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Figure 1: Our method automatically generates a virtual character’s gaze animation (eye and head movement), making it look aware of its
environment. Our visual attention model considers the character’s path, the slope of the terrain, and the salience of shapes and movements
of surrounding elements.

Abstract
Animating gaze behavior is crucial for creating believable virtual characters, providing insights into their perception and in-
teraction with the environment. In this paper, we present an efficient yet natural-looking gaze animation model applicable to
real-time walking characters exploring natural environments. We address the challenge of dynamic gaze adaptation by combin-
ing findings from neuroscience with a data-driven saliency model. Specifically, our model determines gaze focus by considering
the character’s locomotion, environment stimuli, and terrain conditions. Our model is compatible with both automatic navi-
gation through pre-defined character trajectories and user-guided interactive locomotion, and can be configured according to
the desired degree of visual exploration of the environment. Our perceptual evaluation shows that our solution significantly
improves the state-of-the-art saliency-based gaze animation with respect to the character’s apparent awareness of the environ-
ment, the naturalness of the motion, and the elements to which it pays attention.

CCS Concepts
• Computing methodologies → Computer graphics; Animation; Procedural animation;

1. Introduction

Plausible gaze behavior, including eye and head motion, is cru-
cial for creating believable animated virtual characters, providing
clues about the character’s perception and awareness of its environ-
ment [Bad97,CAC∗22]. While visual attention and gaze animation
have been extensively explored for conversational scenarios where
virtual agents have to engage with the user or interact with each
other [RPA∗15, DOA22], very few work have focused on simulat-
ing visual attention for individual characters walking in an open
space environment. Still, these scenarios are critical in video game

applications and real-time simulations, where characters exploring
and engaging in a dynamic environment are commonly met. The
absence of an effective and general approach to manage gaze ani-
mation often leads to static heads and eyes staring blankly ahead.
Thus, the characters do not seem to pay attention to their surround-
ings. In particular, this static behavior critically lacks realism when
moving objects are present in the environment.

In this work, we aim to provide a natural-looking gaze anima-
tion model, able to simulate a dynamic character’s visual attention
and to automatically adapt its gaze behavior to the environment,
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in the context of real-time locomotion and exploration-looking be-
havior. We specifically consider the case of an open natural envi-
ronment that highlights such conditions and provides a variety of
visual stimuli ranging from colorful vegetation to moving animals,
with varying terrain slopes requiring the character’s attention. To
remain useful in contexts such as games or VR applications, our
approach is compatible with both automatic navigation following a
pre-defined path and interactive locomotion guided by a user.

Handling gaze animation in such a context is challenging for the
following reasons. On the one hand, neuroscience studies can de-
scribe human gaze behavior rules in specific test-case scenarios,
including locomotion [TGCL20]; however, generalizing the latter
to arbitrary open worlds where competing stimuli are acting is im-
practical as it would require defining a prohibitive number of ded-
icated rules to react to each possible element in the environment.
On the other hand, data-driven saliency models can accurately pre-
dict visual attention related to shapes and colors [KSDG20] but fail
to capture cognitive aspects of egocentric motion perception that
need to take into account both peripheral vision and proprioceptive
awareness of the viewer’s own motion [KB23].

To address these limitations, we propose a holistic approach,
coupling behavioral models for high-level cognitive decision and
motion perception using a generic image-based saliency represen-
tation of the environment. We relied on the analysis of neuroscience
literature to extract relevant individual behavioral models and pa-
rameters. We then built, for the first time, a combination of such
behaviors within a single unified representation able to adapt the
character’s gaze to (a) its locomotion, integrating its curved path
and the terrain slope condition, (b) the environment stimuli regard-
ing both image-based and motion-based saliency. In addition, the
sensibility to both of these states can be parameterized at a high
level, enabling our method to seamlessly transition between char-
acters carefully exploring a new environment and paying high at-
tention to every detail, up to those traveling a familiar route and
mostly focusing on their path.

Our technical contributions are twofold:
(i) An effective method, leveraging studies in motion perception,
for estimating the saliency of moving objects (Sec. 4);
(ii) An attention decision system built principally from drift diffu-
sion models (DDM) in neuroscience [RM08] to determine whether
the walking agent should focus on an external object or on its path,
based on current environmental conditions and its internal memory
(Sec. 5);

After applying our model to various natural environments and
scenarios, we validate the benefits of our approach via a user study
(Sec. 6). This confirms that the generated gaze animation, improves
the feeling of the character’s awareness to its environment com-
pared to the state of the art.

2. Related Work

Gaze animation requires two elements. First, detecting the visible
environment using synthetic vision, and second, parsing it into a
set of salient objects using visual attention models. In this section,
we provide a concise overview of previous research on these two
topics. We refer the reader to the surveys of Peters et al. [PCR∗11]

and Ruhland et al. [RPA∗15] for a more complete review of the
literature concerning synthetic vision and gaze animation.

2.1. Synthetic Vision for Virtual Agents

Renault et al. [RTT90] were the first to propose an approach for ex-
ecuting behavioral animation for agents based on synthetic vision.
They referred to this approach as 2 3

4 D vision, as it was produced by
combining a representation of the scene through the agent’s point
of view in 2D and augmenting it with geometric information from
the environment, such as an object’s distance to the agent and its
respective identifier. Later, other work started relying solely on im-
age data to determine the agent’s information about the scene to
make synthetic vision more generalizable and realistic [CKB99].

