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SPREADING PROPERTIES OF THE FISHER–KPP EQUATION
WHEN THE INTRINSIC GROWTH RATE IS MAXIMAL IN A

MOVING PATCH OF BOUNDED SIZE

THOMAS GILETTI, LÉO GIRARDIN, AND HIROSHI MATANO

Abstract. This paper is concerned with spreading properties of space-time
heterogeneous Fisher–KPP equations in one space dimension. We focus on the
case of everywhere favorable environment with three different zones, a left half-
line with slow or intermediate growth, a central patch with fast growth and a
right half-line with slow or intermediate growth. The central patch moves at
various speeds. The behavior of the front changes drastically depending on the
speed of the central patch. Among other things, intriguing phenomena such as
nonlocal pulling and locking may occur, which would make the behavior of the
front further complicated. The problem we discuss here is closely related to
questions in biomathematical modelling. By considering several special cases,
we illustrate the remarkable diversity of possible behaviors. In particular, the
case of a central patch with constant size and constant speed is entirely settled.

1. Introduction

This paper is concerned with the Cauchy problem associated with the reaction–
diffusion equation
(KPP) ∂tu = ∂xxu+ f(t, x, u),
where t > 0 is a time variable, x ∈ R is a one-dimensional space variable, and u is
a population density function of time and space. The function f is a reaction term
which is assumed to be globally bounded with respect to the variables t and x, and
of class C2 with respect to the variable u. Moreover, it is of the so-called KPP type
with respect to u, namely:
(A1)

∀(t, x) ∈ R2,


f(t, x, 0) = 0,
∂uf(t, x, 0) > 0,
∀u ≥ 0 ∂uf(t, x, 0)u ≥ f(t, x, u) ≥ ∂uf(t, x, 0)u−Mu2,

∀u > 1 f(t, x, u) < 0,
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Figure 1. Illustration of the heterogeneous intrinsic growth rate
under assumption (A2).

where M is a given positive constant.
Denoting

r : (t, x) 7→ ∂uf(t, x, 0),
we assume it has the following form:

(A2) r : (t, x) 7→


r1 if x < A(t),
r2 if A(t) ≤ x < A(t) + L,

r3 if A(t) + L ≤ x,

with r1, r2, r3, L positive constants and A ∈ C (R, [0,+∞)).
The prototypical example of function f we have in mind comes from ecology and

has the form f(t, x, u) = r(t, x)
(
u− u2/K(t, x)

)
, where r is an intrinsic growth rate

and K a carrying capacity. In order for (A1) to be satisfied, K must then satisfy
that 0 < inf K ≤ supK ≤ 1 (notice that 0 < inf K ≤ supK < +∞ would actually
be enough up to some rescaling). The assumption (A2) implies that there is a
time-dependent zone Ω0(t) of size L where the intrinsic growth rate is r2, while the
intrinsic growth rate is r1 (resp. r3) on the left (resp. right) side of Ω0(t). This
situation is illustrated in Figure 1, though the actual ordering of the values r1, r2, r3
may vary throughout this paper.

The equation (KPP) is supplemented in the Cauchy problem with initial data
of the form

(A3) u0 ∈ Cc(R), u0 ≥ 0, u0 ̸= 0,

where Cc(R) denotes the set of compactly supported continuous functions on R.
We will investigate the large time behavior of solutions, and more specifically their
spreading properties. What exactly is meant here by spreading will be clarified
below.

1.1. Some known results. Consider the above-mentioned prototypical example
f(t, x, u) = r(t, x)(u−u2/K) with K = 1. When r1 = r2 = r3, the equation (KPP)
then reduces to the classical Fisher–KPP equation in homogeneous media:

∂tu = ∂xxu+ ru(1 − u),
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for which it is well known [3] that solutions of the Cauchy problem emanating
from compactly supported initial data asymptotically spread at speed 2

√
r in the

following sense:

2
√
r = sup

{
c ≥ 0 | limt→+∞ sup|x|≤ct |1 − u(t, x)| = 0

}
= inf

{
c ≥ 0 | limt→+∞ supct≤|x| u(t, x) = 0

}
.

However, much less is known when r1, r2 and r3 differ. Yet heterogeneous growth
rates are natural to consider, for at least two reasons. First, in the last few years
many studies have been devoted to the so-called “climate change problem” [1,4,5,9],
which deals with the situation where the favorable zone moves at a certain speed.
Our second motivation comes from the analysis of multi-species models. More
precisely, when one considers population models that take the form of reaction-
diffusion systems involving multiple species, it is often possible to characterize the
spreading speed of the fastest species, but the speeds of the second, third and other
slower species generally remain elusive. This is because, although the position of
the fronts of slower species lie much behind that of the fastest species, their thin
leading edge stretches far beyond the front of the fastest species; therefore it is not
immediately clear how the environmental change caused by the spreading front of
the fastest species affects the speeds of the slower species. Are the slower species
fully adapted to the new environment generated by the front of the fastest species?
Or can they somewhat benefit from the environment ahead of the first front despite
the increasing distance? Quantitative sharp answers are known only in the simplest
cases [10, 11, 13, 16, 18] and their proofs typically rely on a very specific structure
in the system (directions of instability, comparison principle, decoupled equation,
etc.). A better understanding of the heterogeneous scalar equation (KPP) should
help to obtain more general results. See Section 2.1 below where the relation
between the equation (KPP) for the case r2 > max(r1, r3) and some three-species
competition or two-prey-one-predator population models is explained.

Now let us recall some known results on the heterogeneous scalar equation
(KPP). When the heterogeneity remains confined (A(t) being globally bounded),
only the asymptotic space-time growth rate matters and determines the spreading
speed [6], which in our case means that the population spreads toward the left at
speed 2√

r1 and toward the right at speed 2√
r3.

Next, in the special case where r1 ̸= r2 = r3, only a single transition appears
in the intrinsic growth rate; see Figure 2. One may speculate that if A(t) moves
to the right too fast, then the spreading front is located far to the left of A(t),
where the intrinsic growth rate equals r1. Thus the spreading speed is likely to be
2√

r1, as in the homogeneous KPP equation. On the other hand, if A(t) moves too
slowly, then the spreading front is located far ahead of A(t), where r = r3. Thus
the spreading speed is likely to be r3. These speculations turn out to be correct,
but what if the speed of A(t) is neither too fast nor too slow? Actually the answer
is not so simple: totally different types of phenomena, locking and nonlocal pulling,
are observed, depending on whether r1 > r3 or r1 < r3. These two terms, locking
and nonlocal pulling, were first introduced in [18] and [16], respectively1. In the
simplest case when the transition moves with constant speed, i.e., A(t) is a linear

1In [18], nonlocally pulled fronts were referred to as accelerated fronts. But, in the Fisher–
KPP literature, acceleration also refers to superlinear spreading. We believe that nonlocal pulling
better highlights the underlying mechanism, which is that a small population in a moving frame
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Figure 2. Illustration of the heterogeneous intrinsic growth rate
under the assumptions of Theorem 1.1.

function, the known results (that were proved in possibly more complex contexts
in [10,16,18,19]) can be summarized as follows.

Theorem 1.1 (A single transition [19]). Assume r1 ̸= r2 = r3 and the existence of
cA ≥ 0 such that, for all t ≥ 0,

A(t) = cAt.

Then the asymptotic spreading speed c⋆ > 0 of u is well-defined as

c⋆ = sup
{
c ≥ 0 | lim inf

t→+∞
inf

0≤x≤ct
u(t, x) > 0

}
= inf

{
c ≥ 0 | lim

t→+∞
sup
ct≤x

u(t, x) = 0
}

and satisfies:
(a) if r1 > r3:

(i) c⋆ = 2√
r3 if cA ≤ 2√

r3,
(ii) c⋆ = cA if 2√

r3 < cA ≤ 2√
r1 (locked front),

(iii) c⋆ = 2√
r1 if 2√

r1 < cA;
(b) if r1 < r3:

(i) c⋆ = 2√
r3 if cA ≤ 2√

r3,
(ii) c⋆ = cA−2

√
r3−r1

2 + 2r1
cA−2

√
r3−r1

if 2√
r3 < cA ≤ 2√

r1 + 2
√
r3 − r1

(nonlocally pulled front),
(iii) c⋆ = 2√

r1 if 2√
r1 + 2

√
r3 − r1 < cA.

Since these six cases form the basis for our intuition, let us describe briefly what
happens in each case. The statement is also summarized in Figure 3.

Cases (a)(i) and (b)(i) correspond to a situation outlined above where the tran-
sition A(t) moves so slow that the population moves ahead of it at speed 2√

r3. In
cases (a)(iii) and (b)(iii), the transition is so fast that the spreading speed 2√

r1
is determined only by the left side zone. The first intermediate case (a)(ii) is the
locking case, where the population spreads exactly at the speed cA of the growth
rate transition. Finally, case (b)(ii) is the nonlocal pulling case. Here, the popu-
lation in the moving frame of the transition decays exponentially in time, yet it is

strictly faster than the actual front may still contribute to the propagation due to variations in
the intrinsic growth rate.
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0 2√
r2 2√

r1

0

2√
r2

2√
r1

c⋆

cA

(a) Case r1 > r2 = r3: locking in the inter-
mediate range.

0 2
√
r2 − r1 + 2√

r12√
r2

0

2√
r1

2√
r2c⋆

cA

(b) Case r1 < r2 = r3: nonlocal pulling in
the intermediate range.

Figure 3. The spreading speed as a function of the environmental
speed under the assumptions of Theorem 1.1.

still able to contribute positively to the speed of the front that comes afterward.
Indeed, in this case the speed c⋆ is strictly larger than 2√

r1, which corresponds to
the spreading speed in the left side zone if the other two zones are not present.

Note that the persistence behind the propagating front is described as

lim inf
t→+∞

inf
0≤x≤ct

u(t, x) > 0.

This generalizes appropriately the classical picture

lim
t→+∞

sup
|x|≤ct

|1 − u(t, x)| = 0

to our more general setting where the local behavior of the solution is typically
not a convergence to a constant steady state, which may not exist here, but rather
complicated oscillations.

The more general case (more than one unconfined interface) remained elusive
until very recently. In 2021, Lam and Yu [19] managed to characterize the spreading
speed in many cases thanks to a Hamilton–Jacobi framework. Although the formula
is in general complicated and implicit, in some cases it can be made explicit. In
particular, in the case of two interfaces A(t) and A(t) +L with constant successive
values r1, r2 and r3, all subcases can be solved provided the central patch does
not have a positive effect on the growth rate from both sides (i.e., provided r2 <
max(r1, r3)). This assumption is not a technical issue but rather a true limitation
of the Hamilton–Jacobi approach, which involves a hyperbolic rescaling. Basically,
this approach cannot deal with nonlocal pulling exerted from areas that are too
small. This is why we will use a different approach here, based on super- and
sub-solutions, to study this more delicate type of nonlocal pulling.

To conclude this general introduction, we point out a very recent work by Bovier
and Hartung [10] where a probabilistic method was used to quantify rigorously the
nonlocal pulling in a model for the spread of a trait in a population, originally
introduced in [21]. It is not clear to us whether this third method of proof could
be used to deal with the case we consider here.
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1.2. Organization of the paper. In Section 2 we present our main results, which
mainly deal with the previously open problem when the intrinsic growth rate is
larger in the intermediate zone between the two transitions.

The proofs of our results are done in Section 3, using a construction of sub-
and super-solutions together with an eigenvalue problem in the moving frame of
the heterogeneity. In Section 4 we collect a few interesting properties about this
eigenvalue and discuss possible extensions of our work.

2. Main results

We now consider the equation (KPP), supplemented with the assumptions (A1),
(A2), (A3). Throughout the rest of this paper, we assume that

r2 > max(r1, r3).

