections. 

The basic discrete-time, tanh-unit echo state network with 

N reservoir units and K inputs is characterized by the state 

update equation: 

x(t+1) = (1−α)x(t)+α·f(Wx(t) + Winu(t) )    

where x(n) is the N-dimensional reservoir state, f is the tanh 
function, W is the N×N reservoir weight matrix, Win is the 
N×K input weight matrix, u(n) is the K dimensional input 
signal, α is the leaking rate.  The matrix elements of W and 
Win are drawn from a random distribution. 

The reservoir was instantiated using easyesn, a python 
library for recurrent neural networks using echo state 
networks (https://pypi.org/project/easyesn/) [20].   We used a 
reservoir of 1000 neurons, with input and output dimensions 
of 100.  The W and W_in matrices are initialized with uniform 
distribution of values from -0.5 to 0.5, with 20% non-zero 
connections.  The leak rate was 0.2.  The reservoir is relatively 
robust to changes in these values, as long as the reservoir 
dynamics are neither diverging nor collapsing. 

Fig. 3. Pseudocode for creating the structured weight matrix for the 
recurrent reservoir connections. 

The structured reservoir was then implemented using an 

exponential distance rule (EDR [21]) to constrain weights in 

the reservoir W matrix, described by the pseudo-code in 

Fig.3.  This produces a connectivity matrix that is biased 

along the diagonal, thus favoring local connections, 

visualized as W in Fig 1, along with the W_in matrix.  As 

described above, when tested with the narrative integration 

protocol from [10], a gradient of temporal processing time 

constants was observed, for neurons with increasing indices 

in [0,999], where inputs were provided only to neurons in 

[0,299].  This can be observed in Figure 1, Hierarchy. 
    

B. Novel Prediction - Mixed selectivity gradient 

The novel element in the current research is to now 

examine mixed selectivity in the context of this gradient.  We 

adopt the strategy from [15] to evaluate mixed selectivity in 

computing elements, as the presence of an interaction 

between two factors in an ANOVA analysis.  ANOVA 

(Analysis of Variance) is statistical method that involves the 

simultaneous analysis of the effects of two or more 

independent variables (factors) on a dependent variable.  For 

example, in the search-repeat task, factors would be spatial 

location and search vs repeat mode and neural activation is 

the dependent variable.  An interaction effect refers to a 

situation where the combined effect of two or more 

independent variables on the dependent variable is not simply 

the sum of their individual effects. For example, a neuron 

whose response to a particular spatial location changes 

gradient= 0.00075;gain = 1.75;breadth=600;expon=3 

for i in 1 to 1000: 
  for j in 1 to 1000: 
     if abs(i-j) <= breadth: 

esn.W[i,j] =  
(breadth-abs(i-j)/breadth)**expon* 
esn.W[i,j]* (1 + i * gradient)*gain 

else: esn.W[I,j]=0 



 

 

depending on whether the animal/model is in search vs repeat 

mode displays an interaction effect, and thus, mixed 

selectivity [15].   

Because we will potentially compare the reservoir to 

human data, we seek a task where we have human data, and 

which includes multiple behavioral factors.  Multiple factors 

are necessary in order to measure the ANOVA interaction 

between factors, so as to have a measure for mixed 

selectivity.  Such a task was developed by Baldassano and 

colleagues [9].  In the fMRI scanner, subjects were exposed 

to narratives in either film or audio mode.  The narratives 

were either about a restaurant or an airport schema, and each 

narrative was made up of four events.  There were thus 3 

factors – modality (film, audio), schema (restaurant, airport), 

and event (enter, formalities, transition, realization).  

In order to create input for the reservoir, we took 

transcripts of the narratives from [9] which were provided in 

a text format.  For each narrative transcript, for each word, 

we generated a 100d vector using wikipedia2vec.  This 

yielded an Nx100 matrix where N was the number of words 

in the narrative.  These embedding narratives were then 

provided as input to the structured reservoirs.  In order to have 

sufficient data samples for our statistical analysis, each 

reservoir instance was exposed to 4 narratives, corresponding 

to two airport schemas and two restaurant schemas.  We 

sampled data at two distinct timepoints in each of the four 

events in each narrative.  Again, each reservoir is exposed to 

4 different narratives.  This yields 4 (narrative) x 4 (event) x 

2 (samples) = 32 samples for each neuron in a reservoir.  