Given the different strategies applied for modeling vision in vir-
tual environments, Peters et al. [PCR∗11] classified work about
perception and visual attention for virtual agents into two main
approaches. First, geometry-based approaches grant the agent di-
rect geometric information about the scene, where the visibility is
typically computed via ray casts. This approach may provide very
accurate information compared to real limited human vision, and
specific mechanisms have been developed to limit the agent’s om-
niscience [YLNP12, AG18, EHSN19].

Second, image-based synthetic vision approaches consist of ren-
dering the scene from the agent’s point of view. Closer to human
vision, this robust method can adapt to any type of environment.
However, the associated low-level data (pixel colors) may be more
difficult and expensive to analyze than a high-level description of
the 3D scene [IDP06, NCRP16].

In our work, we use two types of vision models to balance adapt-
ability and efficiency. An image-based representation computes vi-
sual attention on a static view, while the 3D scene description is
used to efficiently analyze the movement of dynamic shapes.

2.2. Visual Attention and Gaze Animation

Visual attention is the cognitive process that mediates the selec-
tion of important information from the environment [LM21]. For
virtual agents, both this process and the gaze animation that help
communicating it can be either procedurally modeled based on be-
havioral studies from neuroscience or psychology [IDP06, GD02],
or learned from eye-tracking data of real humans [ZZWT24].

Behavioral methods take inspiration from neuropsychology
studies to create rule-based computational models for the agent’s
actions and behaviors. Itti et al. [IDP06]’s neurobiological visual
attention model extracts color, light intensity, and motion from
an input video stream to produce a saliency map for each video
frame, used to generate gaze fixations for a virtual character. Their
approach is simple and produces visually realistic results, but is
not real-time so the animation needs to be preprocessed. Improv-
ing upon Khullar and Badler [CKB99]’s model, Gillies and Dodg-
son [GD02] propose a general parameterized model for visual at-
tention capable of producing gaze animations for different sce-
narios, including navigation and locomotion. They use an atten-
tion manager, which receives attention requests from scene queries
based on the agent’s geometric vision and treats them to determine

Article published at Computer Graphics Forum, SCA 2024.



Melgare et al. / Reactive Gaze during Locomotion in Natural Environments 3 of 12

Figure 2: Overview of the method. The attention model first relies on two saliency estimation modules, respectively focused on saliency in a
static image and motion saliency. Given that the agent is waking, this allows taking a decision between looking at a specific salient object (a)
or at the path (b), featuring the generic principle of Drift Diffusion Model (DDM). From this choice, the object or point of interest is selected
and completed by a stochastic model of fixation time, which finally drives a procedural animation of the eyes and head.

the focus of the agent’s gaze. Although this model is easy to gen-
eralize, it requires heavy manual adjustments from the user, who
is to provide both semantic information about the environment and
fine parameter tuning to achieve the desired result. Aside from rule-
based methods, other behavioral approaches also make use of tradi-
tional reinforcement learning techniques to model intrinsic cogni-
tive processes behind the human gaze behavior [HB05]. Sprague et
al. proposed an abstract behavioral model for embodying visuomo-
tor behaviors of humans, particularly when executing navigational
tasks that involve obstacle avoidance while walking [SBR07]. They
propose an operating system that manages many learned microbe-
haviors that are applied in different abstraction levels to control a
virtual human character.

Data-driven methods use neural networks trained on large
datasets of images (or videos) annotated with human gaze or at-
tention data, to estimate a saliency score representing the visual at-
tractiveness of each pixel. We refer the reader to the MIT/Tübingen
Saliency Benchmark [KBJ∗] for an extensive study and benchmark
of methods in this very active research topic. Close to our goals,
Goudé et al. [GBO∗23] applied Kroner et al. [KSDG20]’s visual
saliency model to simulate visual attention and produce realistic
gaze behavior for static, non-conversational agents. They combine
the saliency map from a data-driven model with a saccadic map
based on users’ eye-tracking data to generate fixation points for
the agent’s gaze animation system. Although their results proved
indistinguishable from performance captures, the method does not
account for motion and cannot be applied to a walking agent.

Beyond the image saliency map, scan-paths estimations provide
a time sequence of successive gaze fixation points [MSB∗22] while
video saliency generalize image-saliency to short video sequences,
which can be achieved at interactive rates [WSX∗19, ZZWT24].
Unfortunately the latter cannot be directly applied to egocentric
walking character motion estimation, for two reasons: First, a video
recording of a walker’s view would capture not only the movement
of external elements, but also the relative movement of the charac-

ter’s head in that environment, which would lead to the detection
of spurious, non-salient movement for the human brain. Second,
human vision relies on two components [SRJ11]: Central vision
where all stimuli, including shape, color and movement, are vis-
ible, and Peripheral vision, giving more limited access to shapes
and colors, but remaining very sensitive to movement. As video
saliency methods rely on a coupling between image color and mo-
tion, they cannot faithfully model peripheral vision mechanisms.
To avoid this limitation, we combine the two saliency estimation
strategies, using a data-based model to analyze shape and color
in central vision and a geometry-based model to calculate motion
saliency, including in areas of peripheral vision.

3. Method overview

The input of our method is an animated character walking in a vir-
tual environment. Its trajectory may be either pre-set, or interac-
tively controlled. Our processing pipeline for animating the head
and gaze is summarized in Fig. 2. Given the current head position,
we run our attention model every time the character needs to choose
a new focus of attention. Our model includes two main modules:

First, the saliency estimation module evaluates the perception of
all visual elements from the walking character’s point of view while
remaining agnostic to high-level character memory and locomo-
tion. This includes both static saliency, computed on an image re-
stricted to the central vision zone, and saliency due to motion, com-
puted in both central and peripheral vision zones (see Section 4).

From this estimation, we generate a list of objects with associ-
ated saliency scores that are potentially attractive to the character’s
gaze.