This means that the intrinsic growth rate is at its highest in the central patch
of positive and bounded length between the two moving transitions. As we ex-
plained in the previous section, such a situation has so far remained unaddressed
in the mathematical literature, partly due (among other reasons) to the difficulty
of estimating the aforementioned nonlocal pulling effects for this case.

From now on, we only consider the rightward spreading properties. Since 0 ≤
A(t) ≤ A(t) + L, it is indeed standard to prove that the leftward spreading speed
is well-defined and equals 2√

r1.
Before stating the results, we define two convenient quantities, the minimal

spreading speed c and the maximal spreading speed c:

c = sup
{
c ≥ 0 | lim inf

t→+∞
inf

0≤x≤ct
u(t, x) > 0

}
,

c = inf
{
c ≥ 0 | lim

t→+∞
sup
ct≤x

u(t, x) = 0
}
.

These two quantities are well-defined since the initial value u0 satisfies (A3). By
comparison with solutions of homogeneous problems, one may verify that

2
√

min(r1, r3) ≤ c ≤ c ≤ 2
√
r2.

The equality between c and c is a very natural question. For more general initial
data u0, it is known that the equality can fail even if r1 = r2 = r3 [17]. When there
is indeed equality between c and c, the quantity c = c is referred to as the spreading
speed; in other words, the spreading speed is well-defined if, and only if, c = c. Our
results will in particular assert that, when r2 > max(r1, r3) and u0 is compactly
supported, the spreading speed can be well-defined or ill-defined, depending on the
variations of A. In fact it will become clear that the range of possible outcomes is
very wide and that a completely general result is hopeless. Therefore our goal will
only be to solve extreme cases and to illustrate the variety of outcomes.

We begin with the case where A is a linear function of time. This is our main
result.

Theorem 2.1 (Patch of constant size, constant speed). Assume the existence of
cA > 0 such that, for all t ≥ 0,

A(t) = cAt.
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Let

L =

0 if r1 = r3,

1√
r2−max(r1,r3)

arccot
(√

r2−max(r1,r3)
|r1−r3|

)
if r1 ̸= r3,

where arccot denotes the inverse of cot|(0,π). Then:

(1) c = c =



2√
r3 if cA < 2√

r3,

cA if 2√
r3 ≤ cA ≤ 2

√
−λ1 (locked front),

F (cA) if 2
√

−λ1 < cA < 2√
r1 + 2

√
−λ1 − r1

(nonlocally pulled front),
2√

r1 if 2√
r1 + 2

√
−λ1 − r1 ≤ cA,

where
• λ1 = − max(r1, r3) if L ≤ L;
• λ1 ∈ (−r2,− max(r1, r3)) if L > L, and in this case λ1 is characterized as

the unique solution in
(

−r2,min
(

− max (r1, r3) , π2

L2 − r2

))
of:

(2) cot(L
√
r2 + λ1) =

r2 + λ1 −
√

(r1 + λ1)(r3 + λ1)√
r2 + λ1(

√
−r1 − λ1 +

√
−r3 − λ1)

;

• the function F is defined by:

(3) F : c ∈
(

2
√

−λ1 − r1,+∞
)

7→ c− 2
√

−λ1 − r1

2 + 2r1

c− 2
√

−λ1 − r1
;

The intervals (2√
r3, 2

√
−λ1) and (2

√
−λ1, 2

√
r1 + 2

√
−λ1 − r1) correspond to a

locking situation and a nonlocally pulled situation, respectively. As is easily seen,
the former interval is empty if and only if L ≤ L and r3 > r1, while the latter is
empty if and only if L ≤ L and r3 < r1. Therefore the two intervals cannot be both
empty. There are five possible cases, which are illustrated on Figure 4.

We remark in particular that if r1 = r3, then L = 0 < L, therefore the above
two intervals are both non-empty. Consequently, the patch can induce locking or
nonlocal pulling, depending on the value of the speed cA, even if the patch size L
is arbitrarily small. This shows that even a small perturbation of the homogeneous
KPP equation may have a substantial impact on the large time behavior of solutions
by substantially altering the spreading speed.

As shown in Lemma 3.2, the quantity λ1 will turn out to be the generalized prin-
cipal eigenvalue of the problem (6). Its properties, as a function of the parameters
L or r2, will be studied in Section 4. It is directly related to the leading eigenvalue
λ in [18], as illustrated by the correspondence between Figure 5 and [18, Figure
3-left]. In particular, one may replace (A2) by the more general assumption that
x 7→ r(t, x−A(t)) is a compact perturbation of the Heaviside type function

ϕ : x 7→

{
r1 if x < 0,
r3 if 0 ≤ x.

Then, when A(t) = cAt, one may redefine the principal eigenvalue λ1 appropriately
in this context and recover the formula (1) for the spreading speed. We refer to
Section 4.2 for more details.

Regarding regularity issues, we note that the spreading speed c⋆ in Theorem 2.1
is only Lipschitz-continuous as a function of cA and λ1 (see also Figures 4 and 5).
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0 2√
r1 2

√
−λ1 2

√
−λ1 − r1 + 2√

r1

0

2√
r1

2
√

−λ1

c⋆

cA

(a) Case r1 = r3, L > L = 0 (parameter
values: r1 = 1, r2 = 9, r3 = 1, λ1 = −4)

0 2√
r3 2

√
−λ1 2

√
−λ1 − r1 + 2√

r1

0

2√
r3

2√
r1

2
√

−λ1

c⋆

cA

(b) Case r1 > r3, L > L (parameter values:
r1 = 4, r2 = 9, r3 = 1, λ1 = −8)

0 2√
r3 2√

r1

0

2√
r3

2√
r1

c⋆

cA

(c) Case r1 > r3, L ≤ L (parameter values:
r1 = 4, r2 = 9, r3 = 1, λ1 = −4)

0 2√
r3 2

√
−λ12

√
−λ1 − r1 + 2√

r1

0

2√
r1

2√
r3

2
√

−λ1

c⋆

cA

(d) Case r1 < r3, L > L (parameter values:
r1 = 1, r2 = 9, r3 = 4, λ1 = −8)

0 2
√
r3 − r1 + 2√

r12√
r3

0

2√
r1

2√
r3c⋆

cA

(e) Case r1 < r3, L ≤ L (parameter values:
r1 = 1, r2 = 9, r3 = 4, λ1 = −4)

Figure 4. The spreading speed c⋆ of Theorem 2.1 as a function
of the speed of the environmental heterogeneity cA. Note that we
fix values of λ1 instead of fixing values of L. This is rigorously
equivalent, cf. Proposition 4.1. Note also that the figures where
L ≤ L, i.e., λ1 = − max(r1, r3), are independent of L and λ1.
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max(r1, r3) c2
A

4 − √
r1(cA − 2√

r1) c2
A

4
r2

0

2√
r1

cA
c⋆

−λ1

Figure 5. The spreading speed c⋆ of Theorem 2.1 as a func-
tion of the generalized principal eigenvalue λ1 in the case cA >
2
√

max(r1, r3) (parameter values: r1 = 1, r2 = 16, r3 = 4,
cA = 7). Due to the monotonic dependence of λ1 on r2 or L (the
larger the patch, the larger −λ1; cf. Propositions 4.1 and 4.2), this
graph is a proxy for c⋆ as a function of L or r2. It can be inter-
preted as follows: when the environmental speed cA is larger than
2
√

max(r1, r3), a small patch has no effect, an intermediate patch
induces nonlocal pulling, a large patch induces locking. Similar
figures in the cases 2√

r3 ≤ cA ≤ 2√
r1 and cA < 2√

r3 could be
produced and would show that the spreading speed in these cases
is never impacted by the patch.

We continue with two corollaries confirming that if the patch [A(t), A(t) + L]
moves either too slowly or too fast, with explicit thresholds given by the preceding
theorem (accounting for limL→+∞ λ1(L) = −r2), then it has no effect and the front
is locally pulled, even in the presence of arbitrary oscillations.

Corollary 2.2 (Slow patch). Assume

sup
t≥0

A(t) + L

t
≤ 2

√
r3.

Then the front is locally pulled: c = c = 2√
r3.

Corollary 2.3 (Fast patch). Assume

2
√
r1 + 2

√
r2 − r1 ≤ inf

t≥0

A(t)
t
.

Then the front is locally pulled: c = c = 2√
r1.
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These two corollaries remain true if the constant L is replaced by some (positive
and continuous) function of time L(t). We also expect that sup and inf may re-
spectively be replaced by lim sup and lim inf. For the sake of brevity, we leave the
latter generalization as an open problem.

Finally, we turn to the interesting case where the patch is neither too slow nor
too fast but oscillates slowly. For the sake of brevity, we deliberately do not prove
a sharp result but rather construct a telling counter-example.

Theorem 2.4 (Slowly oscillating speeds). Let λ1 be as in Theorem 2.1, and assume
that λ1 ̸= −r1. Let cA,1, cA,2 be positive numbers satisfying 2

√
−λ1 < cA,1 < cA,2 <

2√
r1 + 2

√
−λ1 − r1 and let (tn)n∈N ⊂ R be an increasing sequence such that:

t0 = 0, tn+1/tn → +∞ (n → +∞).
Let A(t) be a function defined iteratively as follows:

(4) A(t) =


0 t = t0 = 0,
A(t2n) + cA,1(t− t2n) t ∈ [t2n, t2n+1) (n = 0, 1, 2, . . .),
A(t2n+1) + cA,2(t− t2n+1) t ∈ [t2n+1, t2n+2) (n = 0, 1, 2, . . .).

Then:

c ≤ 1
2

(
cA,2 − 2

√
−λ1 − r1 + 4r1

cA,2 − 2
√

−λ1 − r1

)
,

c ≥ 1
2

(
cA,1 − 2

√
−λ1 − r1 + 4r1

cA,1 − 2
√

−λ1 − r1

)
.

In particular, c < c.

Remark 2.1. The condition λ1 ̸= −r1 is satisfied if and only if either r1 < r3, or
r1 ≥ r3 and L > L.

In the above example, the speed of the patch oscillates slower and slower be-
tween two values either of which would lead to nonlocal pulling in the absence of
oscillations. The speed of the front then slowly fluctuates forever, thus making
the spreading speed ill-defined. This result is inspired by [15], where temporally
constant environments with slower and slower spatial oscillations lead similarly to
a gap between the minimal and the maximal spreading speeds. It will be clear from
the proof that the result can be extended straightforwardly to the case cA,1 > cA,2
or to the case where L or r2 oscillates instead of cA. The general conclusion we
draw from this result is that oscillations of the patch, in height, width or speed,
can be enough to break the uniqueness of the spreading speed, even if r1 = r3.
Furthermore, this result holds for an arbitrarily small L, which implies that a small
perturbation of the homogeneous KPP equation may not only change the spreading
speed (as we already outlined above) but even make the speed ill-defined.

2.1. Relation with multi-species models. We end this section with a discus-
sion related to the study of spreading properties of multi-species reaction–diffusion
systems, which is our main motivation for starting the present work. The results
of the present paper show how a traveling patch of a highly favorable zone can
strongly impact the speed of the invasion fronts, even if they travel far behind the
patch. In particular, if a nonlocal pulling occurs, finding the precise front speeds
would become a much more intricate task. This suggests that, when one studies the
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behavior of invading fronts in multi-species reaction–diffusion models, determining
the speeds of the slower fronts could be much harder than determining those of
the faster fronts, since the environmental changes created by the faster fronts may
induce such effects as nonlocal pulling or locking on the slower fronts. For example,
consider the following (conceptual) reaction–diffusion population models:

(A) 3-species competition model;
(B) 2-prey & 1-predator model.

First, in the model (A), let u, v, w denote the populations of mutually competing
species that invade a region at the speeds cu > cv > cw. More precisely,

(1) u invades the open space at speed cu as if it was alone in the environment;
(2) then the slower species v replaces u by competition at speed cv;
(3) finally, the slowest species w propagates at speed cw by replacing v.

