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ABSTRACT

Context. Initially designed to detect and characterise exoplanets, extreme adaptive optics (AO) systems open a new window onto
the Solar System by resolving its small bodies. Nonetheless, their study remains limited by the accuracy of the knowledge of the
AO-corrected point spread function (AO-PSF) that degrades their image and produces a bright halo, potentially hiding faint moons in
their close vicinity.
Aims. To overcome the random nature of AO-PSFs, I aim to develop a method that blindly recovers the PSF and its faint structured
extensions directly into the data of interest, without any prior on the instrument or the object’s shape. The objectives are both to
deconvolve the object and to properly estimate and remove its surrounding halo to highlight potential faint companions.
Methods. My method first estimated the PSF core via a parametric model fit, under the assumption of a sharp-edged flat object. Then,
the resolved object and the PSF extensions were alternatively deconvolved with a robust method, insensitive to model outliers, such
as cosmic rays or unresolved moons. Finally, the complex halo produced by the AO system was modelled and removed from the data.
Results. The method is validated on realistic simulations with an on-sky AO-PSF from the SPHERE/ZIMPOL instrument. On real
data, the proposed blind deconvolution algorithm strongly improves the image sharpness and retrieves details on the surface of
asteroids. In addition, their moons are visible in all tested epochs despite important variability in turbulence conditions.
Conclusions. My method shows the feasibility of retrieving the complex features of AO-PSFs directly from the data of interest. It
paves the way towards more precise studies of asteroid surfaces and the discovery and characterisation of Solar System moons in
archival data or with future instruments on extremely large telescopes with ever more complex AO-PSFs.

Key words. instrumentation: adaptive optics - methods: numerical - techniques: high angular resolution – techniques: image pro-
cessing - minor planets, asteroids: general

1. Introduction

The performance of ground-based instruments is limited by the
atmospheric turbulence that corrugates the incident wavefront
of the observed target (Roddier 1981). For short exposures, the
diffraction-limited point spread function (PSF) of the telescope
breaks down to a random speckle field. For long exposures, their
average is equivalent to the PSF of a 10 to 20 cm telescope (Fried
1966), strongly degrading the sensitivity and the resolution.

Introduced in the 1990s, adaptive optics (AO) systems are
now commonly deployed in instruments of ground-based ob-
servatories to mitigate the effects of the turbulence (Tyson
2015). The coupling of (i) PSF prediction to optimise the in-
strument design and performance (Fusco et al. 2006; Dohlen
et al. 2016), with (ii) PSF modelling (Jolissaint et al. 2006;

‹ Based on observations made with ESO Telescopes at the Para-
nal Observatory under programmes ID 60.A-9362(A) (Yang et al.
2014), ID 296.C-5038(A) (Yang et al. 2016), ID 199.C-0074 (Ver-
nazza et al. 2021) and reduced data publicly available at https://observa-
tions.lam.fr/astero/ and observations obtained at Keck Observatory un-
der programme ID U58N2 (de Pater et al. 2005).

Fétick et al. 2019b; Berdeu et al. 2023) to improve the data post-
processing via model-fitting or deconvolution (Beltramo-Martin
et al. 2020), has resulted in a leap forward in numerous fields
such as photometry and astrometry of stellar populations (Turri
et al. 2017; Monty et al. 2018), spectroscopy and kinematics of
distant galaxies (Förster Schreiber et al. 2018; Bianchin et al.
2022), or the study of extended object surface topology (Rim-
mele et al. 2021; Vernazza et al. 2021).

In the last decade, the arrival of extreme AO systems pushed
the performance in high-contrast and high-resolution imaging
even further (Jovanovic et al. 2015). In this context, PSF pre-
diction and modelling reach their limits, unable to faithfully re-
produce the complexity of observed AO-corrected PSFs (AO-
PSFs). Point spread function estimation or reconstruction tech-
niques must then be considered (Beltramo-Martin et al. 2020).
But direct estimation of the PSF parameters from the AO teleme-
try (Véran et al. 1997; Clénet et al. 2008) or reference PSFs ob-
tained on calibration sources (internal or natural stars) before or
after the observation (Mugnier et al. 2004) are not always suf-
ficient, and can for example lead to strong deconvolution arte-
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facts (Marchis et al. 2006; Fétick et al. 2019a; Fétick et al. 2020;
Lau et al. 2023).

Among others, the challenge arises from the evolving na-
ture of AO-PSFs. By essence, the turbulence is random and the
AO loops are not perfect, suffering from measurement noise, or
temporal and aliasing errors (Rigaut et al. 1998). Finally, flex-
ions or thermal dilations in the instruments induce quasi-static
speckles that slowly drift with time, changing the PSF’s small
and faint structures (Milli et al. 2016; Vigan et al. 2019). As a
consequence, a given observation represents one realisation of
an AO-PSF that is barely reproducible, or even impossible to re-
produce.

To overcome this random nature of the AO-PSF, the only
solution is to extract and reconstruct it directly from the data
of interest, a problem known as blind deconvolution (Stockham
et al. 1975; Thiébaut & Conan 1995; Soulez et al. 2012; Fétick
et al. 2020). The challenge is to overcome the degeneracy be-
tween the estimation of the PSF and the object (Little & Rubin
1983; Blanco & Mugnier 2011) and to solve an ill-posed prob-
lem with potentially twice more unknowns than measurements
if both the images of the PSF and the object are to be retrieved
from a single data image. As a consequence, no method is strictly
‘blind’, and there is a need to make some assumptions about the
PSF or the deconvolved object (or both) to avoid local minima
of the problem and converge on the best ‘PSF and object’ pair.