Second, the Attention Decision process handles competing stim-
uli such as salient features of the environment, the difficulty of the
terrain the character is walking on, and the character’s internal state
and memory (see Sec. 5). The attention decision model calculates
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a fixation point, i.e. a specific target point in the 3D scene that be-
comes the focal point of gaze, as well as a fixation time associ-
ated to this point. The decision about the fixation point is itself
composed of three sub-steps. First, a binary decision (d1) selects
whether the character should look at a salient object of the envi-
ronment (a) or at the path (b). In the first case, a second decision
process (d2) is initiated to select which specific object of the en-
vironment will be targeted by the character’s gaze while taking its
short-term visual memory into account through the notion of Inhi-
bition Of Return. Conversely, if choice (b) is selected, a procedural
approach (d3) is used to define the exact point on the path that the
character will focus on. The resulting fixation point is associated
with a fixation time calculated using a stochastic approach (d4).

Once a fixation point and time are set, existing methods are com-
bined to generate the final animation towards that point, includ-
ing coordinated head and eye movements [PMG13] as well as eyes
blinking [IDP06].

4. Motion Aware Saliency Estimation

The first component of our model is the saliency estimation mod-
ule, which computes the character’s ability to perceive its environ-
ment via a synthetic vision system associated with saliency score
evaluation. For a time t and an object of the environment designated
by its index i, we call Si(t)≥ 0 its saliency score (a positive scalar
value). The calculation of Si(t) is shared between two specialized
estimators: the first one Ii(t), dedicated to static saliency in a single
image, relies on an existing data-driven approach; the second one
Mi(t) is a new estimation of the saliency of moving object, intro-
duced in this work. The output of saliency estimation at a time t is
a list of Nsalient objects with their associated scores Si(t) defined as

∀i ∈ [[1,Nsalient]] , Si(t) = Ii(t)+Mi(t). (1)

In the following, we detail the computation of these two saliency
scores and their associated synthetic vision models.

4.1. Static image-based saliency Ii(t)

The saliency related to shape and color of static elements of the
scene is computed using an image-based representation of the cen-
tral vision. To this end, we use a rendered view of the environ-
ment from the current frame centered at the character’s mid-eye
with a field of view of 60 degrees, which corresponds to the typ-
ical range of the central vision in humans [SWHH90]. This re-
gion is considered to be the central vision of the agent. We then
use the state-of-art method from Kroner et al. [KSDG20] featur-
ing an encoder-decoder neural network able to infer a saliency
map on top of the rendered image at interactive rates. The neu-
ral network is pre-trained on real images, which deviates slightly
from the cartoon-style rendering used in our application. Never-
theless, employing this network in virtual environments was previ-
ously documented in the literature and shown to provide accurate
results [GBO∗23, MMA∗23]. Once the saliency map is computed,
we consider regions with high values, i.e., above 50% relative to the
maximal saliency value over the whole scene, and retrieve the as-
sociated object from the scene via ray-casting. Each subsequently
selected object defined by its index i is associated with a saliency

value Ii(t)≥ 0, corresponding to the maximum saliency of the pix-
els associated to that object in the saliency map.

4.2. Motion saliency for animated elements Mi(t)

Complementary to static, image-based saliency, we propose a per-
object motion saliency characterized by the value Mi(t) ≥ 0 com-
puted over both central and peripheral vision. The latter is approx-
imated by a conical frustum with a field of view of 110 degrees,
given the range of the visual field of real humans [SWHH90].
As mentioned in Section 2, video-based models cannot capture
motion-only saliency. Instead, we propose a fast geometric ap-
proach allowing to account for all the dynamic elements of the 3D
scene whose bounding box intersects the cone of peripheral vision.

Our model uses the characterization proposed in the perceptual
study of Arpa et al. [ABC11] defining five different types of per-
ceived motions:

• Appearance: The object appears on the screen for the first time.
• Onset: The start of motion (transition from static to dynamic)
• Change: The change of the object’s speed or direction;
• Offset: The end of motion (transition from dynamic to static)
• Continuous: The object is moving with the same velocity;

The three first states are perceived as the most salient, whereas the
two last are perceived as less salient, with a quantitative ratio of 5:1.
This characterization is useful as it provides a generic way to inter-
pret motion with respect to its perceived saliency. Notably, human
perception of motion is more influenced by the type and changes
in motion rather than the absolute speed of the movement. For in-
stance, an element moving rapidly in a straight line tends to attract
less attention than a sudden change of trajectory (or the start of a
motion) of another slower element. Still, this study and their as-
sociated saliency score were limited to rigid spheres moving at a
constant distance from the viewer [ABC11]. Consequently, they do
not fully account for the complex motions seen in natural environ-
ments, such as animals with moving parts that can be at different
distances from the character. To address this, we propose to extend
the characterization of such perceptual motion to include rigged
objects where the motion is linked to an animated skeleton.

Let us consider a typical animation skeleton composed of a set
of Njoint joints. The root joint, assumed to be at index 0, is asso-
ciated with an absolute translation in the world space, while the
child’s joints at indices j > 0 are associated with rotations. Let us
call v⃗0(t) ∈ R3 the linear velocity vector of the root joint at time t.
Seeing the skeleton as a kinematic chain, the world-space velocity
of a joint j can be expressed as

∀ j ∈ [[0,Njoint]] , v⃗ j(t) = v⃗0(t)+ ∑
k∈A( j)

L⃗k × Ω⃗k(t), (2)

where A( j) is the list of ancestor joints of j up to the root, Lk is
the bone vector with extremity k, and Ω⃗k is the angular velocity of
joint k.