Let us focus on the speed of w. If the interspecific competition between u and v is
very strong, then at the interface between the two species (which travels at speed
cv), there appears a zone where u, v are both very small. This zone can be seen as
a favorable patch for the third species w. Therefore, although this patch lies far
ahead of the front of w, it may still have a strong effect on the speed of w, just
like the central patch in our equation (KPP). At the moment, the precise effect of
this patch is not fully understood, but at least it is known, though in a different
context, that a strong competition between u and v can create a favorable patch
for w; see [14].

On the other hand, if the interspecific competition between u and v is not very
strong, the superposition of the two populations would have higher density around
the interface between u and v, thus creating an unfavorable zone for w, contrary
to the above case. The paper of Lam, Liu and Liu [20, Proposition A.4] precisely
identifies a parameter regime where this would indeed occur. In such a situation,
the interface between u and v may not have much effect on the speed of w.

Next we consider the model (B). Let u, v denote the prey populations and w
the predator that invade a region at speeds cu > cv > cw, basically in the same
manner as (1), (2), (3) above, except that the slowest species w is a predator. We
assume that the interspecific competition between u and v is relatively mild, so that
the superposition of the two populations have higher density around the interface
between u and v, as in [20, Proposition A.4]. Then this zone may serve as a favorable
patch for the predator w, therefore it may have a non-negligible effect on the speed
of w, just as in the case (A) with strong inter-specific competition between u an v.
In such parameter regimes, the study of the speed of the predator would require
a sharp quantification of the height, width and speed of the corresponding patch,
which is currently out of reach in general. The same discussion may be held in the
case of one prey and two predators, for which we refer to [12] where among other
things the nonlocal pulling phenomenon was also observed.

3. Proofs

3.1. Technical preliminaries.

3.1.1. A change of variables and a parabolic eigenproblem in the whole space-time.
In what follows we assume in addition that A is of class C2.

Following Allwright [2], we can transform the linearized equation
∂tu− ∂xxu = r(t, x)u
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into

∂tv − 1
L2 ∂yyv =

(
m(y) + yA′′(t)L

2

)
v,

where
(5) m(y) = r11y<0 + r210≤y<1 + r311≤y,

by means of the change of variable

v(t, y) = u (t, Ly +A (t)) exp
(∫ t

0

A′(τ)2

4 dτ + yA′(t)L
2

)
.

Similarly, considering an eigenproblem where r(t, x) is replaced by r(t, x) + λ
changes in the new equation m(y) into m(y) + λ. More precisely, inspired by [7],
we are led to considering the following eigenproblem:

Pφ1 = λφ1 in R × R,
φ1 > 0 in R × R,
φ1 ∈

{
ψ ∈ D′(R2) | ∂tψ, ∂yψ, ∂yyψ ∈ L1

loc(R2)
}
,

with

P = ∂t − 1
L2 ∂yy −

(
m(y) + yA′′(t)L

2

)
.

Let us emphasize that, to the best of our knowledge, there is no known general
theory for such eigenproblems. In particular, if A′′(t) ̸≡ 0, keeping φ,ψ within a
bounded range is already an issue difficult to overcome. This is why from now on we
focus on a more feasible special case. Other special cases where this eigenproblem
makes sense might be investigated in future sequels.

3.1.2. An elliptic eigenproblem in the whole space. If A is linear, written as A(t) =
cAt, then the above transformation reduces to

∂tv − 1
L2 ∂yyv = m(y)v,

with the same change of variable

v(t, y) = u (t, Ly + cAt) exp
(
c2

At

4 + cALy

2

)
.

To study the above equation, the following eigenproblem for the operator

L = L−2 d2

dy2 +m,

where m is as defined in (5), will play a crucial role:

(6)


−Lφ1 = λφ1 in R,
φ1 > 0 in R,
φ1 ∈ W 2,1

loc (R).

This problem can be solved explicitly, piece by piece with a global C1 regularity2.

2Recall that W 2,1
loc (R) is continuously embedded into C0,α

loc (R) for any α ∈ (0, 1). After a
standard bootstrap procedure, we find that the weak solution φ1 of −L−2φ′′

1 − mφ1 = λφ1 is in
C1,1

loc (R) ≃ W 2,∞
loc (R), namely it is of class C1 and its derivative is locally Lipschitz-continuous.
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Unlike a similar eigenvalue problem on a finite interval, an eigenvalue λ of −L
with a positive eigenfunction is not necessarily unique. Therefore the right concept
of principal eigenvalue has to be defined carefully. According to [8], the second-
order self-adjoint operator −L admits a generalized principal eigenvalue λ1, which
can be defined as the supremum of the set of values of λ for which (L + λ)φ ≤ 0
holds for some positive function φ. Equivalently, it can be defined as the limit of the
principal eigenvalues of truncated problems with the Dirichlet boundary condition.
By analogy with many previous studies on KPP heterogeneous problems, we expect
this generalized eigenvalue to be crucial to accurately predict the spreading speed of
solutions for compactly supported initial data. Therefore, this subsection is devoted
to the computation of this λ1.

For later use and convenience, we sum up some of the main results from [8].

Proposition 3.1 ( [8, Theorems 1.4 and 1.7, Proposition 2.3]). Define

λ1 := sup
{
λ | ∃φ ∈ W 2,1

loc (R), φ > 0 and (L + λ)φ ≤ 0
}

∈ R.

Then λ1 satisfies

λ1 = max
{
λ | ∃φ ∈ W 2,1

loc (R), φ > 0 and − Lφ = λφ
}

= inf
{
λ | ∃φ ∈ W 2,1

loc (R) ∩ L∞(R), φ > 0 and (L + λ)φ ≥ 0
}
.

In particular, if there exists a positive and bounded solution φ of −Lφ = λφ on R,
then one must have λ = λ1. Furthermore,

λ1 = lim
R→+∞

λR
1 ,

where λR
1 denotes the unique solution of the eigenvalue problem

−Lφ = λR
1 φ in (−R,R),

φ1 > 0 in (−R,R),
φ1(±R) = 0.

As a preliminary step, we note that

(7) −r2 ≤ λ1 ≤ − max(r1, r3).

Indeed, on the one hand, from our assumption that r2 = maxm > max(r1, r3), we
get by taking φ = 1 as a test function that

(L − r2)φ ≤ 0.

Hence, by its definition, λ1 ≥ −r2. On the other hand, for any eigenvalue λ >
− max(r1, r3), any eigenfunction is a sinusoidal function at least on a half-line, and
therefore necessarily changes sign. Since Proposition 3.1 implies that λ1 is associ-
ated with a positive eigenfunction, we infer that λ1 ≤ − max(r1, r3).

Hereafter, we will compute the eigenpair (λ1, φ1) in three complementary cases:
(i) L > L;
(ii) r1 < r3 and L ≤ L;
(iii) r1 > r3 and L ≤ L.
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Recall that the threshold L is defined by:

L =

0 if r1 = r3,

1√
r2−max(r1,r3)

arccot
(√

r2−max(r1,r3)
|r1−r3|

)
if r1 ̸= r3.

This definition will become natural in a moment. Among other properties of the
eigenpair that will be summarized at the end of this subsection, we will establish
the following lemma.

Lemma 3.2. The generalized principal eigenvalue λ1 satisfies:
• if L ≤ L, then

λ1 = − max(r1, r3);
• if L > L, then λ1 is the unique zero of the function

λ ∈
(
−r2, λ

)
7→ cot

(
L
√
r2 + λ

)
−

r2 + λ−
√

(r1 + λ)(r3 + λ)√
r2 + λ(

√
−r1 − λ+

√
−r3 − λ)

where λ = min
(

− max(r1, r3), π2

L2 − r2

)
.

The constructions below will involve real constants C1, C2, C3, C4, C5 with dif-
ferent meanings in each case.

3.1.3. Construction of the generalized principal eigenpair in the case L > L. In the
first case we look for an eigenfunction of the form:

(8) φ1(y) =


C1 exp(L

√
−r1 − λ1y) if y ≤ 0,

C2 sin(L
√
r2 + λ1y + C3) if 0 < y < 1,

C4 exp(−L
√

−r3 − λ1y) if 1 ≤ y,

with C1 > 0, C2, C3, C4 satisfying

C1 = C2 sin(C3),
C2 sin(L

√
r2 + λ1 + C3) = C4 exp(−L

√
−r3 − λ1),

C1
√

−r1 − λ1 = C2
√
r2 + λ1 cos(C3),

C2
√
r2 + λ1 cos(L

√
r2 + λ1 + C3) = −C4

√
−r3 − λ1 exp(−L

√
−r3 − λ1),

0 < C3 < L
√
r2 + λ1 + C3 < π.

These conditions ensure that the function φ1 is C1 and positive. If such an eigen-
function exists, and since it is bounded by construction, then its corresponding
eigenvalue λ1 indeed coincides with the one from Proposition 3.1, hence our use of
the same notation.

Fixing without loss of generality C1 = 1 (which implies φ1(0) = 1) and rear-
ranging terms thanks to classical trigonometric identities, we end up with:

C2 = 1
sin C3

,

cotC3 =
√

−r1−λ1
r2+λ1

,

C4 = eL
√

−r3−λ1 sin(L
√

r2+λ1+C3)
sin C3

,

cot
(
L

√
r2 + λ1

)
= r2+λ1−

√
(r1+λ1)(r3+λ1)√

r2+λ1(
√

−r1−λ1+
√

−r3−λ1) ,

0 < C3 < L
√
r2 + λ1 + C3 < π.
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Note that the last inequality implies L
√
r2 + λ1 < π, so that cot(L

√
r2 + λ1) is

well-defined indeed.
It only remains to show that the equation defining implicitly λ1 admits indeed a

solution smaller than λ = min
(

− max (r1, r3) , π2

L2 − r2

)
. Note that the value of λ

depends on the sign of L − π√
r2−max(r1,r3)

. Even with the restriction L > L, this
quantity can have any sign, since the arccot function maps (0,+∞) onto (0, π/2),
so that the threshold π√

r2−max(r1,r3)
is larger than 2L.

The function

λ ∈
(
−r2, λ

)
7→ cot

(
L
√
r2 + λ

)
−

r2 + λ−
√

(r1 + λ)(r3 + λ)√
r2 + λ(

√
−r1 − λ+

√
−r3 − λ)

is the sum of two smooth decreasing functions, which can be checked after a lengthy
computation which we omit here. When λ → −r2, it tends to +∞. When λ → λ,
it tends to:

(1) −∞ if one of the following two conditions hold true:
(a) r1 = r3,
(b) r1 ̸= r3 and L ≥ π√

r2−max(r1,r3)
;

(2) cot
(
L
√
r2 − max(r1, r3)

)
−
√

r2−max(r1,r3)
|r1−r3| if r1 ̸= r3 and L < π√

r2−max(r1,r3)
.

The finite limit in the second case has exactly the sign of L − L, by decreasing
monotonicity of the arccot function, and is consequently negative. Therefore, in all
cases, the continuous decreasing function

(9) λ ∈
(
−r2, λ

)
7→ cot

(
L
√
r2 + λ

)
−

r2 + λ−
√

(r1 + λ)(r3 + λ)√
r2 + λ(

√
−r1 − λ+

√
−r3 − λ)

admits indeed a unique zero.
We conclude that in the case L > L, we have found a unique positive and

bounded eigenfunction of the form (8), associated with the eigenvalue λ1 defined
both as the unique zero of (9), and as the generalized principal eigenvalue from
Proposition 3.1.