One solution is to implement marginal approaches (Blanc
et al. 2003; Beltramo-Martin et al. 2020). The problem is rewrit-
ten to split the PSF and the object contributions, in order to in-
tegrate over the space of the object parameters to marginalise
them out of the problem. The deconvolution of the object is only
performed as a second step. Marginalisation has proved to be ef-
ficient when combined with parametric PSF models that strongly
limit the number of unknowns to fit (Fétick et al. 2019b). These
methods nonetheless imply a need to know some prior on the ob-
ject, such as the structure of its power spectrum density (Fétick
et al. 2020; Yan et al. 2023) or its overall shape (Lau et al. 2023).
In addition, such PSF models, relying on a limited number of
parameters, cannot fully grasp the complexity of real and poten-
tially broadband AO-PSFs of high-contrast and high-resolution
imagers. The challenge will be even greater with the incom-
ing extremely large telescopes (ELTs). Their segmented primary
mirror and large spiders holding the secondary mirror will pro-
duce intricate and structured PSFs that are very sensitive to AO
residuals (Hippler et al. 2019; Neichel et al. 2020; Simioni et al.
2020; Hedglen et al. 2022). More versatile methods than para-
metric approaches are consequently needed.

Finally, in the context of asteroid study, beyond the deconvo-
lution of the images of asteroids’ surfaces (Vernazza et al. 2021),
the approximate knowledge of the PSF also limits the study of
asteroids’ close vicinity and the detection of faint moons. Similar
constraints apply when observing the moon systems around the
giant planets of our Solar System (Showalter & Lissauer 2006;
Assafin et al. 2008). To get rid of the bright halo induced by the
PSF extensions around the main object, techniques were adapted
from exoplanet detection algorithms, based on local averaging or
median filters (Marchis et al. 2006; Assafin et al. 2008; Pajuelo
et al. 2018). But the problem to solve is quite different, the halo
being produced not by a coherent source (an unresolved star) but
by an extended object (the resolved asteroid or planet). These
techniques consequently do not account for the physics at the
origin of the halo that is poorly estimated. They thus inherently
suffer from self-subtraction problems and can bias the moon
photometry or even prevent its detection (Yang et al. 2016).

It is thus essential to properly recover the AO-PSF exten-
sions. But compared to the PSF core, their intensity is several
orders of magnitude fainter. This echoes high-contrast imaging
challenges where outliers must be carefully handled to avoid
any corruption of the model. Some outliers, such as dead pix-
els, can be identified through proper calibration (Berdeu et al.
2020), handled, and removed from the problem. But others may
be random or specific to a given acquisition, such as hot pixels,
cosmic rays, or model errors (signals not predicted by the for-
ward model of the problem). This second kind of outlier must be
identified on the fly, directly in the data of interest.

To reduce the incidence of such outliers, robust penalisa-
tion approaches have been developed (see Zoubir et al. 2018;
Flasseur 2019, Chap. 5, for detailed overviews). They consist of
replacing the conventional quadratic penalisation of the problem
by a robust estimator that is approximately quadratic around zero
but that grows sub-quadratically for large deviations to reduce
their impact (Hogg 1979; Huber 1996).

One solution is to directly change the cost function of the
problem (Yohai 1987; Hubert et al. 2008; Huber 2011). Another
solution, so-called iterative reweighted least squares (IRLS, Hol-
land & Welsch 1977; Sigl 2016), is to stay in the least squares
framework but to solve a sequence of least squares problems
whose weights are iteratively updated with a robust estimator.
The mathematical formalism associated with such robust penal-
isations will be further detailed in Sect. 2.3.

This paper is a continuation of a previous pragmatic method
that was initially developed to detect and characterise the third
moon of (130) Elektra (Berdeu et al. 2022). In this previous
work, the performance of an AO system being better in the in-
frared, a simple parametric model was sufficient to describe the
PSF, to deconvolve the object, and to properly model and sub-
tract its bright halo. In addition, the PSF was directly estimated
on a bright moon in the data of interest, acting as a reference
point source.

In this work, I intend to provide a more general and blind
approach for more complex AO-PSFs with limited priors on the
object and the PSF, while removing the need for a point source to
be present in the field of view (FoV). There are three main objec-
tives: (i) to reconstruct the AO-PSF in its complexity, reproduc-
ing its faint structured extensions, so-called wings, directly from
the data; (ii) to deconvolve the object image with this blindly
estimated AO-PSF; and (iii) to carefully model the AO residual
halo in order to remove it from the data and enhance the signal
of potential moons.

The proposed method, which alternates between object and
PSF deconvolution, is described in Sect. 2. It is then validated
on realistic simulated data in Sect. 3 and applied to real data in
Sect. 4. Finally, in Sect. 5, I discuss several ways of further im-
proving the proposed method. For readers interested in knowing
more about the algorithms and their implementation, the pseudo-
codes of the different steps are detailed in Appendix A.

2. Proposed method

In the isoplanetic domain (the PSF does not depend on the posi-
tion in the FoV), the forward model of the problem canonically
states that the image data, d (discretised onto the sensor pixel
grid), is the (discrete) convolution ‹ of the extended object, o,
with the long exposure PSF, p, that combines the telescope and
instrument response and the AO residuals (Fétick et al. 2020),

d “ po ‹ pq ` n , (1)
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Fig. 1. Simulation of the forward model of the deconvolution. The noisy data, d (Panel a), is the convolution of an extended object, o (Panel b),
with the AO-corrected PSF of the instrument, p (Panel c), plus a nuisance term, n (Panel d). This term is composed of the acquisition noises
(readout + photon), defective pixels (‘salt & pepper’ pattern), cosmic ray impacts (orange arrows), and signals from potential moons orbiting the
main object (coloured circles). Panels a,b: To emphasise both the main body and the surrounding halo, a dual linear scale was used to insert the
main body in its halo, as is noted by the ‘/’ in the colour bars. Panels b: Photo of 67P/Churyumov–Gerasimenko by Rosetta (European Space
Agency). Panels c: PSF obtained with ZIMPOL on HD16469 (P. Vernazza), normalised to peak at one for the display.

where n is a nuisance term. This equation is pictured in Fig. 1.
As is seen in Fig. 1d, the nuisance term encompasses the clas-
sical detector readout noise and photon shot noise, but also out-
liers such as defective pixels (‘salt & pepper’ noise) and cosmic
rays that may hit the sensor during the acquisition (orange ar-
rows). I emphasise here that the way the problem is posed – the
convolution of an extended object with a PSF – implies that the
unresolved moons (point sources), are also considered to be out-
liers, and thus belong to the nuisance term (coloured circles). As
was stated above, the objective is to split o and p only from the
knowledge of d without being corrupted by n.