This world space velocity is then converted to an apparent ve-
locity va

j(t) from the character’s camera, considering the effect of
perspective, assumed to vary as 1/d j(t), where d j(t) is the distance
between the character’s eyes and the joint j:
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v⃗a
j(t) = v⃗ j(t)/d j(t). (3)

We further associate the apparent acceleration of each joint defined
with the finite difference a⃗a

j(t) = (v⃗a
j(t)− v⃗a

j(t −∆t))/∆t.

We then compute a per-joint perceptual motion-saliency coeffi-
cient m j(t) following the perceptual rules introduced previously,
and associated with the limit threshold ϵv > 0 (resp. ϵa > 0) from
which a specific velocity (resp. acceleration) is perceived

m j(t) =


1 if ∥a⃗a

j(t)∥ ≥ ϵa & ∥v⃗a
j(t −∆t)∥ ≥ ϵv,

1 if ∥a⃗a
j(t)∥ ≥ ϵa & ∥v⃗a

j(t −∆t)∥ ≤ ϵv,

0.2 if ∥a⃗a
j(t)∥ ≤ ϵv & ∥v⃗a

j(t −∆t)∥ ≥ ϵv.

(4)

The first condition corresponds to the motion type Change, the
second one to Onset or Appearance, and the third one to Offset and
Continuous. We define the notion of perceptual speed of a joint
V j(t)> 0 as the product between the average speed of the joint and
its perceptual motion-saliency coefficient.

V j(t) = m j(t) (∥v⃗a
j(t)∥+∥v⃗a

j(t −∆t)∥)/2 . (5)

We finally define the salience of an entire object as that of its
joint of maximum perceptual speed: Mi(t) = m jmax(t)

where jmax = argmax
j∈[[0,N joint−1]]

V j(t) (6)

5. Attention Decision Model

We now describe the second part of our solution, modeling how
a visual decision is made about where to look, based on different
stimuli such as the previously calculated saliency, but also the cur-
rent locomotion of the character, the difficulty of the terrain and
the current state of the character’s visual memory. This decision
system aims to emulate natural human-like behavior. We therefore
integrate a certain degree of randomness, while providing a coher-
ent response to various stimuli that may correspond to competing
objectives.

5.1. Drift Diffusion Model for Generic Cognitive Decision

We propose to leverage the so-called Drift Diffusion Model (DDM),
a well-established tool in cognitive sciences to explain the temporal
processes linked to decision-making [Rat78,RM08]. DDM is based
on the assumption that evidence in favor of each possible choice
accumulates over time (drift). Each drift process is perturbed by
random fluctuations following a normal law (diffusion), and a deci-
sion is made as soon as enough evidence supporting an alternative
has accumulated, which simulates human decision-making.

For the sake of completeness, we first summarize the general
framework of a multi-objective DDM process before detailing
how we adapt this formulation for the character’s gaze decision.
Let us assume a set of Ngoal possible scalar goal-related scores
(gi)i∈[[1,Ngoal]] where each gi is initialized to 0 at the beginning of
the decision process, and varies in [−λ,λ] during the decision iter-
ations, where λ is a scalar decision threshold value which depends

on the DDM process. At each time step, between t to t +∆t, the
goal-related score is updated from its current state as defined in
Equation 7:

∀i ∈ [[1,Ngoal]] , gi(t +∆t) = gi(t)+(µi(t)+ rR+b)∆t, (7)

where µi is a drift process that depends on the stimuli influencing
the decision process and corresponds to a score of attraction toward
the goal gi. R is a random process following a unit normal distri-
bution, while r indicates the magnitude of the random fluctuation.
b is an optional bias that can model an internal constraint of the
decision process beyond the one conveyed by the external stimuli.
At run time, each individual score gi from all possible objectives
are updated in parallel, and the first to reach the decision thresh-
old gi = λ is considered to be the next ongoing decision. Then, all
scores are re-initialized, and a new decision process can occur.

5.2. Drift Diffusion Model for Gaze Fixation

To apply the DDM to gaze fixation, we first define the notion of
inhibited saliency Ŝi(t). While the saliency estimator previously
presented identifies a set of interesting objects based on synthetic
vision, their saliency scores are independent from the cognitive as-
pects of the character’s memory. To take this into account, we con-
sider the so-called Inhibition of Return (IOR), stating that points
that have recently been the focus of attention are temporarily inhib-
ited for a brief period of time [ABC11]. We then define the inhib-
ited saliency Ŝi of the object i as

Ŝi(t) = ωi(t)Si(t), (8)

where ωi ∈ [0,1] represent the IOR factor. We consider a typical
inhibition time τIOR = 900ms, and set ωi(t) = min(δti(t)/τIOR,1),
where δti(t) is the elapsed time since the object i was fixed.

As shown in Fig. 2, our decision mechanism is performed in two
steps. First, we decide that the character should either look at the
path or at a salient object from the environment, using a first DDM
associated with a goal gp/e and a drift process µp/e. If the deci-
sion relates to a salient object from the environment (choice (a)),
we run a second multi-objective DDM over the Nsalient objects with
goal gsalient

i and drift process µsalient
i to select which salient object

of the environment is the next target. Otherwise, if the decision re-
lates to looking at the path, we define the fixation using procedural
rules detailed in Sec. 5.3. A decision process is started every time
a fixation period ends. Then, we allocate a 200ms time-window to
make a new fixation decision, which aligns with the typical dura-
tion for the human eye to select a new target and shift towards it
(see [PDGea01]). Only during this allocated time, the drift process
and its respective goal-related scores are computed and updated ev-
ery frame. Until a decision is made, the agent will remain focusing
on the last fixation. If the decision process did not converge in the
200ms time-period, we use the object of current maximal score as
the next focus of visual attention.