3.1.4. Construction of the generalized principal eigenpair in the case r1 < r3 and
L ≤ L. In the second case we look for an eigenpair (λ1, φ1) of the form:

λ1 = −r3,

and

(10) φ1(y) =


C1 exp(L

√
−r1 − λ1y) if y ≤ 0,

C2 sin(L
√
r2 + λ1y + C3) if 0 < y < 1,

C4L(y − 1) + C5 if 1 ≤ y,

where C1 > 0, C2, C3, C4, C5 satisfy

(11)



C1 = C2 sin(C3),
C2 sin(L

√
r2 + λ1 + C3) = C5,

C1
√

−r1 − λ1 = C2
√
r2 + λ1 cos(C3),

C2
√
r2 + λ1 cos(L

√
r2 + λ1 + C3) = C4,

0 < C3 < L
√
r2 + λ1 + C3 ≤ π/2.
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The last condition of (11) ensures the nonnegativity of C4, and the positivity of C5,
hence of φ1 for all y > 1. On the other hand, notice that the eigenfunction φ1 is no
longer bounded here. Still, we have already pointed out that there is no positive
eigenfunction associated with some λ > −r3. Therefore, if an eigenfunction of the
above type (10) exists, then the corresponding eigenvalue −r3 = λ1 is the largest
eigenvalue associated with a positive eigenfunction, hence it again coincides with
the generalized principal eigenvalue from Proposition 3.1.

Fixing without loss of generality C1 = 1 (i.e., φ1(0) = 1) and rearranging terms
as in the previous case, we end up with:

C2 = 1
sin C3

,

cotC3 =
√

r3−r1
r2−r3

.

C4 =
√

r2−r3 cos(L
√

r2−r3+C3)
sin C3

,

C5 = sin(L
√

r2−r3+C3)
sin C3

,

0 < C3 < L
√
r2 − r3 + C3 ≤ π/2.

The value of C3 ∈ (0, π/2) is uniquely defined. It only remains to verify that
L

√
r2 − r3 + C3 ≤ π/2. By assumption, L ≤ L < π√

r2−r3
. Moreover, π/2 − C3 ∈

(0, π/2). Hence both L
√
r2 − r3 and π/2 −C3 are in (0, π), where the function cot

is well-defined and decreasing, and therefore L
√
r2 − r3 +C3 ≤ π/2 is equivalent to

cot(L
√
r2 − r3) ≥ cot

(π
2 − C3

)
= 1

cotC3
=
√
r2 − r3

r3 − r1
,

where classical trigonometric identities have been used. This inequality is true by
virtue of the assumption L ≤ L. Note that in the equality case, C4 = 0.

3.1.5. Construction of the generalized principal eigenpair in the case r1 > r3 and
L ≤ L. The construction in the third case is done exactly as in the second case,
interchanging the roles of r1 and r3.

3.1.6. Important properties of the generalized principal eigenpairs. To summarize,
the elliptic problem (6) admits a generalized principal eigenvalue λ1 characterized
in Proposition 3.1 and computed in Lemma 3.2. The eigenpair (λ1, φ1) also satisfies
the following:

(1) if L > L (which in particular is always the case when r1 = r3), then
λ1 ∈ (−r2,− max(r1, r3)), φ1 ∈ L∞(R), φ′

1(0) = L
√

−r1 − λ1 > 0, φ1
decays exponentially at ±∞;

(2) if r1 < r3 and L ≤ L, then λ1 = −r3, φ′
1(0) = L

√
r3 − r1 > 0, φ1 grows

linearly at +∞ and decays exponentially at −∞;
(3) if r1 > r3 and L ≤ L, then λ1 = −r1, φ′

1(0) ≤ 0, φ1 grows linearly at −∞
and decays exponentially at +∞;

(4) the definition of λ1 when L > L implies, by virtue of the implicit function
theorem, that (L, r1, r2, r3) 7→ λ1 is smooth in the parameter set {L >
L}; the definition of λ1 when L ≤ L implies that (L, r1, r2, r3) 7→ λ1 is
also smooth in the parameter set {L ≤ L, r1 < r3} and in the parameter
set {L ≤ L, r1 > r3}; it is therefore at least a piecewise-smooth function
globally, with at this point an unclear regularity at the interface {L = L}.
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3.2. Proof of Theorem 2.1. In this section, for the sake of brevity and clar-
ity, c⋆ is defined by anticipation as the quantity on the right-hand side of (1) in
Theorem 2.1, i.e.,

(12) c⋆ =


2√

r3 if cA < 2√
r3,

cA if 2√
r3 ≤ cA ≤ 2

√
−λ1,

F (cA) if 2
√

−λ1 < cA < 2√
r1 + 2

√
−λ1 − r1,

2√
r1 if 2√

r1 + 2
√

−λ1 − r1 ≤ cA

where the value of λ1 is given in Lemma 3.2 and F is defined by (3). Consequently,
c⋆ is not, at this point, a notation for a spreading speed. With this slight abuse of
notation, the proof of Theorem 2.1 reduces to the proof of two inequalities: c ≤ c⋆

and c ≥ c⋆.
The proof will be done in four steps:

(Step 1) construct a family of super-solutions showing that c ≤ c⋆ if cA ≤ 2
√

−λ1;
(Step 2) construct a family of super-solutions showing that c ≤ c⋆ if cA > 2

√
−λ1;

(Step 3) construct a family of sub-solutions showing that c ≥ c⋆ if cA ≤ 2
√

max(r1, r3)
or cA ≥ 2√

r1 + 2
√

−λ1 − r1);
(Step 4) construct a family of sub-solutions showing that c ≥ c⋆ if finally cA ∈

(2
√

max(r1, r3), 2√
r1 + 2

√
−λ1 − r1).

Bringing all four steps together will immediately end the proof. We note that
the open interval (2

√
max(r1, r3), 2√

r1 + 2
√

−λ1 − r1) is empty if, and only if,
r3 < r1 = −λ1. In such a case, the proof ends at Step 3.

Step 1. Assume cA ≤ 2
√

−λ1. Define

u(t, x) = 2 min
(

1, e−λ(max(2√
r3,cA))(x−max(2√

r3,cA)t−L)
)
,

where λ(c) = 1
2 (c−

√
c2 − 4r3). This function u(t, x) decays exponentially as x →

+∞ and its front propagates at the speed max(2√
r3, cA). Let us show that u is a

super-solution of (KPP). Note first that u(t, x) satisfies the inequality
∂tu− ∂xxu ≥ f(t, x, u(t, x))

in {x−max(2√
r3, cA)t < L}∪{x−max(2√

r3, cA)t > L}. Indeed, if x−max(2√
r3, cA)t <

L, then since u = 2 > 1, we have
∂tu− ∂xxu = 0 > f(t, x, u(t, x)),

while, if x− max(2√
r3, cA)t > L, then since λ(c)(c− λ(c)) = r3, we have

∂tu− ∂xxu = r3u = r(t, x)u ≥ f(t, x, u(t, x)).
Note also that the “correct angle condition” (i.e., negative derivative gap) at x −
max(2√

r3, cA)t = L is clearly satisfied. Therefore u is a super-solution of (KPP).
Note that Cu is also a super-solution of (KPP) for any C ≥ 1. Indeed, if

x− max(2√
r3, cA)t < L, then since Cu = 2C > 1, we have

∂t (Cu) − ∂xx (Cu) = 0 > f(t, x, Cu(t, x)),
while, if x− max(2√

r3, cA)t > L, then
∂t (Cu) − ∂xx (Cu) = r(t, x) (Cu) ≥ f(t, x, Cu(t, x))

by the assumption (A1). Also the correct angle condition at x = max(2√
r3, cA)t+L

clearly remains to hold after multiplication by a positive constant C. Now choose C
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sufficiently large so that Cu is initially above the initial condition u0. Then u(t, x) ≤
Cu(t, x) for all t ≥ 0, x ∈ R.

Recall that u decays exponentially as x → +∞ and its front propagates at
the speed max(2√

r3, cA). As we are assuming cA ≤ 2
√

−λ1, we have c⋆ =
max(2√

r3, cA). Hence the inequality u(t, x) ≤ Cu(t, x) proves that c ≤ c⋆. □

Step 2. Assume now that cA > 2
√

−λ1, so that in particular cA > 2√
r1 by (7).

Now, following [16], we consider the following continuous function:

(13) u(t, x) =


2 if x ≤ ct− ln 2

λ(c) ,

e−λ(c)(x−ct) if x ∈
(
ct− ln 2

λ(c) , cAt
)
,

e−λ(c)(cA−c)t e− cA(x−cAt)
2 φ1

(
x−cAt

L

)
if x ≥ cAt,

where c is a constant satisfying 2√
r1 ≤ c < cA, whose value will be specified later,

and in this step λ(c) = 1
2 (c−

√
c2 − 4r1). The principal eigenfunction φ1, which is

constructed as in Section 3.1, is appropriately normalized so that φ1(0) = 1. Since
φ1 is in both cases λ1 = −r3 or λ1 > −r3 bounded above by a linear function as
x → +∞, it is clear that u decays to 0 as x → +∞ and that the position of its
front propagates at the speed c. Let us show that u is a super-solution of (KPP).

First, in {x < ct− ln 2/λ(c)}, u satisfies, by virtue of the assumption (A1):

∂tu− ∂xxu = 0 ≥ f(t, x, u(t, x)).

In {ct− ln 2/λ(c) < x < cAt}, u satisfies:

∂tu− ∂xxu = r1u(t, x) ≥ f(t, x, u(t, x)).

In {x > cAt}, it is more convenient to change the viewpoint by defining

v(t, y) = u (t, Ly + cAt)
√
Le

c2
A

t

4 + cALy

2 =
√
Le−λ(c)(cA−c)t e

c2
A

t

4 φ1 (y) .

It satisfies by construction

∂tv − 1
L2 ∂yyv −mv =

(
−λ(c)(cA − c) + c2

A

4

)
v + λ1v.

Assuming λ1 − λ(c)(cA − c) + c2
A

4 ≥ 0, we obtain ∂tv − 1
L2 ∂yyv − mv ≥ 0, which

gives (back to the original variables)

∂tu− ∂xxu ≥ r(t, x)u(t, x) ≥ f(t, x, u(t, x)).

Summarizing, under the assumption that λ1 − λ(c)(cA − c) + c2
A

4 ≥ 0, u satisfies

∂tu− ∂xxu ≥ f(t, x, u(t, x))

on {x < ct− ln 2/λ(c)} ∪ {ct− ln 2/λ(c) < x < cAt} ∪ {cAt < x}.
In order for u to be a super-solution, we also need to verify the angle conditions

(i.e., negative derivative gap) at x = ct − ln 2/λ(c) and at x = cAt. The former is
easy to check by the definition of u in (13), so we only need to check

lim
x−cAt→0−

∂xu(t, x) ≥ lim
x−cAt→0+

∂xu(t, x),

which reads:

−λ(c) ≥ −cA

2 + φ′
1(0)
L

,
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or equivalently

φ′
1(0)
L

≤ cA − c+
√
c2 − 4r1

2 .

Thus, for u to be a super-solution, it suffices to verify the following two conditions:

φ′
1(0)
L

≤ cA − c+
√
c2 − 4r1

2 ,

λ1 − λ(c)(cA − c) + c2
A

4 ≥ 0.

Using the properties summarized in Section 3.1.6, we distinguish two cases:
(1) if λ1 = −r1, then by construction of φ1, φ′

1(0) ≤ 0, whence φ′
1(0)/L ≤ 0 <

(cA − c+
√
c2 − 4r1)/2, so that the first condition is always satisfied;

(2) if λ1 ̸= −r1, then by construction of φ1, φ′
1(0)/L =

√
−r1 − λ1 and the

first condition rewrites as

(14)
√

−r1 − λ1 ≤ cA

2 − λ(c).

Squaring both sides, and using that
(

cA

2 − λ(c)
)2 = c2

A

4 − r1 − (cA − c)λ(c)
thanks to the equality λ(c)2 −cλ(c)+r1 = 0, we find that the first condition
implies the second one.

In all cases, in order to show that u is a super-solution, all we have to verify is (14),
or equivalently

(15)
√
c2 − 4r1 ≥ c− cA + 2

√
−λ1 − r1.