The PSF presented in Fig. 1c was obtained on a star, as part
of the European Southern Observatory (ESO) Large Programme
ID 199.C-0074 (PI: Vernazza et al. 2021) and using the imaging
mode of the Zurich IMaging POLarimeter instrument (ZIMPOL,
Schmid et al. 2018). This figure emphasises all the complexity of
an AO-PSF. The AO cut-off frequency (orange annulus) delimits
the classical two regimes of AO-PSFs: (i) the outer region (red),
dominated by the atmospheric turbulence halo and left uncor-
rected by the AO system, and (ii) the inner region dominated by
the AO residuals. The roughly symmetric core of the PSF (white
and grey) is surrounded by a wind-driven halo (green) elongated
in the wind direction (temporal error of the AO system, so called
servo-lag) and a speckle field produced by the non-common path
aberrations (NCPAs, Vigan et al. 2019) between the science part
of the instrument and the AO system (yellow and orange). The
diffraction spikes produced by the spiders holding the secondary
mirror are also visible (yellow cross along the diagonals). All
these features are responsible for the extended and structured
bright halo visible in Fig. 1a that hides the neighbouring moons.

I propose to solve Eq. (1) step by step, using minimal as-
sumptions on the object and the PSF, summarised in Table 1.
(I) Firstly, as is pictured in Fig. 2, the problem can be approx-
imated, ‘from a distance’, as a sharp-edged flat object, Fig. 2b,
convolved with a simple PSF core, Fig. 2c. In the following, such
an object will qualify as ‘binary’ in the sense of morphological
operations (Gonzalez et al. 2020). This strongly simplifies the
problem in order to get a first estimated separation between the
object, o, and the PSF, p. (II) Secondly, as is pictured in Fig. 3,
this PSF core was used to deconvolve the main extended object,
Fig. 3b. (III) Thirdly, as is pictured in Fig. 4, the deconvolution
paradigm is reversed and the object was used to deconvolve the
faint PSF extensions, so-called wings, Fig. 4c. Finally, after the
removal of the halo model, Fig. 4a, the moon can be seen in the
residuals, Fig. 4d. A detection algorithm could then be applied

Table 1. Implied assumptions to perform the blind deconvolution.

Object PSF
– Extended and resolved [1, 2]

– Approximately flat [1]
– Smooth shape [1]
– Sharp edges [2, 3]

– Positive [2]

– Core approximately
described by a

parametric model [1]
– Smooth structures [3]

– Positive [3]

Notes. The numbers in the brackets indicate the steps of the method for
which the assumptions are used.

to find the signal of potential faint moons further hiding in the
noise. This is nonetheless beyond the scope of this paper. All of
these steps are further detailed in the following.

2.1. Step 1. Estimation of the PSF core

The main objective of this step is to estimate a first separation
between the object, o, and the PSF, p, as is shown in Fig. 2.
As a consequence, it must depend on a very limited number of
parameters to be robustly constrained by the data.

Concerning the PSF, the method assumes that its core can be
approximated by a parametric description. Such a simple model
does not include the physics of an AO system and cannot prop-
erly model the turbulent halo. It thus dilutes the energy and is
consequently not quantitative (Fétick et al. 2020). Parametric
model-based profiles can partially solve this issue (Fétick et al.
2019b) but they imply some knowledge of the instrument (such
as, for example, its pupil shape, the number of actuators of its AO
system, or the wavelength). As a consequence, they are harder to
tune. But such precision is not needed for this given step. In-
deed, Fétick et al. (2019a) showed that a Moffat profile (Moffat
1969) is a general but sufficient approximation to qualitatively
retrieve the morphology of the observed objects, while depend-
ing only on a limited number of parameters. A two-dimensional
(2D) Moffat pattern is defined as

mpx,α, β, θq “
`

1 ` r2
1{α2

1 ` r2
2{α2

2

˘´β
, (2)

where β is the power parameter of the pattern, θ is its orientation,
r1 “ x1 cos θ ` x2 sin θ and r2 “ ´x1 sin θ ` x2 cos θ are the
2D coordinates in its rotated frame, and α “ pα1, α2q are its
elongations along its two axes.

As we shall see later in Sects. 3 and 4, this Moffat approxi-
mation worked well with all the tested datasets. Nonetheless, in
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Fig. 2. Step 1 – Estimation of the PSF core. The data (Panel a, red-shaded pixels excluded from the fit) is approximated by the convolution of a
binary object (Panel b, contour highlighted in orange) with a parametric PSF core (Panel c). Panel d: residuals. Colour bars: see Fig. 1.

the hypothetical case that this model is not sufficient for a given
dataset, Eq. (2) can be replaced by another more adapted para-
metric model if needed. Doing so does not change the presented
methodology as long as the number of parameters remains lim-
ited.

The PSF core is thus simply proportional to this 2D pattern:

pcorepx0,α, β, θ, γq ≜ γmpx ´ x0,α, β, θq . (3)

Its parameters mainly control how the object is blurred by the
PSF. Most of the signal is then given by the object’s edges rather
than its surface texture. If the shape of the object is overall
smooth with sharp edges, applying a threshold, d̄, on the data, d,
defined as

“

f thr`d, d̄
˘‰

pxq “

"

1 if dpxq ě d̄
0 otherwise

, (4)

is a sufficient approximation of its support to extract the infor-
mation needed to estimate the parameters of Eq. (3). Indeed,
in a parametric approach with a limited number of arguments,
namely the parameters of the core and the threshold on the data,
a crude description of the object is sufficient because there are
far more measurements than unknowns to recover.