First DDM (d1 in Fig. 2): The choice between salient object or
path takes into account two main notions mentioned in the neu-
roscience literature [HPV02, TGCL20]: The notion of terrain dif-
ficulty that we characterize as the local slope of the terrain at the
character’s position α, and the elapsed time since the character last
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looked at the path δtpath. We then propose a single drift process,
taking either positive or negative values, to link these notions with
the inhibited saliency from Eq. 8:

µp/e(t) = α(t) δtpath(t)−
1

Ns

Nsalient

∑
i=0

Ŝi(t) . (9)

The positive contribution α(t) δtpath(t) is computed using normal-
ized values in the range [0,1] and acts as an attraction toward look-
ing at the path. The negative contribution depends on the averaged
inhibited saliency and contributes toward looking at a salient ob-
ject of the environment. The decision is taken based on the associ-
ated goal score gp/e corresponding to a binary goal DDM. If gp/e

reaches this threshold value λ
p/e = 0.5 [Rat78] (or a positive value

after 200ms) the winning decision is to look at the path, while con-
versely, if gp/e reaches the value −λ

p/e (or a negative value after
200ms), the winning decision is to look at a salient object.

Additionally, we set the bias b defined in Eq. 7 to be a positive
or negative value in order to favor more or less the decision to look
at the path or at the salient objects in the environment. This bias
enables us to parameterize, at a high level, the typical behavior ex-
hibited by the character. With a positive bias, the character would
tend to look more at the path, which we refer to as a Goal-Driven
behaviour. In contrast, a negative bias makes the character more
likely to look at external stimuli, and we call this behavior Ex-
ploratory. The effect and differences between these behaviors are
analyzed in Section 6.2.2.

Second DDM (d2 in Fig. 2): Selecting a fixation point in the
environment is obtained using a drift process taking directly into
account the inhibited saliency and set as:

µsalient
i (t) = Ŝi(t). (10)

The most salient object is identified by the index i0 in the multi-
objective DDM such that gsalient

i0 is the first to reach the threshold
value λ

salient = 0.2 [RRHO23] before 200ms, or associated with
the largest value after this time. In this decision process, the bias is
set to 0, and the 3D point corresponding to the gaze fixation is set
to be at the collision point through which the object was detected
during the vision ray-casting.

5.3. Procedural Path-Adapting Gaze Fixation Point (d3)

When the character decides to look at its path, we rely on a pro-
cedural approach to compute the point of focus, grounded from
the following key observations: First, the gaze direction anticipates
the head orientation, which itself, anticipates the orientation of the
main body when following a curved trajectory [BKB∗12]. Second,
on a flat terrain, our eyes are typically looking at about 7 to 8 steps
ahead, while we shift down our focus to about 2 or 3 steps ahead
when the terrain becomes uneven [TGCL20]. Third, a study per-
formed on stairs [MdAM11] (assimilated to a slope at 30◦) showed
that we look 2 to 4 steps ahead when going up and down.

Based on these observations, we propose a model where the
character anticipates its path by looking at a distance d ahead of
its expected trajectory, with d depending linearly on the slope of

the terrain. In our case, we consider

d = dmax −
α

αmax
(dmax −dmin), (11)

where α is the current slope of the terrain at the character position,
αmax is the maximal slope considered as 30◦, and (dmax,dmin) are
respectively (7 steps, 3 steps) as reported in the literature, and can
be converted to actual distance in meter depending on the length of
the character’s legs.

This model can then be used in two different contexts. First, if
the character’s trajectory is already fully preset, we simply query
the associated point along the trajectory at the specific prescribed
distance. Second, if the trajectory is dynamically controlled by a
user – such as in game-like control – we infer an estimated spline
trajectory based on current orientation and user input, which is then
used to compute the future estimated point of focus.

5.4. Fixation Duration (d4)

In parallel with the computation of the fixation point, the time the
agent will look at it is computed via a stochastic approach. Fol-
lowing the cognitive study from Droll et al. [DE09], we consider
a different normal distribution of fixation time depending on the
value of the bias b. In the case of a goal-driven behavior (positive
value of b), we consider a distribution centered at 121ms and stan-
dard deviation of 67ms. In the opposite case, where the character
is explorative (negative value of b), we use a distribution with an
average of 1869ms and a standard deviation of 998ms. In the de-
fault, non-biased mode (b = 0), we randomly select one of these
distributions to sample from.

Finally, and to account for the differences in anticipation time
between the eye and the head observed in the literature [BKB∗12],
we introduce a delay in the animation model, where the head only
starts to move towards the path fixation target at a normal random
interval between 200 and 300ms after the eyes have started to move.
This additional delay is only introduced when the agent is fixating
on the path. For other fixation targets, we use the head-eye coordi-
nation delay established in the literature [PMG13].

6. Results and Evaluation

In this section, we show some of our results obtained in dynamic
natural environments featuring moving animals and salient vegeta-
tion. We also present the perceptual evaluations conducted to assess
whether our model improves upon the current state of the art for
saliency-driven gaze animation and if users are able to differentiate
between Exploratory and Goal-Driven behaviors.