Let us first consider the subcase when cA ≥ 2√
r1 +2

√
−λ1 − r1. Then the above

inequality is automatically satisfied with c = 2√
r1. Thus u is a super-solution if we

choose c = 2√
r1. As in the previous case, Cu is also a super-solution for any C > 1.

Choose C appropriately large so that Cu(0, t) ≥ u0(x). Then u(t, x) ≤ Cu(t, x)
for all t ≥ 0, x ∈ R. Since u decays to 0 as x → +∞ and propagates at the speed
c = 2√

r1, the inequality u(t, x) ≤ Cu(t, x) proves that c ≤ 2√
r1, where 2√

r1
precisely coincides with c⋆ in this subcase. Hence c ≤ c⋆ in this subcase.

Next assume that cA < 2√
r1 + 2

√
−λ1 − r1. Since c ≥ 2√

r1, we have c− cA +
2
√

−λ1 − r1 > 0. Hence we can square both sides of (15) and rewrite it as

c ≥ 1
2

(
cA − 2

√
−λ1 − r1 + 4r1

cA − 2
√

−λ1 − r1

)
= F (cA)

where the function F is the one defined in (3). It is a smooth and decreasing
function. It maps the interval

(
2
√

−λ1 − r1, 2
√
r1 + 2

√
−λ1 − r1

]
onto the interval

[2√
r1,+∞). Moreover its unique fixed point is F (2

√
−λ1) = 2

√
−λ1. Therefore it

satisfies 2√
r1 ≤ F (c′) < c′ for any c′ ∈

(
2
√

−λ1, 2
√
r1 + 2

√
−λ1 − r1

]
. Notice also

that c⋆ coincides with F (cA) in this same interval.
Finally, the partial differential inequality and the angle condition are again sat-

isfied whenever 2
√

−λ1 < cA < 2√
r1 + 2

√
−λ1 − r1 and for any c ∈ [F (cA), cA),

this last interval being nonempty. Therefore u is a super-solution in this case. Ar-
guing precisely as in the previous case, we see that Cu is also a super-solution for
any C ≥ 1. By choosing C sufficiently large, we have u(t, x) ≤ Cu(t, x) as in the
previous case, which proves that c ≤ c⋆ if cA > 2

√
−λ1. □
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Before we proceed, for later use we summarize our analysis in this step in the
form of the following lemma, which is presented in a slightly generalized setting:

Lemma 3.3. Assume cA > 2
√

−λ1 and that A(t) = cAt for t ∈ [0, T ) for some
0 < T ≤ +∞. Let u be the function defined by (13), with c = c⋆ from (12). Then
for any constant C ≥ 1, Cu is a super-solution of (KPP) for t ∈ [0, T ) and x ∈ R.

Step 3. Define r̃(t, x) by (A2) with r2 replaced by r3, and let f̃(t, x, u) be a function
satisfying (A1), ∂uf̃(t, x, 0) = r̃(t, x) and f̃(t, x, u) ≤ f(t, x, u). Denote by ũ(t, x)
the solution of (KPP) with f replaced by f̃ for the same initial data u0. Then ũ is
a subsolution of the original (KPP), therefore ũ(t, x) ≤ u(t, x) for all t ≥ 0, x ∈ R.
Thus the speed of ũ gives a lower bound for the speed of u. If r1 = r3, then r̃(t, x)
is identical to r1, therefore the spreading speed of ũ is clearly 2√

r1. On the other
hand, if r1 ̸= r3, then r̃(t, x) satisfies the assumption of Theorem 1.1, therefore
the spreading speed of ũ is again well understood. Note that the assertions of
Theorem 1.1 remain valid even in the case r1 = r3. Indeed, if r1 = r3, the cases (a)
(ii) and (b) (ii) become empty and all other cases give the value c⋆ = 2√

r1 = 2√
r3.

Therefore, in what follows we do not deal with the case r1 = r3 separately.
First, we consider the case where cA ≤ 2

√
max(r1, r3). If r1 ≤ r3, then by (b)

(i) of Theorem 1.1, the speed of ũ is 2√
r3, which coincides with the value of c⋆ in

(12). On the other hand, if r1 > r3, then (a) (i), (ii) of Theorem 1.1 apply, which
show that the speed of ũ equals max(2√

r3, cA). Again this value coincides with c⋆

in (12), since 2
√

max(r1, r3) ≤ 2
√

−λ1 by virtue of (7). Thus we get in this case
that c ≥ c⋆.

Next, in the case where cA ≥ 2√
r1 + 2

√
−λ1 − r1, then by (7) we have cA ≥

2√
r1 +2

√
max(r3 − r1, 0). Hence, by Theorem 1.1 (a) (iii) and (b) (iii), the spread-

ing speed of ũ is 2√
r1. This gives c ≥ 2√

r1, which again coincides with c⋆.
To summarize this step, we have found as announced that c ≥ c⋆ if either

cA ≤ 2
√

max(r1, r3) or cA ≥ 2√
r1 + 2

√
−λ1 − r1. □

Step 4. Here we assume that cA ∈ (2
√

max(r1, r3), 2√
r1+2

√
−λ1 − r1). Therefore,

throughout this step we have that c⋆ = min (cA, F (cA)) > 2√
r1, where F is given

by (3). We refer to Step 2 above for related computations on the function F ,
including the fact that F (c′) > c′ for any c′ < 2

√
−λ1.

Now we consider, for large values of R > 0,


−L−2 (φR

1
)′′ −mφR

1 = λR
1 φ

R
1 in (−R,R),

φR
1 (±R) = 0,

φR
1 > 0 in (−R,R),

φR
1 ∈ W 2,1((−R,R)).

By the Krein–Rutman theorem, the above problem possesses the principal eigenpair
(λR

1 , φ
R
1 ), with φR

1 > 0, which is unique up to multiplication of φR
1 by a constant.

Moreover, according to [8] (see also Proposition 3.1 above), we have that

λ1 = lim
R→+∞

λR
1 .
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Below, we extend φR
1 in R by setting φR

1 = 0 in R\(−R,R). We consider the
following continuous function:

(16) u(t, x) =



0 if x < ln S
η + x0 − 2R′,

ιO(x) if x ∈
[

ln S
η + x0 − 2R′, ln S

η + x0 − R′

3

)
,

ισ
2 if x ∈

[
ln S

η + x0 − R′

3 ,
ln S

η + x0 + ct+ x1

)
,

ιP (t, x) if x ∈
[

ln S
η + x0 + ct+ x1, X(t)

)
,

ιQ(t, x) if x ≥ X(t),

where

O(x) = σ sin
(

π

2R′

(
x− lnS

η
− x0 + 2R′

))
,

P (t, x) = e−λ(c)(x−ct−x0) − S e−(λ(c)+η)(x−ct−x0),

Q(t, x) = γ e−λ(c)(cA−c)t e− cA(x−cAt)
2 φR

1

(
x− cAt

L

)
,

(17)

with η > 0, S > 0, R′ > π
2√

r1
, ι ∈ (0, 1], σ ∈ (0, 2 maxx∈R P (0, x)), where λ(c) =

1
2 (c −

√
c2 − 4r1) and c ∈ (2√

r1, cA), which is a nonempty interval here, x0 ∈ R,
γ > 0, R > 1, with the principal eigenfunction φR

1 appropriately normalized so
that φR

1 (0) = 1. The values of x1, X(t) are chosen to make u continuous at
x = ln S

η + x0 + ct+ x1 and at x = X(t). More precisely:

• x1 > 0 is the well-defined smallest zero of x 7→ σ
2 − P

(
0, x+ x0 + ln S

η

)
(note that it satisfies indeed, for any t ≥ 0, σ

2 = P
(
t, ln S

η + x0 + ct+ x1

)
and note moreover that x1 → 0 as σ → 0);

• X(t) ∈ (cAt−RL, cAt) is, for each t ≥ 0, the smallest zero of x 7→ P (t, x)−
Q(t, x).

The values of ι, σ, η, S, x0, R and γ will be specified later on. Typically, 1/ι, 1/σ,
1/η, 1/γ, S, −x0 and R are large positive numbers. We will also check later that c
can be chosen arbitrarily close to c⋆.

The existence and uniqueness of X(t), provided the parameters are appropriately
chosen, will be verified in Lemma 3.4. In particular, we point out that r(t, x) = r1
if x ≤ X(t) due to X(t) ≤ cAt. Lemma 3.4 will also establish that ln S

η + x0 <

inft≥0 X(t)−ct. Then, choosing σ small enough so that ln S
η +x0+x1 ≤ inft≥0 X(t)−

ct, we get that each interval in the above definition of u is nonempty, which in turn
means that u is continuous.

Note that, for each t ≥ 0, the support of u(t, x) is the interval [ ln S
η + x0 −

2R′, cAt + RL], and that the main front of u(t, x), which is represented by the
above function P (t, x), propagates at the speed c. Behind the front, u(t, x) = ισ/2
except near the left endpoint of its support. Moreover, u is globally proportional
to ι and this parameter can be interpreted as an amplitude parameter.

In order for u to be a potential sub-solution, first the following angle condition
(i.e., positive derivative gap) needs to be satisfied:

lim
x→X(t)−

∂xu(t, x) ≤ lim
x→X(t)+

∂xu(t, x).
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This will be a consequence of Lemma 3.4 below, whose first two statements imply
(18) lim

x→X(t)−
∂xu(t, x) < 0 < lim

x→X(t)+
∂xu(t, x).

We point out that the other angle conditions at the interfaces of the other subin-
tervals are more straightforward, hence we skip their proof for the sake of brevity.

Next, we check that u satifies the desired differential inequalities on each subdo-
main. First, in the region

{
x < ln S

η + x0 − 2R′
}

, u is identical to 0, which directly
yields ∂tu− ∂xxu ≤ f(t, x, u(t, x)).

In
{
x ∈

[
ln S

η + x0 − 2R′, ln S
η + x0 − R′

3

)}
, the function u satisfies:

∂tu− ∂xxu = π2

4R′2u.

Recall that ln S
η + x0 − R′

3 < 0 ≤ cAt for t ≥ 0 by Lemma 3.4, and thus we have
that ∂uf(t, x, 0) = r1 here. By virtue of (A1) and π2

4R′2 < r1, we can assume that σ
is so small that

f(t, x, v) ≥ π2

4R′2 v,

for any x ≤ ln S
η + x0 − R′

3 and v ∈ [0, σ]. Remarking that u ≤ ισ ≤ σ in{
x ∈

[
ln S

η + x0 − 2R′, ln S
η + x0 − R′

3

)}
(by virtue of ι ≤ 1), we deduce:

∂tu− ∂xxu ≤ f(t, x, u(t, x)).

In
{
x ∈

[
ln S

η + x0 − R′

3 ,
ln S

η + x0 + ct+ x1

)}
, again and quite similarly,

∂tu− ∂xxu = 0 ≤ f(t, x, u(t, x)),
provided σ is small enough, uniformly in ι ≤ 1.

Next, in
{

ln S
η + x0 + ct+ x1 < x < X(t), t > 0

}
, the function u satisfies:

∂tu− ∂xxu

= ιr1 e−λ(c)(x−ct−x0) − ιS
(
r1 − η2 + η

√
c2 − 4r1

)
× e−(λ(c)+η)(x−ct−x0)

= r1u(t, x) − ιSη
(√

c2 − 4r1 − η
)

× e−(λ(c)+η)(x−ct−x0)

≤ u(t, x)e−η(x−ct−x0)
((

r1 − f(t, x, u(t, x))
u(t, x)

)
eη(x−ct−x0) − Sη

(√
c2 − 4r1 − η

))
+ f(t, x, u(t, x)).

We claim that, denoting g(t, x, u) = r1 − f(t, x, u)/u, the function

(t, x) 7→ g(t, x, u(t, x))eη(x−ct−x0) − Sη
(√

c2 − 4r1 − η
)

is negative in
{

ln S
η + x0 + ct < x < X(t), t > 0

}
for η small enough and S large

enough (depending on η). If this claim holds true, then u indeed satisfies the desired
differential inequality in this subdomain.