The values of the different parameters of Eqs. (3) and (4) are
obtained by minimising the following cost function,

C core
d,w

`

d̄, γ, x0,α, β, θ
˘

≜

Dwls`d, pcorepx0,α, β, θ, γq ‹ f thr`d, d̄
˘

,w
˘

,
(5)

which is a pure data fidelity term between the data, d, and the
model, pcorepx0,α, β, θ, γq ‹ f thr

`

d, d̄
˘

, weighted by w. Dwls is
defined as the weighted least square difference (wls)

Dwlspφ1,φ2,wq ≜

1
2

ÿ

x,x1

wpx, x1qpφ1pxq ´ φ2pxqqpφ1px1q ´ φ2px1qq ,
(6)

where w is the inverse of the data covariance matrix. Its role is
to weigh the measurements in the data fidelity term in terms of
confidence.

The readout noise is assumed to be of a Gaussian statistic
of variance, vron. On the other hand, for fluxes higher than a few
photons, the Poisson statistic of photon shot noise can be approx-
imated by a Gaussian statistic whose variance is proportional to
the incident flux (and thus approximately to the data after proper
calibration and pre-reduction) by a factor, η, that accounts for the
conversion between photons and analogue to digital unit (ADU)
and for the quantum efficiency of the pixels (Berdeu et al. 2020).

In the general case, these noise terms are independent from one
pixel of the sensor to another. As a consequence, the inverse of
the data covariance is diagonal,

wpx, x1q “

"

wpxq if x “ x1

0 otherwise
, (7)

and is given by (Mugnier et al. 2004; Fétick et al. 2019b)

wpxq “ 1{pηpxqdpxq ` vronpxqq . (8)

The sum in Eq. (6) is thus a sum on x only

Dwlspφ1,φ2,wq ≜
1
2

ÿ

x
wpxqpφ1pxq ´ φ2pxqq

2 . (9)

I emphasise that η and vron are technically vectors as their val-
ues may depend on the position in the FoV, for example because
of inhomogeneities in the pixel response or detector gains. Thus,
contrary to other methods that approximate the noise level as
being homogeneous across the pixels, to allow the marginalisa-
tion of the object and the PSF in the Fourier domain (Lau et al.
2023; Yan et al. 2023), the proposed method includes a physi-
cal model of the noise statistics that depends on the pixels and
that is a function of the data intensities (measured, see Eq. (7),
or expected by the model, see Eq. (18) below). This subtlety is
critical: for the other methods, the unknown is the deconvolved
image of the bright asteroid for which a homogeneous photon
noise is a good enough approximation. But the objectives of my
method are to additionally retrieve the PSF wings and remove
the diffuse halo, while discarding faint outliers, which implies
having a fine model of the noise according the intensity level.

As was discussed above, most of the signal is given by the
blurring of the object’s edges, and is condensed in the bright
core of the halo. To avoid any corruption by the faint extensions
of the halo that are not modelled under the parametric PSF core
assumption, a threshold is applied to the data to reweight, w, as
is detailed in the Algorithm 1 of Appendix A.1. Only the pixels
not shaded in red in Fig. 2a are considered in the fit.

Finally, I mention that this first step can be replaced by more
classical approaches, for example using reference PSFs obtained
on a star or myopic approaches (Mugnier et al. 2004). Indeed, its
main objective is to get a good enough PSF core to initialise the
object deconvolution of Sect. 2.2. The global PSF will be further
refined later, in Sect. 2.3.

2.2. Step 2. Deconvolution of the main object

As is shown in Fig. 3, the objective of this step is to deconvolve
the image of the object, o, assuming that the PSF, p, is known,
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Fig. 3. Step 2 – Object deconvolution. The estimated PSF core (Panel c=Fig. 2c) was used to deconvolve the object (Panel b). Panel a: Model of
the convolution. Panel d: Residuals. Colour bars: see Fig. 1.

for example from the fit of its core done in the previous sec-
tion Sect. 2.1. It is a classical deconvolution problem solved by
minimising the following cost function (see also, Berdeu et al.
2022):

C obj
d,p,wpoq ≜ Dwlspd, p ‹ o,wq ` µobjRobjpoq , (10)

under the physical constraint that o ě 0. This hard constraint
also limits oscillating artefacts close to sharp edges, commonly
seen in deconvolution problems (Marchis et al. 2006; Fétick
et al. 2020). µobj is a hyperparameter to balance the regulari-
sation, Robjpoq, compared to the data fidelity term. Robjpoq was
chosen to favour smooth objects with sharp edges, by encourag-
ing the sparsity of spatial gradients (Rudin et al. 1992; Charbon-
nier et al. 1997)

Robjpφq ≜
ÿ

x

„

b

pr∇1φpxqs2 ` r∇2φpxqs2 ` rϵobjs2q ´ ϵobj
ȷ

,
(11)

where ∇1 and ∇2 correspond to finite difference operators along
the first and second spatial dimensions of the image. ϵobj ą 0 is
a threshold controlling the transition between a ℓ1-norm (edge-
preserving) and a ℓ2-norm (smoothness). ϵobj also ensures that
Eq. (11) is differentiable at zero. Such an edge-preserving reg-
ularisation or equivalents are common in asteroid deconvolu-
tion (Mugnier et al. 2004; Fétick et al. 2020; Berdeu et al. 2022;
Lau et al. 2023; Yan et al. 2023). In practice, these hyperparam-
eters, µobj and ϵobj, were manually tuned. µobj mainly depends
on the object’s characteristics. Since all asteroids share similar
properties, it is not expected that this parameter changes a lot
for resolved asteroids. ϵobj varies with the awaited contrast on
the asteroid surface: (i) for a well-resolved asteroid, values of a
few percent of the object’s dynamics provide good results, (ii)
for poorly resolved targets where surface details are hardly ex-
pected, values of around a thousandth or less better favour sharp-
edged binary reconstructions.

At this stage, there is still no constraint on potential moons.
They are thus in the deconvolved model and disappear from the
residuals, as is shown in Fig. 3d. Once the object is deconvolved,
it can be segmented with a threshold to remove the moons or
other artefacts from the image model, as is described in Ap-
pendix A.2, Algorithm 2.