These data are then analysed in an ANOVA with the factors 

modality, schema and event.  We ignore the modality effect 

as there is no distinction for the reservoir between film and 

audio, as all narratives are coded in terms of word embedding 

sequences.   A neuron has mixed selectivity when p < 0.05 

for the Schema*Event interaction. 

 

 

Fig. 4. Example of mixed selectivity in a reservoir neuron.  The neuron has 

an increased activation for restaurant vs airport for events A and D, and the 
opposite profile for events B and C.  This interaction between the schem and 
event factors is characteristic of mixed selectivity. 

Figure 4 displays an example of a reservoir unit that 

displays mixed selectivity.  We can observe that there is a 

difference between the response level for the airport (green) 

vs restaurant (yellow) schemas, and that this varies according 

to the four successive events in the narrative.  To characterize 

the possible mixed selectivity hierarchy, we group reservoir 

neurons into sets of 100 continuous indices over the range 

[0,999] thus yielding 10 sets (corresponding to brain regions) 

of 100 contiguous neurons.  We can now quantify for each 

set of 100 neurons the percentage that are sensitive to schema 

and event, and to the interaction between them, which is the 

reflection of mixed selectivity. 
Figure 5 illustrates the percentage of neurons with mixed 

selectivity in each of these 10 successive groups of 100 
neurons.  There we observe that indeed, there is a progressive 
increase in the percentage of mixed selectivity units.  Units 
that are input driven (the first three sets of 100 units), and 
proximal to these units have relatively low mixed selectivity.  
In contrast, for units that are farthest from the input, there is a 
high percentage of mixed selectivity.   Finally, there is a 
relatively smooth continuum or gradient of mixed selectivity 
between these sets of units that are close to input driven and 
farthest from input driven, respectively.  This can be seen in 
Fig. 5. 

 

Fig. 5. Mixed selectivity hierarchy in the structured reservoir.  Each plot  
represents the percentage of neurons with mixed selectivity in the group of 

100 neurons.  Area 0-99 corresponds to early, input driven neurons, 400-499 
intermdicate, and 800-899 far from input driven, and thus high influence by 

recurrent connections.  Mixed selectivity progressivly increases along this 
gradient in the structured reservoir.   

As a control test, we wish to determine if the model is 

sensitive to the effect of schema.  That is, does it distinguish 

narratives about restaurants from those about airports.  This 

information is coded directly in the word embeddings, and so 

should be available all along the processing hierarchy.  In 

Figure 6 we display the percentage of neurons in each area 

the make the schema distinction (in blue) and the 

schema*event interaction (in white).  There we see 

confirmation that indeed, the schema distinction is made, 

even in the early sensory driven areas.  Interestingly the 

mixed selectivity effect is more sensitive to the anatomical 

gradient.   

This corresponds with our expectations:  the reservoir 

should display sensitivity to information that is directly coded 

in the input, throughout the reservoir.  In contrast, 

information that requires the high dimensional projection, 

that is, the interaction between schema and event, should only 

become available as the recurrent connectivity dominates.  

This is revealed as the stronger gradient for the mixed 

selectivity as displayed in Figure 6. 

 



 

 

 

Fig. 6. Mixed selectivity hierarchy (white boxes) in the structured reservoir 
constrasted with the narrative schema effect (in blue).  The narrative schema 

corresponds to the airport vs restaurant scenarios.  This information is 
directly present in the input embeddings which will tend to have situation-
specific kinds of words.  Thus we expect the schema effect to already be 

present in the input driven areas, and to have a gradient slope of less 
magnitude than that for the mixed selectivity interaction.  