Let us therefore verify this claim. First recall that X(t) < cAt. Then, by the
assumption (A1),

r1u ≥ f(t, x, u) ≥ r1u−Mu2 for all (t, x) ∈ {x < cAt} and all u ≥ 0,
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so that

0 ≤ g(t, x, u) ≤ Mu for all (t, x) ∈ {x < cAt},

for some M > 0. It follows that

g(t, x, u(t, x))eη(x−ct−x0) − Sη
(√

c2 − 4r1 − η
)

≤ Mu(t, x)eη(x−ct−x0) − Sη
(√

c2 − 4r1 − η
)

≤ Mιe−(λ(c)−η)(x−ct−x0) − Sη
(√

c2 − 4r1 − η
)

≤ Mιe−(λ(c)−η) ln S/η − Sη
(√

c2 − 4r1 − η
)

in
{

ln S
η + x0 + ct < x < X(t), t > 0

}
. Therefore, provided that S > 1 and η <

λ(c), we get that

g(t, x, u(t, x))eη(x−ct−x0) − Sη(
√
c2 − 4r1 − η) ≤ S

(
MιS− λ(c)

η − η(
√
c2 − 4r1 − η)

)
≤ S

(
MιS−1 − η(

√
c2 − 4r1 − η)

)
.

We deduce that if

η < min(λ(c),
√
c2 − 4r1) and S > max

(
1, M

η
(√
c2 − 4r1 − η

)) ,
then u is a sub-solution in

{
ln S

η + x0 + ct < x < X(t), t > 0
}

, independently of
the exact values of ι ∈ (0, 1], R > 1 and x0 ∈ R.

Finally, for {x > X(t)}, we introduce a new function

v(t, y) = u(t, Ly + cAt)
√
Le

c2
A

t

4 + cALy

2 = ιγ
√
Le−λ(c)(cA−c)t e

c2
A

t

4 φR
1 (y) .

It satisfies by construction

∂tv − 1
L2 ∂yyv −mv =

(
−λ(c)(cA − c) + c2

A

4 + λR
1

)
v.

Assume that

(19) λ1 − λ(c)(cA − c) + c2
A

4 < 0,

set δ = 1
2 |λ1 −λ(c)(cA −c)+ c2

A

4 | and recall limR→+∞ λR
1 = λ1. Assume now that R

is so large that λR
1 − λ(c)(cA − c) + c2

A

4 < −δ, whence ∂tv − 1
L2 ∂yyv − mv ≤ −δv,

which gives (back to the original variables)

∂tu− ∂xxu ≤ (r(t, x) − δ)u(t, x).

Using again (A1) which ensures the continuity of (t, x, u) 7→ f(t, x, u)/u, and all
other parameters being fixed, we can assume that γ > 0 is so small that

r(t, x) − δ ≤ inf
(t,x,v)∈R×R×

[
0,γe

cARL
2 max φR

1

] f(t, x, v)
v

.
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Remarking that u ≤ γe
cARL

2 maxφR
1 in {x > X(t)} (by virtue of ι ≤ 1 and X(t) ≥

cAt−RL), we deduce:
∂tu− ∂xxu ≤ f(t, x, u(t, x)).

We observe that, c < cA ∈ (2
√

max(r1, r3), 2√
r1 + 2

√
−λ1 − r1) being given, the

above necessary condition (19), i.e., λ1 − λ(c)(cA − c) + c2
A

4 < 0, is equivalent to
c < F (cA). Finally, we have shown that the function defined in (16) is a sub-
solution, and that its speed c can be chosen arbitrarily close to min (cA, F (cA)),
which coincides with c⋆ in this parameter range.

To conclude Step 4, it remains to prove important properties of X(t).

Lemma 3.4. Let P (t, x), Q(t, x) be as in (17). For any positive values of c, η, S,R, γ
with c < cA, there exists x0 ∈ R such that the equation P (t, x) = Q(t, x), or more
precisely,

e−λ(c)(x−ct−x0) − S e−(λ(c)+η)(x−ct−x0)

= γ e−λ(c)(cA−c)t e− cA(x−cAt)
2 φR

1

(
x− cAt

L

)(20)

admits for all t ≥ 0 an isolated solution X(t) ∈ R such that:
(a) ∂xP (t,X(t)) < 0;
(b) ∂xQ(t,X(t)) > 0;
(c) cAt−RL < X(t) < cAt;
(d) ln S

η < inft≥0 X(t) − ct− x0.
Moreover, the trajectory t 7→ X(t) satisfies:

(e) X ∈ C1([0,+∞), (−RL,+∞));
(f) X(t) = cAt+O(1) as t → +∞.

Proof. For any t ≥ 0, the function P : x 7→ e−λ(c)(x−ct−x0) − S e−(λ(c)+η)(x−ct−x0)

is unimodal, increasing on the left of x = ct+ x0 + 1
η ln

(
S(λ(c)+η)

λ(c)

)
and decreasing

on its right. Therefore, if

(21) x0 < −RL− 1
η

ln
(
S(λ(c) + η)

λ(c)

)
,

then, since c < cA, x 7→ P (t, x) is, at any t ≥ 0, decreasing in [cAt − RL, cAt]. In
particular, statement (a) will be a consequence of (c).

For any t ≥ 0, the function

y ∈ [−R,+R] 7→ γ e−λ(c)(cA−c)t e− cALy

2 φR
1 (y)

admits as derivative:

y ∈ [−R,+R] 7→ γ e−λ(c)(cA−c)t e− cALy

2

(
−cAL

2 φR
1 (y) +

(
φR

1
)′ (y)

)
.

At y = −R, by virtue of the Hopf lemma (i.e.,
(
φR

1
)′ (−R) > 0), this deriv-

ative is positive. Similarly, at y = +R, the derivative is negative. Therefore,
by virtue of the intermediate value theorem, there exists r ∈ (−R,R) such that
y 7→ γ e−λ(c)(cA−c)t e− cALy

2 φR
1 (y) is increasing in (−R,−R + r). Without loss of

generality, up to reducing r we may assume that −R+ r < 0.
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Consequently, the function
x ∈ [−RL+ cAt,−(R− r)L+ cAt] 7→ Q(t, x)

is increasing. Statement (b) of Lemma 3.4 follows from this monotonicity property,
along with the fact to be established below that X(t) belongs to the interval [−RL+
cAt,−(R− r)L+ cAt].

In view of the monotonicities in x of each side of the equality (20) (decreasing
on the left, increasing on the right), if −x0 is so large that

(22) eλ(c)((R−r)L+x0) < γ e
cA
2 (R−r)LφR

1 (−R+ r),
then by the intermediate value theorem, at t = 0 there is a (unique) solution X(0)
of (20) in (−RL,−(R − r)L). By the implicit function theorem, this solution can
be extended in a continuously differentiable way in an open time interval around
t = 0. To show that X(t) can be extended globally, for all t ≥ 0, it suffices to
prove that X(t) < cAt− (R− r)L for any t such that X(t) is well-defined. In order
to verify this inequality, recall that X(t) satisfies P (t,X(t)) = Q(t,X(t)) and that
P (t, x) (respectively Q(t, x)) is monotone decreasing (respectively increasing) in x.
Therefore all we need to show is that Q(cAt− (R − r)L, t) > P (cAt− (R − r)L, t)
for such t, or equivalently,

γ e−λ(c)(cA−c)t e
cA
2 (R−r)LφR

1 (−R+ r)
> e−λ(c)(cAt−(R−r)L−ct−x0) − S e−(λ(c)+η)(cAt−(R−r)L−ct−x0).

This follows directly from:

γ e
cA
2 (R−r)LφR

1 (−R+ r) > eλ(c)((R−r)L+x0)

> eλ(c)((R−r)L+x0) − S e(λ(c)+η)((R−r)L+x0)−η(cA−c)t,

where we used (22).
By construction, we have that cAt − RL < X(t) < cAt, i.e., (c) holds true. As

explained above, statement (a) and (b) follow, and so does (f). The differentiability
property (e) follows from the implicit function theorem. Finally, (d) i.e the estimate
ln S

η < inft≥0 X(t) − ct− x0 results from a direct calculation:

X(t) > cAt−RL > cAt+ x0 + lnS
η

+ ln(1 + η/λ(c))
η

> ct+ x0 + lnS
η
,

where we used (21). This completes the proof of Lemma 3.4. □

To summarize Step 4, thanks to Lemma 3.4, the key partial differential inequality
and the angle condition (18) are verified for any c ∈

(
2√

r1,min (cA, F (cA))
)
, with

an amplitude parameter ι ∈ (0, 1] whose value can be chosen arbitrarily small.
Since u is compactly supported, choosing ι small enough, u is below the solution u

at time t = 1. Hence u is a sub-solution for all t ≥ 1 and this proves that c ≥ c⋆ if
cA ∈ (2

√
max(r1, r3), 2√

r1 + 2
√

−λ1 − r1). □

Again, for later use we state the following lemma which sums up our construction
of a sub-solution in this last step.

Lemma 3.5. Assume that cA ∈ (2
√

max(r1, r3), 2√
r1 + 2

√
−λ1 − r1) and that

A(t) = cAt. Let c⋆ and u respectively be defined by (12) and (16) with c = c⋆ − ε.
Then for any ε > 0 sufficiently small, there exist positive constants R′, σ, η, S,R, x0, γ
such that, for all ι ∈ (0, 1], the function u is a sub-solution of (KPP) for t > 0 and
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x ∈ R whose front propagates at the speed c. For each t ≥ 0, the support of u(t, x)
is compact, and u is proportional to the amplitude parameter ι.

3.3. Proof of Corollaries 2.2 and 2.3. The results follow from simple com-
parison arguments. As the proof proceeds exactly the same way, we replace the
constant L in (A2) by an arbitrary positive and continuous function L(t).

Proof of Corollary 2.2. Assuming that supt≥0
A(t)+L(t)

L(t) ≤ 2√
r3, we have that

r(t, x) ≤ r(t, x) ≤ r(t, x),
where

r : (t, x) 7→

{
min (r1, r2, r3) if x < 2√

r3t,

r3 if 2√
r3t ≤ x,

r : (t, x) 7→

{
max (r1, r2, r3) if x < 2√

r3t,

r3 if 2√
r3t ≤ x.

Let u and u denote the solutions of (KPP) corresponding to r and r, respectively.
Then by the comparison principle,

u(t, x) ≤ u(t, x) ≤ u(t, x).
According to Theorem 1.1, u and u both spread with speed 2√

r3. Consequently,
we have c = c = 2√

r3 under the assumptions of Corollary 2.2. □

Proof of Corollary 2.3. The proof proceeds similarly. Notice that if inft≥0
A(t)

t ≥
2√

r1 + 2
√
r2 − r1, then

r(t, x) ≤ r(t, x) ≤ r(t, x),
where

r : (t, x) 7→

{
r1 if x < 2√

r1 + 2
√
r2 − r1,

min (r1, r2, r3) if 2√
r1 + 2

√
r2 − r1 ≤ x,

r : (t, x) 7→

{
r1 if x < 2√

r1 + 2
√
r2 − r1,

max (r1, r2, r3) if 2√
r1 + 2

√
r2 − r1 ≤ x.

Recall that max (r1, r2, r3) = r2. Applying Theorem 1.1 and using the comparison
principle as in the proof of Corollary 2.2, we find that c = c = 2√

r1. □

3.4. Proof of Theorem 2.4. Here we prove that if the moving speed of the hetero-
geneity alternates between two values very slowly, then the minimal and maximal
spreading speeds c and c may differ. We will prove this result by constructing
appropriate super- and sub-solutions.