2.3. Step 3. Deconvolution of the extended PSF wings

Now that a de-blurred image of the main object, o, has been
correctly estimated, it is possible to revert the problem and use
this image as the convolution kernel to deconvolve the AO-PSF

wings, as is shown in Fig. 4. In this approach, the moons, which
are a priori unknown, are not explainable by a model of an ex-
tended object convolved with a PSF, and should thus appear in
the residuals; so should defective or hot pixels or random cos-
mic rays impacting the sensor, which cannot be calibrated in ad-
vance. These outliers should not corrupt the reconstruction of the
PSF wings. As was introduced in Sect. 1, the mean square error
of Eq. (9) is consequently not adapted. I propose to tackle this
problem with robust penalisation (Zoubir et al. 2018; Flasseur
2019, Chap. 5). This consists of replacing the quadratic norm of
the residuals in Eq. (9) with a function, ρ, that limits the influ-
ence of large (and aberrant) values in the minimisation:

Dρpφ1,φ2,wq ≜
ÿ

x

ρ

ˆ

b

wpxqpφ1pxq ´ φ2pxqq

˙

. (12)

Of the different robust estimators, ρ, available in the litera-
ture (Holland & Welsch 1977), I chose the Cauchy function:

ρprq ≜
γ2

2
ln
`

1 ` r2{γ2˘ . (13)

If the confidence model, w in Eq. (12), is properly scaled and
calibrated so that the argument

rpxq “

b

wpxqpφ1pxq ´ φ2pxqq (14)

follows a normalised Gaussian noise statistics (centred on zero
and of a standard deviation equal to one) in the absence of
outliers, setting γ “ 2.385 ensures that minimising Eq. (9) or
Eq. (12) gives similar results. In doing so, the Cauchy function
has the advantages of having no tuning parameter and of being
differentiable.

In more detail,

wρprq “
1
r

Bρprq

Br
“
`

1 ` r2{γ2˘´1
, (15)

the so-called robust weight in the following, is the correction
factor to apply to the weights in the least square error of Eq. (9)
to make it equivalent to the robust penalisation of Eq. (12). This
is typically used in the context of IRLS, as was introduced in
Sect. 1:

wirlspxq “ wρprpxqqwpxq . (16)

Figure 5a gives an example of a robust weight map, obtained
by applying wρ of Eq. (15) to a weighted halo residual map when
fitting the full PSF, p. The outliers can directly be identified in
black, with equivalent weights tending towards zero. It is then
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Fig. 4. Step 3 – PSF wing deconvolution. The segmented object (Panel b) was used to deconvolve the PSF wings (Panel c). Panel a: Model of the
convolution. Panel d: Residuals. Colour bars: see Fig. 1.
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Fig. 5. Automatic removal of outliers with respect to the model. Panel a:
Equivalent weights of the robust penalisation, wρp

?
wpd ´ dmod

qq.
Panel b: Discarding of pixels (black) below a threshold, w̄ρ.

possible to discard them on the fly, using a conservative thresh-
old, w̄ρ (typically 50 %, as is discussed in Appendix A.2), and as
is shown in Fig. 5b. This is done by updating Eq. (8), with the
additional remark that this equation is in fact only an approxi-
mation. Indeed, the noisy data, d, is not the real flux. A better
estimate of the weighting confidence term, w, can be obtained
by replacing d with the forward model

dmod
“ p ‹ o (17)

in Eq. (8). In total, as is detailed in Algorithm 2 of Appendix A.2,
the updated weight map now reads as

wpxq “

"

0 if wρpxq ď w̄ρ

1{
`

ηdmodpxq ` vron
˘

otherwise
. (18)

It is iteratively updated in an approach similar to IRLS, Eq. (16),
but with (i) a binary update when it comes to the robust esti-
mator, and (ii) a refinement of the expected noise level with the
intensity predicted by the forward model. Doing so prevents any
further corruption of the deconvolved PSF wings by strong out-
liers.

The cost function that is iteratively minimised to reconstruct
the PSF, p, is

C psf
d,o,wppq ≜ Dwlspd, p ‹ o,wq ` µpsfRpsfppq , (19)

under the physical constraint that p ě 0. µpsf is a hyperparameter
to balance Rpsfppq. I define this regularisation term as

Rpsfpφq ≜
ÿ

x

r∇1rlnpφpxqqss
2

` r∇2rlnpφpxqqss
2 , (20)

which consists of the classical ℓ2-norm on the gradient but ap-
plied to the logarithm of the PSF. The former ensures a smooth

reconstruction, while the latter acts as a ‘dynamic whitening’
term. Indeed, the challenge in regularising the PSF wings is that
p spans multiple orders of magnitude between the PSF core
vicinity and the external turbulence halo, as is seen in Fig. 1c.
Rpsfppq must act through this high dynamic range. Similar to w
in Eqs. (9) and (12), which scales the residuals according to the
admissible awaited noise level (noise whitening), the regularisa-
tion must scale the PSF wings. Since

∇irlnpφpxqqs “ r∇iφpxqs{φpxq , (21)

I let the opportunity for the gradients in Eq. (20) to evolve pro-
portionally to the local intensity of the total PSF, despite the large
dynamics of the unknowns, both refining the PSF core and recov-
ering its wings. As for µobj in Sect. 2.2, the hyperparameter µpsf

is a function of the noise level of the data, d, and was manually
tuned in this study.

Technically, one could stop here if the main objective were
to retrieve the faint moon hidden in the bright halo. Nonetheless,
now that a better model of the AO-PSF is known, it is possible to
loop back on the object deconvolution step and iterate the steps
of Sects. 2.2 and 2.3 to further refine the reconstruction while
robustly updating the noise model, w, via Eq. (18) in Eqs. (10)
and (19). This implementation is further detailed in Algorithm 2
of Appendix A.2. This proved to be efficient for complex PSF
cores, badly described by a 2D Moffat pattern, for example in
the presence of motion blur or for bad seeing conditions. On top
of a better object deconvolution, this also improves the residual
quality close to the object edges, potentially unveiling moons
very close to the main body.