To more clearly characterize the difference between 

input-driven vs higher dimensional activation across the 

network, we subtract the mixed selectivity response from the 

main effect for the schema response.  This difference, for 

each of the 10 areas is displayed in Figure 7.  There indeed 

we observe a clear transition between sensitivity to 

information provided directly in the input, vs information that 

must be generated via projections of the input into 

successively higher dimensional representations. 
 

 

Fig. 7. Difference between percentage of neurons with schema effect 

(which represents an input driven response) and schema * event interaction 
effect (which represents a high dimensional projection that relies on the 

recurrence effect).  Input driven responess dominate in the lower areas and 
are then dominated by the interaction effect in areas that are farther from the 
input, and rely more on recurrent inputs. 

For completeness we verified that the gradient effect was 
indeed due to the structured connectivity.  We performed the 
same experiment with 10 instances of the reservoir with 
uniform connectivity within the reservoir, and an input matrix 
that projects uniformly to the reservoir units in [0,999].  The 
ANOVA reveals a good percentage of units with schema 
responses and with schema*event interactions, throughout the 
network.  This is illustrated in Figure. 8 

 

Fig. 8. Schema and schema*event effects in a reservoir with standard  
uniform input and W matrices, i.e. with no EDR structure.  The flat 

distribution of these response percentages across the 10 areas demonstrates 
that the gradient effect is due to the local connectivity in the structured 
reservoir. 

 

Fig. 9. Shortcut pathway from input driven areas reduces mixed selectivity 
in distant target area.  Inset shows W matrix with short that projects from 

100-199 to 800-899.  Gradient of response is interuppted for target neurons. 

If indeed mixed selectivity increases as recurrent 

activations dominate input driven activations, then a 

connection shortcut, from input driven areas to distance areas 

should impact mixed selectivity in the distant areas, in the 

same way that these shortcuts can reduce the integration time 

constant [8].  Indeed, this effect is observed in Figure 9.  The 

shortcut projection from early to late areas produced a 

reduction in mixed selectivity (and the schema effect) in the 

late area. 

C. Summary of reservoir analysis and predictions 

These results demonstrate that an exponential distance 

rule connectivity creates a structured reservoir which displays 

a gradient of mixed selectivity, from lower-level input driven 

units to higher level associative units.  Given the evidence 

that such a structural hierarchy exists in the human brain [9-

12], we can predict that a corresponding gradient for mixed 

selectivity should likewise be observed in the human cortex. 

III. TESTING PREDICTION OF MIXED SELECTIVITY GRADIENT 

IN THE HUMAN CORTEX 

 
The observation that the same local connectivity structure 

in the reservoir produces both a temporal integration gradient 



 

 

and a mixed selectivity gradient allows us to hypothesize that 
these two gradient effects are due to the same connectivity 
gradient.  This hypothesis predicts that we should observe in 
human cortex a mixed selectivity gradient, similar to the 
temporal integration gradient.  In order to test this prediction 
we can now apply the same method for characterizing mixed 
selectivity to cortical activity in the human brain, that we have 
used here in the reservoir. 

 

A. Mixed selectivity in human cortex 

In order to expose mixed selectivity in human neural 
activity, we will exploit the data from Baldassano which has 
multiple factors, and can thus be analysed to find an 
interaction between these factors.  These authors [9] recorded 
fMRI data from subjects as they listened to audio or watched 
film narratives/stories. Each subject was exposed to 16 stories 
(4 runs, with 4 stories per run), thus covering all combinations 
of modality and schema.  We analyzed data from 63 runs taken 
from 17 subjects.  We segmented the fMRI data into 100 
regions of interest (ROI) using the Schaefer parcellation [22].  
As in the reservoir analysis, for each voxel in each ROI we 
sample the fMRI activation at two timepoints in each event of 
each narrative in each of the 4 narratives per run.  We then 
perform the ANOVA and evaluate mixed selectivity via the 
schema * event interaction.  Figure 10 illustrates responses in 
three voxels in left orbitofrontal cortex ROI. 