6.1. Implementation and featured scenarios

We implemented our animation and decision process in Unity
3D and coupled it with the image-based saliency model run in
Python/TensorFlow at interactive time in parallel with the anima-
tion. Our model is used to compute the eye and head animation,
while the rest of the body, i.e. torso, legs and arms were animated
using an existing approach [ARC22]. We considered the case of
two main scenes that featured rigged-animated animals such as
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birds and butterflies, colorful vegetation such as mushrooms and
flowers, and uneven terrain heights. Our interactive demo, which
allows for user manipulation of the character through a keyboard
or game-pad, runs in real-time on a standard laptop (Intel Core i7,
eight cores, running at 3.10 GHz). Table 1 presents the breakdown
of our computational cost and refresh rate for the different parts
of our algorithm. These timings are reported as an average over
1500 frames. Steps 1 to 4 are computed every 200ms, to simulate
the rate at which humans shift between saccades, as mentioned in
Section 5. Step 5 starts whenever a new fixation decision needs
to be determined, and the DDMs are computed every frame while
the process of decision-taking is being simulated (with a maximum
duration of 200ms). Finally, the facial animation routine is com-
puted every frame. Most of our decision process have run time
below 0.1ms, and the pre-trained image saliency evaluation takes
about 0.2ms while being run every 200ms. The highest computa-
tional cost (5ms) currently relates to the image data transfert from
the character point of view between Unity and Python on which
the image saliency is run as an external program. This transfert is
currently done trivially but could be heavily optimized via shared
memory use if the method need to be scaled to multiple characters.

Step Avg Computation Time (ms) Evaluation Frequency

1. Motion Saliency (Mi(t)) 0.1 (SD = 0.07) Once every 200ms
2. Data transfer Unity/Python 4.91 (SD = 0.58) Once every 200ms
3. Image Saliency (Ii(t)) 0.22 (SD = 0.28) Once every 200ms
4. Attention Decision 0.07 (SD = 0.07) Whenever a new fixation is needed
5. Facial Animation 0.02 (SD = 0.1) Every frame

Table 1: Performance analysis of our method.

Figure 1 depicts the main behavior of our character able to, re-
spectively, look at the flying bird with motion saliency, check more
carefully her path on uneven terrain, and pay attention to salient
elements such as colorful flowers. We show our full test scenes in
Figure 3 using a neutral value for the bias b. Scenes (a) and (b)
featured 4 to 5 animated flying animals (birds and butterflies), each
with their own behaviors (i.e. butterflies flying close to the flowers,
birds flying away from the agent when approached). The salient
vegetation is spread throughout, and their terrain is uneven with
slight elevations along the path. The terrain in scene (c) was made
to be more uneven in order to focus on our path-adapting gaze, with
a slope of 30 degrees.

Our method yields animations that depict the character as both
engaged in its walking task and curious about exploring its sur-
rounding environment. The addition of motion perception makes
the agent seem much more attentive as it is capable of reacting to
fast movement and tracking moving objects while fixating on them,
as seen in Figure 3(a) and (b). At the same time, the path anticipa-
tion and the adaptation of the gaze according to the current slope
angle are subtle changes that contribute to make the animation more
natural for a walking agent (Figure 3(c)).

In Figure 4, we demonstrate the different animation outcomes
obtained when alternating between Exploratory (i.e. paying careful
attention to salient element of the environment) and Goal-Driven
behaviors (i.e. principally focus on its path) by altering the bias b
on the choice between focusing on the path or on external objects.
In the examples shown, we compare two simulations applied to

the same scene, where the exploratory agent fixates on the butter-
flies as she walks, while the goal-driven agent focuses on the path
and anticipates where to look within it. The changing of the fixa-
tion time distribution according to the set behavior also greatly af-
fects the outcome animations. For instance, the exploratory agents
lingers for longer amounts of time at each fixation, while the goal-
driven agent only shoots quick glances to other objects before going
back to focusing on the path. We further evaluate if these behav-
iors are differentiable to users in a perceptual study described in
Section 6.2.2. Finally, Figure 5 shows an ablation study applied to
the example of Figure 1. As can be seen, the ability to be drawn
to movement and image-based salience as well as changes in ter-
rain helps make the character appear more aware of their surround-
ings. Even though the character’s body motion remains unaffected
by our approach, having a responsive gaze animation alone already
improves the expressiveness of the character, especially when com-
pared to a static, forward-facing gaze animation.

6.2. Perceptual Evaluation

We conducted two perceptual evaluations to assess the following:
i) whether or not our model can improve on the current state of the
art when it comes to simulating gaze behavior during locomotion
in dynamic environments, and ii) whether users are able to differ-
entiate between our two main modeled behaviors (Goal-Driven and
Exploratory). We conducted two separate online surveys for each
evaluation, where users were shown video recordings of the same
scenes with different animation configurations in random order. In
both evaluations, we chose to use a stylized character appearance
to avoid the uncanny valley effect [Mor70], with short hair to fa-
cilitate viewing of the eyes and facial features. All animation con-
figurations used the same walking speed of 1.2 m/s, with the same
neutral walking style.

6.2.1. Comparison with the State of the Art

Our first evaluation assesses the perceived awareness of the char-
acter [GPMJ13], the naturalness of gaze animation [BKCZ09]
and the plausibility of the locations which the character looks
at [LHOK18], which we refer to as gaze target. We compare our
work with the current state of the art in real-time saliency-driven
gaze animation described in Goudé et al. [GBO∗23] aimed at gen-
erating realistic gaze animations for static agents in static environ-
ments. We formulated the following hypotheses:

H1. Our model provides a stronger feeling of awareness of the
character to its environment and improves the plausibility of
the focused gaze target;

H2. Our model seems, at least, as natural as the current state of the
art.

While our method was designed to improve the criteria men-
tioned in H1, it was not specifically intended to increase the global
naturalness of the character, as the current literature reported per-
formance already comparable to those of real actors. Still, we aim
to confirm through H2 that our approach does not degrade the over-
all plausibility of the character’s animation.