3. Validation on simulations

The method was tested on simulated data representative of real
conditions. The simulated object, shown in Fig. 1b, is an im-
age of 67P/Churyumov–Gerasimenko obtained by Rosetta (Eu-
ropean Space Agency), downscaled to the resolution and size
(between 100 and 200 milliarcseconds) that are typical of the
targets observed within the ESO Large Programme described in
4.1. As was mentioned in Sect. 2, the PSF used to blur the object
image is a real AO-PSF obtained with ZIMPOL on a star. Three
moons with different contrasts and distances were added to the
main body (coloured circles in Fig. 1d). The photon shot noise
and the readout noise parameters, η and vron, are assumed to be
identical for all the pixels in the FoV:

@x P FOV, ηpxq “ η and vronpxq “ vron . (22)

On top of these noises, random pixels are modelled as hot or
dead (‘salt & pepper’ noise) and five cosmic rays are randomly
simulated (orange arrows).
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Fig. 6. Comparison of the deconvolution with the simulated truth.
Panel a: Simulated true object, o. Panel b: Estimated binary object, d̄,
applying a threshold to Panel e. Panel c: The object’s first deconvolu-
tion after the estimation of the PSF core parameters, pcore. Panel d: The
object’s final deconvolution after the alternate estimation of the PSF
wing, p. Panel e: Simulated blurred and noisy data, d. Panels f-h: Model
residuals, d ´ dmod, for the binary object (Panel f), after the first de-
convolution (Panel g) and after the final deconvolution (Panel h). Pan-
els i-l: Thrice the absolute value of the object residuals with the shifted
object, 3

∣∣∣õ ´ κomod
∣∣∣, for the true object (Panel i), for the binary object

(Panel j), after the first deconvolution (Panel k), and after the final de-
convolution (Panel l). Intensity scale of Panels a-e,i-l: see Fig. 1b. Inten-
sity scale of Panels f-h: see Fig. 2d. Panel m: Intensity slices along the
dashed coloured line of Panels a-e. Panel n: Radial profiles of the true
PSF (black), its closest Moffat fit (red), the PSF core estimate (blue),
and the PSF wing deconvolution (green) on a logarithmic scale.

The results of the different steps of the method are shown
in Figs. 2, 3, and 4. Figure 6 focuses on the main body decon-
volution, providing zooms on the deconvolved images, omod, the
model residuals, d ´ dmod, and the object residuals, õ ´ κomod.
õ stands for the shifted true object, o. Indeed, due to the PSF
core deformation, the PSF in Fig. 1c may not be properly cen-
tred. By construction (see Appendix A), my method reconstructs
a centred PSF. As a consequence, the deconvolved object may be
translated compared to the truth. This shift is estimated by fitting
a perfect 2D Moffat model in the true PSF. õ is the cubic inter-
polation of o translated by the position of this fitted 2D Moffat
pattern. Figure 6i shows that this shift is vertical, producing the
bright arcs at the top and the bottom of the object residuals. To
emphasise the surface texture retrieval rather than a bias in the
global intensity, the deconvolved omod is further normalised with

κ “ argmin
κ̃

ÿ

x

∣∣∣omodpxq ´ κ̃õpxq
∣∣∣ , (23)

using the absolute value in the sum to be robust to outlier regions,
badly deconvolved or smoothed by the deconvolution such as
edges or very bright or dark areas.

Figure 2 shows that the oversimplified model of the first step
efficiently fits the bright inner part of the halo that is correctly
removed from the residuals of Fig. 2d and Fig. 6f. By design,
the outer part of the structured halo, mainly driven by the AO
cut-off frequency, is still present in the residuals, as it cannot be
explained by this simple model. As for the object, the thresh-
old applied to the data produces a binary object (see Fig. 2b and
Fig. 6b, whose edges are consistent with the blurred object, as
is shown by the orange contour in Fig. 2a). This is further con-
firmed by the slices of Fig. 6m, the edges of the binary approx-
imation (dark grey) being within a few pixels of the true slice
of the object (light grey). As was expected, the overall object
intensity is underestimated by more than 10 % because the en-
ergy diluted by the PSF wings is not integrated and of course
none of the surface structure is retrieved, Fig. 6j. As for the PSF
core, the radially averaged profile of the blindly estimated Mof-
fat (blue curve in Fig. 6n) shows a very good agreement with
the theoretical radial profile of the 2D Moffat (red curve) fitted
directly in the true PSF.

Figure 3 shows that using the fitted PSF core is indeed
sufficient to retrieve the morphology of the object, as is dis-
cussed in Sect. 2.1. Structures at the surface of the deconvolved
object, Fig. 3b and Fig. 6c, are consistent with the simulated
truth, Fig. 1b and Fig. 6a, as is shown by the good residuals of
Fig. 6k. Nonetheless, the fact that the Moffat model cannot prop-
erly grasp the deformations of the PSF core produces two kinds
of artefacts: (i) a bright edge on the left side of the object in
Figs. 6c,k that suggests that this edge is ‘over-deconvolved’, and
(ii) non-homogeneous structures in the residuals at the edge’s
location, shown in Fig. 6g. This can also be seen in the blue
slice in Fig. 6m, which shows unnatural deconvolution peaks at
the edges of the reconstructed object. And as was already dis-
cussed, the fact that the PSF core does not account for the PSF
wings induces an underestimation of the object’s intensity, here
by more than 6 %. I also emphasise that, by construction, the
halo is found in this deconvolved image of Fig. 3b, as well as
the moons and other noise artefacts. They consequently appear
in the modelled data, Fig. 3a, and the moons are not visible in
the residuals, Fig. 3d.