The values of r1, r2, r3, L being fixed, we deduce from the statement of Theo-
rem 2.1 a value for λ1 which does not depend on cA. By assumption, λ1 ̸= −r1,
and 2

√
−λ1 < cA,1 < cA,2 < 2√

r1 + 2
√

−λ1 − r1. For each i ∈ {1, 2}, we define

(23) c⋆
i = F (cA,i) = 1

2

(
cA,i − 2

√
−λ1 − r1 + 4r1

cA,i − 2
√

−λ1 − r1

)
.

As one can check, we have

2
√
r1 < c⋆

2 < c⋆
1 < 2

√
−λ1 < cA,1 < cA,2.

Note that the above definition of c⋆
i (i = 1, 2) agrees with that of c⋆ in (12) for the

case 2
√

−λ1 < cA < 2√
r1 + 2

√
−λ1 − r1, where cA will be replaced by cA,1 or cA,2
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in the later arguments. This enables us to apply Lemma 3.3 and Lemma 3.5 in the
construction of super- and sub-solutions.

Hereafter, we define

(24) r̃ : z 7→


r1 if z < 0,
r2 if 0 ≤ z < L,

r3 if L ≤ z.

Thus the function r(t, x) in (A2) is expressed as r(t, x) = r̃(x−A(t)).
The aim of this section is to prove that, under the assumptions of Theorem 2.4,

the minimal and maximal spreading speeds of the solution u of (KPP) satisfy
c ≤ c⋆

2 + 2ε < c⋆
1 − 2ε ≤ c,

for all sufficiently small ε > 0, which implies c ≤ c⋆
2 < c⋆

1 ≤ c.
Before starting the proof, we note that the function A(t) defined in (4) satisfies

cA,1 t ≤ A(t) < cA,2 t for all t ≥ 0.
In particular, we have A(t2n+1) < cA,2 t2n+1 (n = 0, 1, 2, 3, . . .).

We will use basically the same super- and sub-solutions constructed in the proof
of Theorem 2.1 with minor modifications. Since we are assuming 2

√
−λ1 < cA,1 <

cA,2 < 2√
r1 + 2

√
−λ1 − r1, the functions u defined in (13) in Step 2 of Section 3.2

and u defined in (16) in Step 4 will be relevant.
First, in the time interval I2n+1 = [t2n+1, t2n+2), we use the function u defined

in (13) with cA replaced by cA,2 and with c = c⋆
2. It gives an upper bound for c. In

order to make this function to serve as a super-solution in our later argument, we
present a slightly modified version of Lemma 3.3 as follows:

Lemma 3.6. Assume cA > 2
√

−λ1 and that A(t) = cA(t− τ)+B for t ∈ [τ, τ +T )
for some constants B, τ ≥ 0 and T > 0. Let u be the function defined by (13),
with c = c⋆ from (12). Then for any constant C ≥ 1, Cu(t− τ, x− B) is a super-
solution of (KPP) for t ∈ [τ, τ + T ) and x ∈ R.

Proof. By the change of variables s = t − τ , y = x − B, the above function is
converted to Cu(s, y) and (KPP) is converted to

∂su = ∂yyu+ f̂(s, y, u) (0 < s < T, y ∈ R),

where f̂(s, y, u) := f(s + τ, y + B, u). Since f̂ satisfies the same assumption as
(A1) and (A2) for τ ∈ [0, T ), Cu(s, y) is a super-solution of the above equation by
Lemma 3.3. Coming back to the original variables proves the lemma. □

Next, in the time interval I2n = [t2n, t2n+1), we will modify the sub-solution u
in (16). More precisely, we will consider a function u1,δ that satisfies

(25) ∂tu1,δ ≤ ∂xxu1,δ + (r̃(x− cA,1t) − δ)u1,δ −Mu2
1,δ,

and propagates with some speed c ≥ c⋆
1 − ε. Notice that the spreading speed c⋆

depends continuously on the values r1, r2, r3, so that the above speed inequality
holds true if δ is sufficiently small. This will give a lower bound for c.

With these notations, we will proceed in two steps to prove Theorem 2.4.

Step 1: Proof of c ≤ c⋆
2 + 2ε. Let u2 denote the function u in (13) with c = c⋆

2 as in
(23), which coincides with c⋆ in (12) for the case 2

√
−λ1 < cA < 2√

r1+2
√

−λ1 − r1,
where cA is replaced by cA,2. For each n ∈ N, since A(t) = A(t2n+1)+cA,2(t−t2n+1)
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for t ∈ [t2n+1, t2n+2), by Lemma 3.6, Cu2(t− t2n+1, x−A(t2n+1) is a super-solution
of (KPP) for t ∈ [t2n+1, t2n+2) and for any constant C ≥ 1. Recall also that u2(x, t)
decays exponentially as x → +∞, and that its front propagates at the speed c = c⋆

2.
Let us also introduce an auxiliary super-solution u#. Let η > 0 and let

λ# = cA,2

2 +
√

−r3 − λ1 + η, c# = λ# + r2

λ# .

Choose K > 1 such that K min
(

1, e−λ#x
)

≥ u0(x) for all x ∈ R. By construction,
c# ≥ 2√

r2 and
(λ#)2 − c#λ# = −r2 ≤ −r(t, x),

for all t > 0 and x ∈ R. Thus

u# : (t, x) 7→ min
(

1, e−λ#(x−c#t)
)

is a super-solution of (KPP) satisfying u# ≥ u globally in time and space. Moreover,
we can choose η large enough so that (c# − cA,2)t1 > L, which implies

(c# − cA,2)t2n+1 > L for all n ∈ N.
Thanks to this auxiliary super-solution, we have a rough control of the decay of
u(t, x) as x → +∞ for any t > 0.

Next, with u2 as defined above, we construct a sequence (Kn)n∈N such that
(26) u#(t2n+1, x) ≤ Knu2(0, x−A(t2n+1)) for all x ∈ R, all large n ∈ N.
In order to show that such (Kn)n∈N exists, it suffices to show that

sup
x∈R

u#(t2n+1, x)
u2(0, x−A(t2n+1)) < +∞ for all large n ∈ N.

Let us estimate the above quantity.
First, in the region x ≥ c#t2n+1, since (c# − cA,2)t2n+1 > L, we have

x ≥ cA,2t2n+1 + L ≥ A(t2n+1) + L.

Therefore, by the definition of u2 in (13) for the case x ≥ cAt,

u2(0, x−A(t2n+1)) = e−
cA,2

2 (x−A(t2n+1))φ1

(
x−A(t2n+1)

L

)
≥ Ce−

cA,2
2 (x−A(t2n+1))e−

√
−r3−λ1(x−A(t2n+1)),

for some C > 0. Here we used the fact that either r1 < r3, or r1 ≥ r3 and L > L
(see Remark 2.1), so that φ1 is defined by either (8) or (10). Moreover, from our
assumptions on the sequence (tn)n∈N we have that

A(t2n+1) = cA,1t2n+1 + o(t2n+1),
as n → +∞. It follows that, by our choice of λ# and η > 0,

u#(t2n+1, x)
u2(0, x−A(t2n+1)) ≤ K

C
e−λ#(x−c#t2n+1)e(

cA,2
2 +

√
−r3−λ1)(x−A(t2n+1))

≤ K

C
e(

cA,2
2 +

√
−r3−λ1)(c#t2n+1−A(t2n+1))

≤ K

C
e( cA,2

2 +
√

−r3−λ1)(c#−cA,1+1)t2n+1 ,

for all x ≥ c#t2n+1.
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Next, in the region x ≤ c#t2n+1, we have u#(t2n+1, x) = K, and, by (13),

u2(0, x−A(t2n+1)) = min
(

2, e−λ(c⋆
2)(x−A(t2n+1))

)
≥ 1,

if x ≤ A(t2n+1), while using also the definition of φ1 in either (8) or (10),

u2(0, x−A(t2n+1)) ≥ e−
cA,2(x−A(t2n+1))

2 min
[0,1]

φ1 × e−
√

−r3−λ1(x−A(t2n+1))

if A(t2n+1) ≤ x ≤ c#t2n+1. Thus

inf
x≤c#t2n+1

u2(0, x−A(t2n+1)) ≥ min
[0,1]

φ1 × e−( cA,2
2 +

√
−r3−λ1)(c#t2n+1−A(t2n+1)) > 0.

Hence
u#(t2n+1, x)

u2(0, x−A(t2n+1)) ≤ K

min[0,1] φ1
× e(

cA,2
2 +

√
−r3−λ1)(c#t2n+1−A(t2n+1))

≤ K

min[0,1] φ1
× e(

cA,2
2 +

√
−r3−λ1)(c#−cA,1+1)t2n+1

for x ≤ c#t2n+1.
Therefore, for (26) to hold, it suffices to define the sequence (Kn) by

(27) Kn = K max
(

1
C
,

1
min[0,1] φ1

)
e( cA,2

2 +
√

−r3−λ1)(c#−cA,1+1)t2n+1 ,

for all large n. Combining (26) and the inequality u# ≥ u, we obtain

u(t2n+1, x) ≤ u#(t2n+1, x) ≤ Knu2(0, x−A(t2n+1)).
As mentioned before, Knu2(t− t2n+1, x−A(t2n+1)) is a super-solution in t ∈ I2n+1,
hence, by the comparison principle, we have for n large enough that

u(t, x) ≤ Knu2(t− t2n+1, x−A(t2n+1)) for all x ∈ R, t ∈ I2n+1.

In particular, setting t = t2n+2, we obtain
(28) u(t2n+2, x) ≤ Knu2(|I2n+1|, x−A(t2n+1)) for all x ∈ R.

Let Bn denote the value of the right-hand side of (28) at x = xn := (c⋆
2 + 2ε)t2n+2,

that is,

Bn := Knu2

(
|I2n+1|, t2n+2

(
c⋆

2 + 2ε− A(t2n+1)
t2n+2

))
.

Then, by (13) we have that

Bn = Kne
−λ(c⋆

2)(2εt2n+2−A(t2n+1)+c⋆
2t2n+1)

= Kn e−2λ(c⋆
2)εt2n+2 eλ(c⋆

2)(A(t2n+1)−c⋆
2t2n+1),

(29)

provided that

c⋆
2(t2n+2 − t2n+1) − ln 2

λ(c⋆
2) ≤ t2n+2

(
c⋆

2 + 2ε− A(t2n+1)
t2n+2

)
≤ cA,2(t2n+2 − t2n+1),

which is clearly true for n large enough and ε > 0 small, since t2n+1 = o(t2n+2)
as n → +∞. Using (27) and again the assumption t2n+1 = o(t2n+2), we see that
the right-hand side of (29) tends to 0 as n → +∞. It follows that

max
x≥xn

Knu2(|I2n+1|, x−A(t2n+1)) → 0 as n → +∞,
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since u2(|I2n+1|, x−A(t2n+1)) is monotone decreasing in x. This and (28) imply
max
x≥xn

u(t2n+2, x) → 0 as n → +∞,

which proves c ≤ c⋆
2 + 2ε. □

Step 2: Proof of c ≥ c⋆
1 − 2ε. By virtue of the global boundedness of the solution

u of (KPP), there exists ρ > 0 such that f(t, x, u(t, x)) ≥ −ρu(t, x) for any (t, x) ∈
[0,+∞) × R. Therefore, by the comparison principle, for any t > 0 and x ∈ R,

u(t, x) ≥ e−ρt

√
4πt

∫
R

e− (x−y)2
4t u0(y)dy.

Then, there exists β > 0 and x0 ∈ R such that u0 ≥ β1[x0−β,x0+β]. It follows that,
for any c > 0 and t > 0,

u(t, ct) ≥ β e−ρt− c2
4 t

√
4πt

∫ x0+β

x0−β

e
cy
2 − y2

4t dy ≥ β2 e−ρt− c2
4 t

√
πt

e
c(x0−β)

2 e−
x2

0+β2+2|x0|β

4t .