To perform this evaluation, we chose to compare three differ-
ent configurations: i) our complete gaze animation model; ii) the
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(a) The agent first looks at the path as they are crossing the bridge, then looks at the flying birds on the following frames.

(b) The agent looks at a protruding mushroom, the butterfly in motion, then resumes anticipation of its trajectory.

(c) Its gaze first drawn to the flowers, the agent focuses more and more on the steep terrain as the slope increases.

Figure 3: Some examples of the results obtained when applying our method to dynamic, natural environments using a neutral bias b = 0. We
highlight the agent’s current fixation point in each frame with the white disk.

(a) Examples of Exploratory Behavior

(b) Examples of Goal-Driven Behavior

Figure 4: Comparison between Exploratory (a) and Goal-Driven
(b) behaviors. In (a), the agent pays attention to the butterflies as
they walk, which are external stimuli. Meanwhile, in (b), the agent
focuses on anticipating the path.

current state of the art [GBO∗23]; iii) a baseline configuration
where the character always looked to the forward direction. All
configurations used the same walking model for the body anima-
tion [ARC22] and followed the same pre-defined path trajectory.
Our model was presented using the "Exploratory" behavior. We im-
plemented the state of the art approach in Unity 3D and added an
additional behavior that would have the agent re-orientate its head
upwards towards a neutral position every few seconds to compen-
sate for the fact that the model was not originally conceived to deal
with walking agents and would often look at the ground due to it
being detected as salient. We used the two scenes created for our
demo in this study, which are shown in Figure 3 (a) and (b), as
well as in the supplementary video. They present both static and
dynamic salient elements throughout the character’s path.

Task: First, the participants were shown a video of the scene
without any walking character, and were told to observe it, notic-
ing what elements seem to attract their attention. Then, they were
shown three 15-second videos in a side-by-side layout, each show-
ing a different configuration for the same scene. The order in which
the videos were presented was randomized. Aside from the normal
scene view, we also included a close-up view of the character’s
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Figure 5: Ablation study applied on the example from Fig. 1. a) No motion saliency: the character misses the flying bird. b) No dependence
on terrain slope when looking at the path: the character looks straight on the bump. c) No image-based saliency: the character misses the
flower on the ground.

face and a highlight of the current fixation point to facilitate the
participant’s viewing task. The participants were allowed to pause
and re-watch the videos as many times as they wanted throughout
the experiment. For each configuration video (labeled as A, B and
C), they were asked about how much they agreed with the three
following statements (answered on a 5-point Likert-scale ranging
from 1: strongly disagree to 5: strongly agree), designed to judge
the animations given our criteria of awareness, gaze target and nat-
uralness, respectively:

S1. The character seems aware of her environment
S2. The elements at which the character looked at made sense
S3. The movement of the character’s eyes and head seems natural

Protocol: Upon starting the questionnaire, the participants were
asked about their age, educational level, gender and familiarity with
computer graphics (i.e. if they watch movies/videos with animated
CG characters, play video games, etc.). Each participant was ran-
domly assigned to a scene in order to respond to the statement ques-
tions. The scenes were evenly distributed among the participants.
Participants: Our questionnaire was distributed among colleagues
and lay people through a custom online distribution system. After
discarding incomplete answers, we had a final sample of 95 sub-
jects (48 F, 45 M, 2 NB; 46% between 36 to 51 years old; 72%
familiar with computer graphics; 52% post-graduates).

Analysis: Given our sample size and the nature of our data, we
conducted Friedman tests to evaluate the effect of the different con-
figurations on the perceived awareness, naturalness and on how
much people agreed with the places where the character looked at.
Post-hoc comparisons were performed using the Durbin-Conover
test. The full details of our statistical analysis are available in the
supplementary material.

Our Friedman tests indicated that a main effect was found among
all evaluated aspects: Awareness (X 2(2) = 47.88, p < 0.001), Nat-
uralness (X 2(2) = 23.42, p < 0.001) and Gaze Target (X 2(2) =
47.82, p < 0.001). Our post-hoc analyses revealed that our method

obtained a significantly higher score in Awareness (S1), Natural-
ness (S2) and Gaze Target (S3) when compared to both the state
of the art and the baseline (p < 0.001). Figure 6 shows the score
distribution for each configuration and evaluated aspect. These re-
sults show that our method was able to improve upon the state of
the art in gaze animation in all of the evaluated aspects in the sce-
nario of exploratory locomotion in a dynamic environment, which
means that both of our formulated hypotheses (H1 and H2) were
supported. Regarding H2, we initially did not anticipate our model
to outperform the state of the art in terms of perceived naturalness.
However, we believe that its adaptation to dynamic stimuli con-
tributed to users perceiving the animation as more natural in the
proposed scenarios.

6.2.2. Perception of Exploratory and Goal-Driven Behaviors

We conducted an additional perceptual evaluation in order to de-
termine if users would be able to differentiate between the two
extreme gaze behaviors that our model can display: Exploratory
and Goal-Driven. Exploratory behavior means that the agent will
prioritize looking at external stimuli away from the path, and will
spend longer amounts of time looking at each object. In contrast,
the Goal-Driven agent will prioritize looking at the path instead,
and the fixation times when looking at external stimuli are shorter.
Thus, our hypothesis for this perceptual study is that users will be
able to correctly label a given behavior as either Exploratory or
Goal-Driven when presented the respective stimuli.