All of these problems are solved after a few iterations of
the alternate algorithm, once the PSF wings are properly de-
convolved, as is shown by Fig. 4. Concerning the object, the
zooms of Figs. 6d,l and the green slice of Fig. 6m show that, de-
spite being slightly smoothed by the regularisation of Eq. (10),
the details are quantitatively retrieved with the correct intensity
within 100.2´97.3 ď 3 %. The sharp edges are also well defined
at the correct location (see the green and light grey curves). Com-
pared with Figs. 6c,k, the ‘over-deconvolution’ problem on the
left side of the object is greatly improved. Nonetheless, the com-
bination of (i) the threshold to segment the main object, (ii) the
regularisation in Eq. (10), and (iii) the approximate knowledge
of the PSF core (or equivalently the cut-off of the optical trans-
fer function of the system) within a blind approach, limits the
precision of the object’s edge recovery, as is visible in the data
residuals of Fig. 6h. In addition, the spatial regularisation erases
the finest details on the surface of the object, as is seen in the
model residuals of Fig. 6l. These are known limits of the edge-
preserving regularisation (Fétick et al. 2020) but are a neces-
sary trade-off with the PSF reconstruction to control the alter-
nate blind deconvolution convergence. Otherwise, the residuals
reach the noise level, below the percent of the data dynamic (see
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colour bars of Fig. 4d for Fig. 6h). There is no noticeable fea-
ture at the location of the object’s surface that would imply an
over-regularisation in the deconvolution, indicating that the de-
tails smoothed by the regularisation are indeed lost in the noise
level.

Concerning the PSF, all the features mentioned in Sect. 2 are
quantitatively retrieved in Fig. 4c. The wind-driven halo is well
defined. The brightest structures on the AO cut-off frequency
ring and the diffraction spikes are clearly visible and decon-
volved. Only the resolution on the speckle pattern is smoothed
by the regularisation but its global structure has the correct dy-
namics. In Fig. 6n, the radial profile of the deconvolved PSF per-
fectly matches the radial profile obtained on the true PSF. As is
explained in Sect. 2.3, the moons and other outliers are robustly
penalised in the equivalent weights in Fig. 5a and the brightest
ones are successfully rejected from the fit, Fig. 5b. Thus, they
do not impact the model of the halo, Fig. 4a, and are conse-
quently nicely visible in the residuals, Fig. 4d. Compared with
the injected signals in Fig. 1d, the moons are slightly dimmed
and erased from the data, showing that the method suffers from
slight self-subtraction. This is nonetheless a cost worth paying
to efficiently retrieve the halo and constitutes a trade-off in the
regularisation of Eq. (19) between the reconstruction of the PSF
structures and the moon rejection from their deconvolution.

4. Examples in real data

4.1. The multiple asteroids (216) Kleopatra and (130) Elektra

The ESO Large Programme ‘Asteroids as tracers of Solar Sys-
tem formation: Probing the interior of primordial main belt
asteroids’ (ID 199.C-0074, PI: Vernazza et al. 2021, R filter,
λ “ 645.9 nm, ∆λ “ 56.7 nm) targeted several asteroids of
the Solar System’s main belt in order to characterise the albedo,
surface, shape, and mass of the ones accompanied by moons.
The data were obtained with ZIMPOL, mounted on the Spec-
tro Polarimetric High-contrast Exoplanet REsearcher (SPHERE,
Beuzit et al. 2019) of the Very Large Telescope (VLT) observa-
tory, equipped with the SPHERE Adaptive eXtreme Optics sys-
tem (SAXO, Fusco et al. 2016). Mainly designed for polarimetry
acquisitions, ZIMPOL has an imaging mode. Working in visi-
ble wavelengths, it offers an unprecedented resolution of small
Solar System bodies at the cost of a more complex AO-PSF.
I applied my method to two targets of this Large Programme:
(216) Kleopatra and (130) Elektra.

Among the 100 km class asteroids, (216) Kleopatra is quite
original. It has a dumbbell shape and is orbited by two known
moons, which constrain its gravitational field, and thus its mass
and density (Ostro et al. 2000; Descamps et al. 2011; Shepard
et al. 2018; Marchis et al. 2021). Its elongated shape and the
availability of state-of-the-art deconvolutions and 3D reconstruc-
tions make it a good case with which to test the deconvolution
performance of the proposed method.

(130) Elektra is also an asteroid of the main belt, surrounded
by three moons (Fuksa, M. et al. 2023). Its faintest and closest
companion was missed until recently due to the lack of proper
data reduction and data analysis tools (Yang et al. 2016; Berdeu
et al. 2022). It was detected in archival data obtained in 2014
with the Integral Field Spectrograph of SPHERE (IFS, Claudi
et al. 2008). The complexity of ZIMPOL AO-PSFs and the vari-
ability of the brightness and distance of the different moons rela-
tive to the main body represent a challenging case with which to
test the proposed method. (130) Elektra was observed at different
epochs in 2018 and 2019 by Vernazza et al. (2021), each epoch

gathering multiple frames. In order to assess the consistency of
the method results, both in terms of deconvolution and moon en-
hancement, two different frames of four epochs were selected.
To show the versatility of the method and the large acceptability
of its assumptions, I also selected additional datasets from other
instruments: the IFS (ID 60.A-9362(A), PI: Yang et al. 2014,
YJH filter, λ from 0.95 to 1.65 µm), the InfraRed Dual-band Im-
ager and Spectrograph (IRDIS, Dohlen et al. 2008, ID 296.C-
5038(A), PI: Yang et al. 2017, DK12 filter, λ “ 2.11 µm, ∆λ “

102 nm) of SPHERE, and the Near Infrared Camera 2 (NIRC2,
ID U58N2, PI: de Pater et al. 2005, Kp filter, λ “ 1.248 µm,
∆λ “ 163 nm) of the Keck II telescope.

4.2. Main body deconvolution and surface detail recovery

Figures 7 and 8 gather the results obtained on (130) Elektra and
(216) Kleopatra for different epochs with different seeing condi-
tions. The noise model parameters, pη, vronq, of Eq. (8), critical
to scale the robust penalisation, are empirically adjusted in the
data, as is described in Appendix B.

Figure 7 focuses on the final deconvolutions of (130) Elektra,
obtained after the alternate algorithm. The reconstructed edges
are sharp without any ‘corona artefact’ (see below discussion on
Fig. 8) or motion blur residual, even for 2019-07-30 (2), which
is a challenging case, as is highlighted by the reference decon-
volution or the important deformation of the PSF core in Fig. 9.
Nonetheless, for the 2019-08-05 frames, the overshoot on the left
side of the asteroid also indicates a slight over-deconvolution, as
was already seen in the simulations, Sect. 3. Features at the as-
teroid’s surface are resolved, as is seen in the zooms of Fig. 7.
The evolution of the projected shadows on the surface is visible
between the frames of the best epochs, 2019-08-05 and 2019-08-
06, and the corresponding slices of Fig. 7. This supports the facts
that the method is consistent and that these are not deconvolution
artefacts. For 2019-08-06, the slices show that the contrast in the
structures decreases between the two frames, as the land forms
face the Sun more. Except for the main shadow of 2019-08-05,
none of these details can be seen in the reference deconvolution
obtained by Vernazza et al. (2021).