Recall that u1,δ is a subsolution of (25), as constructed in (16) with c ≥ c∗
1 − ε; see

also Lemma 3.5. For any n ∈ N, the support of u1,δ(0, x−A(t2n)) is exactly

A(t2n) +
[

lnS
η

+ x0 − 2R′, LR

]
.

Consequently, for any n ∈ N, the support of u1,δ(0, x − A(t2n)) is included in[
cA,1t2n + ln S

η + x0 − 2R′, cA,2t2n + LR
]
. Provided n is sufficiently large, say n ≥

n0, the support is included in [(cA,1 − ε)t2n, (cA,2 + ε)t2n]. In such an interval, the
decay of x 7→ u(t2n, x) can therefore be estimated as follows (up to increasing n0):

min
x∈[(cA,1−ε)t2n,(cA,2+ε)t2n]

u(t2n, x) ≥ C e−C′t2n ,

where C,C ′ > 0 are constants that only depend on β, x0, ρ, δ, cA,1, cA,2, ε.
Now, defining a sequence (κn)n∈N by

(30) κn = C e−C′t2n

maxx∈R u1,δ(0, x) for all n ∈ N,

we deduce
(31) κnu1,δ(0, x−A(t2n)) ≤ u(t2n, x) for all n ≥ n0, x ∈ R,
and then

κnu1,δ(t, x−A(t2n)) ≤ u(t+ t2n, x) for all n ≥ n0, x ∈ R, t > 0,
by the parabolic comparison principle.

At this point of the proof, we remind that u1,δ travels with speed c ≥ c⋆
1 − ε and

is associated, not to the reaction term f , but to (t, x, v) 7→ (r − δ)v − Mv2. More
precisely, it satisfies (25), i.e.,

∂tu1,δ ≤ ∂xxu1,δ + (r̃(x− cA,1t) − δ)u1,δ −Mu2
1,δ,

where r̃ is defined in (24). Therefore, if we multiply the function κnu1,δ(t, x−A(t2n))
by e δ

2 t, we should still obtain a sub-solution, at least as long as this sub-solution is
small enough.

Let us verify this last claim. First define
g : (t, x, v) 7→ r̃(x− cA,1t)v −Mv2,
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so that
g(t− t2n, x−A(t2n), v) ≤ f(t, x, v),

for any t ∈ [t2n, t2n+1], x ∈ R and v ≥ 0. Also we define
un

1,δ : (t, x) 7→ u1,δ(t− t2n, x−A(t2n)).

Using (25), the function (t, x) 7→ κn e δ
2 (t−t2n)un

1,δ(t, x) is a sub-solution of (KPP) as
long as t ≤ t2n+1 and

M
(
κne

δ
2 (t−t2n) − 1

)
un

1,δ(t, x) ≤ δ

2 .

Now recall that u1,δ is globally bounded by a constant C ′′ > 0 that depends on
δ (hence on ε) but not on n. This constant is also an upper bound, independent
of n, for each function un

1,δ. Then the function (t, x) 7→ κn e δ
2 (t−t2n)un

1,δ(t, x) is a
sub-solution of (KPP) provided that y

t− t2n ≤ Tn = 2
δ

ln
(

1
κn

(
1 + δ

2MC ′′

))
< t2n+1 − t2n,

where the latter inequality follows from the fact that t2n+1
t2n

→ +∞ and | ln κn| =
O(t2n) by (30).

By virtue of the comparison principle and (31),

κn e δ
2 (t−t2n)un

1,δ(t, x) ≤ u(t, x) for all n ≥ n0, x ∈ R, t ∈ [t2n, t2n + Tn].
By a similar sub-solution construction, not growing in time but with an appro-
priately chosen amplitude (the algebra is exactly the same), we can then prove
that

κn e δ
2 Tnun

1,δ(t, x) ≤ u(t, x) for all n ≥ n0, x ∈ R, t ∈ [t2n + Tn, t2n+1].

Noting that κn e δ
2 Tn = 1 + δ

2MC′′ , we deduce(
1 + δ

2MC ′′

)
un

1,δ(t2n+1, (c⋆
1 −2ε)t2n+1) ≤ u(t2n+1, (c⋆

1 −2ε)t2n+1) for all n ≥ n0.

Using t2n = o(t2n+1) together with the detailed formula (16) where c ≥ c⋆
1 − ε, it

follows that
un

1,δ(t2n+1, (c⋆
1 − 2ε)t2n+1) = u1,δ(t2n+1 − t2n, (c⋆

1 − 2ε)t2n+1 −A(t2n)) = ισ/2 > 0.
Finally we conclude that c ≥ c⋆

1 − 2ε. This ends the proof of Step 2. As ε can be
chosen arbitrarily small, the proof of Theorem 2.4 is complete. □

4. Properties of λ1

Let λ1 denote, as before, the principal eigenvalue of (6) characterized by Proposi-
tion 3.1. In this section, we uncover new properties of the map (L, r1, r2, r3) 7→ λ1.
Recall that if

L > L =

0 if r1 = r3,

1√
r2−max(r1,r3)

arccot
(√

r2−max(r1,r3)
|r1−r3|

)
if r1 ̸= r3,

then λ1 is characterized as the unique solution in
(

−r2,min
(

− max (r1, r3) , π2

L2 − r2

))
of the equation (2), whereas λ1 = − max(r1, r3) if L ≤ L. Recall also that
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(L, r1, r2, r3) 7→ λ1 is smooth in each of the parameter sets {L > L}, {L ≤ L, r1 <
r3} and {L ≤ L, r1 > r3}.

4.1. Monotonicity and symmetry. According to [8, Proposition 2.3, (vii)], the
function (L, r1, r2, r3) 7→ λ1 is nonincreasing and concave with respect to each
variable. It is also 1-Lipschitz-continuous with respect to r1, r2 and r3. The
following two propositions state the monotonicity properties of λ1 with respect to
L and r2 in a more precise manner.

Proposition 4.1. The map L ∈ (0,+∞) 7→ λ1(L) is continuous, constant in (0, L]
(this interval might be empty), decreasing in (L,+∞), with the following asymptotic
or particular values:

• λ1(L) → − max(r1, r3) as L → L+;
• λ1

(
π
2

√
2r2−r1−r3

(r2−r1)(r2−r3)

)
= − r2

2−r1r3
2r2−r1−r3

;
• λ1(L) → −r2 as L → +∞.

Proof. The monotonicity of L ∈ (L,+∞) 7→ λ1(L) follows directly from the chain
rule applied to the equation satisfied by λ1(L); in fact, ∂λ1

∂L < 0.
The limit as L → +∞ is an immediate consequence of L

√
r2 + λ1 < π. The

limit as L → L+ follows similarly, separating the case r1 = r3 and the case r1 ̸= r3.
The continuity at L = L when L > 0 follows.

The function

λ 7→
r2 + λ−

√
(r1 + λ)(r3 + λ)√

r2 + λ(
√

−r1 − λ+
√

−r3 − λ)
is increasing, continuous and maps (−r2,− max(r1, r3)) onto (−∞,+∞) if r1 = r3

or onto
(

−∞,
√

r2−max(r1,r3)
|r1−r3|

)
if r1 ̸= r3. Denote in both cases ζ ∈ (0,+∞)∪{+∞}

the upper limit of this image interval. Consequently, for any ζ ∈ (−∞, ζ), there
exists a unique preimage λ1 ∈ (−r2,− max(r1, r3)) such that

r2 + λ1 −
√

(r1 + λ1)(r3 + λ1)√
r2 + λ1(

√
−r1 − λ1 +

√
−r3 − λ1)

= ζ,

and subsequently there exists a unique L0 ∈ (L,+∞) such that λ1 = λ1(L0),
with L0 given by the following formula:

L0 = 1√
r2 + λ1

arccot(ζ).

Now we are in a position to pick admissible values of ζ that correspond to
remarkable values of the cot function. For instance, ζ = 0 leads to:{

L0
√
r2 + λ1(L0) = π

2 ,

r2 + λ1(L0) =
√

(r1 + λ1(L0))(r3 + λ1(L0)).

After elementary manipulations, we deduce:
λ1(L0) = − r2

2 − r1r3

2r2 − r1 − r3
,

L0 = π

2

√
2r2 − r1 − r3

(r2 − r1)(r2 − r3) ,

which completes the proof. □
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Next, the function L is either 0 or a decreasing continuous function of r2. In
the latter case, it also satisfies that L → 0 as r2 → +∞. Thus, given a fixed value
of L, there exists a threshold r2 ≥ max(r1, r3) such that L > L for any r2 > r2,
and L < L for any r2 ∈ (max(r1, r3), r2) (this latter interval possibly being empty).
Thus, in the latter case, λ1 = − max(r1, r3) as mentioned above. Quite similarly
to the previous proposition, we deduce the following result; for the sake of brevity,
we omit the proof.

Proposition 4.2. The map r2 ∈ (max(r1, r3),+∞) 7→ λ1(r2) is continuous, con-
stant in (max(r1, r3), r2] (this interval might be empty), decreasing in (r2,+∞),
with the following asymptotic or particular values:

• λ1(r2) → − max(r1, r3) as r2 → max(r1, r3);
• λ1(r2) → −∞ as r2 → +∞.

Finally, we point out that the eigenvalue λ1 is symmetric with respect to the
parameters r1 and r3.

Proposition 4.3 (Symmetry). λ1(r1, r3) = λ1(r3, r1).

Proof. By the change of the variable y 7→ 1 − y in (6), the role of r1 and r3 are
exchanged, therefore the above symmetry is obvious. □

4.2. More general heterogeneities and optimization issues. In view of our
method of proof, it should be clear that the main result (the piece-by-piece formula
for the spreading speed in Theorem 2.1) will extend to many equations of the form

∂tu− ∂xxu = f(t, x, u)

with ∂uf(t, x, 0) = m(x − cAt), m ∈ L∞(R), inf m > 0. More precisely, since the
existence of λ1 and φ1 is given by [8], the following properties are the only true
requirements to end the construction of super- and sub-solutions in the proof of
Theorem 2.1:

(1) m = r3 in a neighborhood of +∞ – this is used to construct the explicit
super-solution in Step 1;

(2) m = r1 in a neighborhood of −∞ – this is used to construct the explicit
super-solution in Step 2;

(3) lim sup φ′
1

φ1
≤

√
−r1 − λ1 at −∞ – this is used to validate the angle condition

in Step 2;
(4) e− cA

2 xφ1(x) → 0 at +∞ – this is used to ensure that the super-solution of
Step 2 acts indeed as a barrier for the solution.

It turns out that the third and fourth ones are direct consequences of the first and
second. Indeed, recall from Proposition 3.1 (see also again [8]) that φ1 is the limit
of the eigenfunctions of a truncated Dirichlet problem. Using this together with
the maximum principle and λ1 ≤ − max(r1, r3), one may check that φ1 is either
affine or identical to

e
√

−r1−λ1x

on a left-half line depending on whether λ1 = −r1 or λ1 < −r1. In the former case,
φ′

1 must be nonnegative and in the latter, φ′
1 is precisely equal to

√
−r1 − λ1φ1,

that is, (3) holds true. The same argument shows that φ1 grows at most linearly
at +∞.
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Therefore the exact variations of m between the left half-line where m = r1 and
the right half-line where m = r3 do not really matter, and we are able to handle
arbitrary bounded variations3.

Of course, such extensions are made at the expense of the formula (2) that
characterizes λ1. But they make it possible to study, for instance, smooth growth
rates or piecewise-constant growth rates with more than one traveling patch. By
doing so, we obtain a nice connection with classical shape optimization results. For
instance, if r1 = r3, m ≥ r1, and L∞ and L1 constraints are imposed on m − r1,
then the function m which minimizes the eigenvalue λ1 (and in turn maximizes the
spreading speed) is bang-bang and contains precisely only one patch (i.e., m − r1
is the indicator function of a bounded interval). In other words, the situation we
studied in the present paper corresponds to this optimal situation.
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