 

Fig. 10. Illustration of main effects for Schema & Event, and mixed 
selectivity in human fMRI data. These data are from three voxels/neurons of 

the ROI LH_Limbic_OFC_1. Schema effect with different activation levels 
for restaurant vs airport.  Event effect with different activation levels for 4 

events.  Schema * Event interaction – opposing effect on event as a function 
of schema.  This statistical interaction between the schema and event factors 
is a signature of mixed selectivity. 

In Figure 10 we see three voxels that have significant 
effects for schema, event, and most importantly, an interaction 
between schema and event.  The response for restaurant 
(green) is greater that airport (yellow), but only for the first 
event.  This interaction is characteristic of mixed selectivity. 

B. Main effects for modality 

Before proceeding to a more detailed analysis, in order to 
validate our methodology, including the fMRI data 
segmentation and ANOVA testing, we examined the effect for 
modality, which compares brain activation for auditory vs 
film narratives.  The distinction between the two is that both 
the auditory and film conditions have sound input, while only 
the film additionally has visual input.  Thus, we can expect 
that brain areas that distinguish between these two conditions 
will include the visual areas, in the posterior aspect of the 
brain.  Figure 11 displays areas that make the modality 

distinction in red, and areas that make the schema * event 
interaction in blue. 

Indeed, we observe that the modality distinction is made 
primarily in posterior cortical areas related to visual 
processing.  In contrast, the mixed selectivity effects are most 
predominant in temporal and frontal areas that are considered 
to be associative rather than primary sensorimotor or input 
driven areas.   

 

 

Fig. 11. Visualization on an expanded brain surface of areas that make the 

modality distinction in red, and the schema * event in blue.  As predicted, 
the posterior brain regions involved in visual processing are sensitive to the 
narrative input modality (film vs audio) distinction.  In contrast, higher order 

cortical areas in the limbic and default mode networks are involved in the 
schema * event processing, thus revealing mixed selectivity in these areas. 

C. Mixed selectivity gradient 

 
Now that the presence of mixed selectivity has been 

established, we can refine the analysis in order to determine if 
this effect is manifested in a form of gradient or hierarchy, that 
could be analogous to the temporal processing hierarchy.  
Within the Schaefer parcellation, there are 100 brain regions 
in the left and right hemisphere, allocated to 7 networks, 
making 14 networks considering the left and right hemisphere.  
Each of the 100 brain regions is made up of several hundred 
to thousands of voxels.  We can thus calculate the percent of 
mixed selectivity for each of the 100 ROIs. 

 

 

Fig. 12. Gradient of mixed selectivity in human cortex.  Here we sort the 100 
ROIs by their percentage of voxels displaying mixed selectivity.  We observe 

a gradient of responses, with lowest levels in visual, attention and control 
areas, proceeding along the gradient to highest levels in the default and 
limbic networks. 

Figure 12 illustrates the gradient of mixed selectivity over 
the 100 ROIs.  In order to render this more compact, we can 
combine the ROIs into the 14 functional networks, and display 
the percentages of mixed selectivity in this more compact 
format.  This is illustrated in Figure 13.  There we see more 
clearly, lower-level networks including the somato-motor, 



 

 

ventral attention and visual systems have lower mixed 
selectivity while the more high-level networks including the 
dorsal attention, default mode and limbic networks display 
higher mixed selectivity, along a continuum. 

 

 

Fig. 13. Gradient of mixed selectivity in human cortex.  Here we sort 14 

functional networks by their percentage of voxels displaying mixed 
selectivity.  We observe a gradient of responses, with lowest levels in visual, 
attentional and control areas, proceeding along the gradient to highest levels 

in the default and limbic networks. 

 

IV. INTERPRETATION AND DISCUSSION 

Mixed selectivity in recurrent networks has been 

identified as a mechanism that increases the dimensionality 

of neural representations [7].  This corresponds to a strategy 

which is to employ a rich high dimensional structure that can 

accommodate all possible combinations of task variables, and 

thus remain adaptive over the lifespan.  This is the solution 

implemented in the recurrent connectivity of reservoir type 

networks, and manifest by the presence of mixed selectivity 

[7].  The current research contributes to the growing evidence 

that cortex has reservoir-like properties including this mixed 

selectivity strategy. 