Task: The participants were shown two 15-second videos in a
side-by-side layout, each showing either the Exploratory or Goal-
Driven behaviors. The layout followed the same pattern as in the
previous study, with the difference being that we did not provide an
additional close-up view of the character’s face and did not high-
light the current fixation point. The videos shown to the users in
this experiment are also available in the supplementary video. Once
again, the participants were allowed to re-watch the video as many
times as they wanted throughout the experiment. For each of the
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[GBO∗23]

[GBO∗23]

[GBO∗23]

Figure 6: Scoring of each tested configuration in our comparative
user study. The median is represented by the red line and the mean
is represented by the green triangle.

two videos (labeled as A and B), the participants were asked to
identify the character’s demeanor as either "Exploratory", "Goal-
Driven", or "I do not know". For contextualization, the following
definitions were presented:

• Exploratory: "The character is exploring the path as if it was the
first time she is seeing it."

• Goal-Driven: "The character is already familiar with the path and
just wants to pass through it as she usually does."

Protocol: We used the same protocol as in the previous experiment.
The response alternatives of either "Exploratory" or "Goal-Driven"
were presented in random order to the participants, and "I do not
know" was always presented as the last option.
Participants: Using the same online distribution system, we had a
final sample of 310 participants (173 F, 134 M, 3 NB; 53% between
36 and 51 years old; 75% familiar with computer graphics; 47%
post-graduates).

Analysis: After collecting all the participant responses, we ob-
tained the results seen in Figure 7. As can be seen, the majority of
the users were able to provide the correct response for both Goal-
Driven and Exploratory videos. Chi-squared analyses indicated a
significant difference in the response distribution for both behaviors
(Goal-driven: X 2 = 281.46, p < 0.001; Exploratory: X 2 = 282.77,
p < 0.001). These results show that, when shown the two anima-
tions with different behaviors, users were able to easily identify
them with the proper label, which supports our hypothesis for this
additional user study. The fact that a simple change in one param-
eter of our model is capable of producing two easily differentiable
behaviors in the eyes of users means that our model can be ap-
plied in different animation scenarios and adapt to the given con-
text. For instance, if animators or game designers wanted to have
groups of characters walking in the same environment, they would
be able to easily configure characters that would seem more busy
or focused (Goal-Driven), versus more curious or distracted (Ex-
ploratory), through the same animation model.

Number of User Responses
Exploratory VideoGoal-Driven Video

Goal-Driven Exploratory Idon't know

Selected Response
Goal-Driven Exploratory I don't know

Figure 7: Collected responses for the second user study. The
graphs show the number of responses for both Exploratory and
Goal-Driven videos.
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7. Discussion and Final Remarks

In this paper, we introduced a real-time visual attention model
adapted for walking characters in dynamic virtual environments.
Our approach integrates motion-aware saliency estimation with a
decision-making process that combines the Drift Diffusion Model
and procedural techniques based on neuroscience principles. We
achieve gaze animations that convey a character’s awareness of its
surroundings and engagement with its locomotion task. Through
perceptual evaluations, we demonstrated the efficacy of our ap-
proach in enhancing the believability of virtual characters. Our an-
imations exhibit improved awareness of the environment, natural-
ness in motion, and plausibility of the chosen gaze targets com-
pared to the state of the art in a context of locomotion in natural dy-
namic environments. We have also shown that the apparent behav-
ior of the character can be influenced towards either exploration-
focused or path-focused by altering one single parameter of the
model, and such a change is shown to be easily perceptible by users.

Our contribution to the estimation of motion saliency of ani-
mated objects relied on a geometric approach. Although this consti-
tutes a simple and generalizable solution for dynamic scenes, video
processing via the use of optical flow would enable to take into ac-
count the loss of precision of peripheral vision, and could there-
fore more precisely simulate cognitive processing. A flaw of our
current solution is that it does not measure contrast between mo-
tions: While our motion saliency model would work in most virtual
scenes used in games and simulations, where the environment is
mostly static, it could not be applied, for instance, if the character
was inside a moving vehicle, where all the object do move but at
the same speed, and therefore none are salient. Our second contri-
bution, focusing on the decision-making process of the agent, re-
lies on DDMs to simulate a variable behavior that is still capable of
taking clues from its environment and internal state to choose be-
tween multiple plausible fixation targets. We relied on neuroscience
literature to integrate the main factors influencing the associated
drift process. While our current prototype only integrates the no-
tion of slope and curvature of the terrain, our method could easily
be extended by adding additional parameters to the drift-diffusion
model, which is, by nature, able to handle multiple competitive
senses to take a global decision. For instance, walking on diffi-
cult terrain could be integrated via dedicated gaze attention on the
ground near the feet (e.g. stepping stones, river crossing, muddy or
snowy terrain). Additionally, internal parameters of the character,
such as its speed, could further influence the decision process.

In this study, we focused on applying our model to natural envi-
ronments, as they allowed us to have a rich variety of stimuli for our
agent without the need to rely on social rules that often influence
our behavior. However, our model could still be extended to other
environments given adaptations to the saliency estimation or to the
drift processes. For example, a locomotion context in an urban envi-
ronment where other agents may also be present could be modeled
by including known concepts of human group or crowd behavior
in the DDMs. Additionally, the image-based saliency model could
be re-trained to better adapt to the scenario, where stimuli such
as street signs and other people are more salient due to contextual
cues.

For future developments, we envision the integration of our vi-

sual attention model with reinforcement learning techniques. This
integration would enable an agent to learn to navigate and explore
the environment using the information provided by our system.
Such an approach would also permit the system to guide the char-
acter’s movement based on visual inputs. Additionally, coupling
gaze animation with a full-body locomotion model would enable
to improve the way the character’s shoulders and torso adjust when
walking, observing interesting objects, or anticipating their path.
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