Neuroscience and computational neuroscience research 

continue to more clearly characterize the computational 

foundations of cortical processing. It is now clear that mixed 

selectivity has been identified as a characteristic feature of 

reservoir networks and cognitive processing in primate 

cortical networks [15, 16].  Likewise, the existence of 

hierarchies or gradients in temporal processing have been 

identified in cortex [9-12] and in neurocomputational models, 

e.g. [19] 

Conjuncture of mixed selectivity and temporal processing 

hierarchies generated the following question:  will we see a 

gradient or hierarchy for the processing of mixed selectivity, 

similar to that observed for temporal integration?  To address 

this question, we first examined mixed selectivity in a 

structured reservoir network.  [8] used an exponential 

distance rule which produces a connectivity matrix that is 

biased towards local connections.  These researchers 

observed that this connectivity pattern produces a hierarchy 

of narrative integration time constants, similar to what was 

observed in [10].  In the current research we used this same 

connectivity architecture, and investigated mixed selectivity.  

We observe that indeed, there is a gradient of mixed 

selectivity such that input driven neurons have low mixed 

selectivity, and neurons that are farther from the input, and 

that are progressively dominated by associative inputs (i.e., 

activations that are not directly input driven) display 

progressively increasing mixed selectivity.  Interestingly we 

also observed that shortcut connections, which produced 

discontinuities in the temporal integration hierarchy [8], 

produced a discontinuity in the mixed selectivity hierarchy. 

The observation of this mixed selectivity gradient in the 

structured reservoir generated a hypothesis and 

corresponding prediction to be tested in the human brain.  The 

hypothesis is that in the human cortex, the connectivity 

gradient should produce a similar gradient of mixed 

selectivity processing as that which we see in the structured 

reservoir.  The prediction is that if we measure mixed 

selectivity across the cortex, we should observe a similar 

gradient of mixed selectivity.  Indeed, fMRI data from a 

narrative task that had multiple dimensions indeed displayed 

a hierarchy of mixed selectivity.  It is likely that the white 

matter connectivity in the human brain also impacts the 

distribution of mixed selectivity, producing discontinuities as 

observed for narrative integration. 

It is worth noting that in these experiments, the input to 

the reservoir is made up of sequences of high dimensional 

(d=100) word embedding vectors which capture the 

semantics of the words in narratives.  We thus observed that 

the schema effect (i.e., sensitivity to the difference between 

restaurant vs airport narratives) is present even in the input 

driven neurons.  The observation that generating mixed 

selectivity responses takes place preferentially in neurons that 

are isolated from direct inputs is of interest for future research 

in reservoir computing.  For example, can this type of 

architecture be exploited in language comprehension at 

different hierarchical levels, furthering the link between 

computational neuroscience and deep language models [23]. 

This research represents a fruitful interaction between 

state-of-the-art human neuroscience, and the development of 

novel variants on the canonical reservoir computing 

framework, which may open new computational 

perspectives.  There is a growing trend in human 

neuroscience to use naturalistic narrative stimuli (films and 

auditory narratives) which generate data over extended time 

periods (5-25 minutes) and which contain rich structure at 

multiple time scales.  Reservoirs are particularly well suited 

for modeling complex dynamics over extended time, and so 

there is a rich space for continued interaction in this context.   

This research leaves many questions unanswered.  Do the 

temporal processing hierarchy and the mixed selectivity 

hierarchy perfectly overlap, in the structured reservoirs, and 

in the human cortex?  How is mixed selectivity effected by 

white matter connectivity that allows shortcuts from input 

driven areas directly to anatomically distant frontal areas?  

Can this structural organization be exploited to impact 

performance on artificial language comprehension?  Future 

research will address these questions. 
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