Figure 8 details the different steps of the blind deconvolution
algorithm on (216) Kleopatra. For each epoch, the first columns
show a zoom of the data, the fitted binary model, and the decon-
volved images based on the knowledge of the PSF core or the
PSF wings (and the corresponding residuals) as well as inten-
sity slices along the coloured lines. The deconvolutions obtained
by Vernazza et al. (2021) are also given to serve as references,
Panels b. Panels c show that the binary threshold of the data pro-
vides a good approximation of the object support, both in terms
of size and shape. Then, it clearly appears that the mere knowl-
edge of the PSF core is sufficient to retrieve the object body, but
the deconvolved images of Panels f suffer from what is some-
times called ‘corona artefact’, a stepwise artefact surrounding
the object edges that originates from a coupling between the
edge-preserving regularisation and an incorrect description of
the PSF core (Marchis et al. 2006; Fétick et al. 2019a; Fétick
et al. 2020; Lau et al. 2023). These images are similar to the
reference reconstructions. For some epochs, such as 2017-07-
27, 2017-08-10, and 2017-08-22, the artefacts surrounding the
object strongly suggest hiccups of the AO loop or even motion
blur. This could be explained by a shift in the telescope pointing
direction in between the four Detector Integration Times (DITs),
which are averaged in one ZIMPOL-reduced frame by the data
reduction pipeline (Schmid et al. 2018). This is particularly vis-
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Fig. 7. Zoom on the deconvolved image of (130) Elektra in Fig. 9 ob-
tained with ZIMPOL. For information, the deconvolutions (green) are
compared with the data (red) and the reference (orange) obtained Ver-
nazza et al. (2021). To emphasise the gain in resolution, all the figures
are normalised to the same linear intensity scale. For each epoch, two
different frames (plain (1) and dashed (2) curves) are given.

ible in the blue slices of 2017-07-27 and 2017-08-10 that cut
along this motion blur.

Deconvolving the full PSF solves these issues. In the final
step of the proposed method, the edges of (216) Kleopatra are
de-blurred and sharp, and the duplicated images are collapsed
into a single image in the cases of strong motion blur. This is also
emphasised by the green slices in Fig. 8. These deconvolved im-
ages obtained via a blind deconvolution algorithm with limited
priors on the object and the PSF compare well with state-of-
the-art marginal deconvolutions and are consistent with the pre-
viously derived 3D model of the asteroid (Shepard et al. 2018;
Marchis et al. 2021; Vernazza et al. 2021; Lau et al. 2023). The
orange slices of Fig. 8 show that the reference method underes-
timates the object’s intensity and can only retrieve smooth and
large-scale structures. Due to these limitations, only a differ-
ence in albedo between the two lobes of the asteroid was studied
by Marchis et al. (2021). The small-scale structures in the green

slices of Fig. 8 suggest that finer details from (216) Kleopatra’s
surface can be retrieved with my method.

Interestingly, the deconvolution residuals in Fig. 8 show a
line-by-line horizontal stripe pattern. This can be directly linked
to the ZIMPOL imaging mode where only one out of two lines of
the sensor is exposed. To produce ‘high-resolution’ images, the
reduction pipeline interpolates the missing lines (Schmid et al.
2018). This implies that the proposed deconvolution algorithm
reaches the level of the artefacts introduced by the data reduc-
tion. To limit the impact of this ‘zebra’ in the deconvolved im-
age, I had to increase the regularisation parameter, µobj, com-
pared to Sect. 3, limiting the performance of the method of edge
and detail recovery. This explains why spatial features can still
be seen in the residuals. These reduction features that corre-
late neighbouring pixels also mean that the assumption of in-
dependent noise previously mentioned in Sect. 2.1 for Eq. (7) is
not strictly correct and that the diagonal weighting term, w, in
Eq. (19) should actually be the inverse of a covariance matrix, as
in Eq. (6). This effect was nonetheless neglected in this study.

4.3. Point spread function reconstruction and halo removal

A quick look at the halo brightness in the data column of Fig. 8
shows that the turbulence conditions change between the dif-
ferent epochs. This directly impacts the deconvolved AO-PSF
wings and their contrast. For the two epochs 2017-07-14 and
2017-08-10, the PSF is even mainly dominated by the wind-
driven halo. Nonetheless, the blind PSF deconvolution success-
fully retrieves the AO cut-off limit at the correct location as well
as its brightest speckles, despite the absence of an instrumental
prior in the PSF model. For good seeing conditions, in spite of
the elongated shape of (216) Kleopatra, the reconstructed speck-
les appear nicely resolved and split. In addition, the orientation
and elongation of the wind-driven halo do not appear to corre-
late with (216) Kleopatra’s orientation (see especially 2017-07-
14 and 2017-08-22), as one could have feared from a potential
cross-talk during the blind deconvolution. This overall consis-
tency favours the robustness of the method in connection with
the shape of the object and with the turbulence conditions.

Looking at Figs. 9 and C.1, the conclusions are similar
with (130) Elektra, with the additional supporting fact that for
each epoch the two reconstructed PSFs are extremely consis-
tent in terms of turbulence features (contrast and wind-driven
halo). Furthermore, the rotation of the spider diffraction spikes
is clearly visible (see 2019-07-30 and 2019-08-06 in particular).

After halo removal, the two moons of (216) Kleopatra are
clearly visible at all epochs in the halo residuals, as is shown
in the last column of Fig. 8 (coloured circles). The transition
between a readout noise-limited regime to a photon shot noise-
limited regime is also nicely visible: the noise level increases in
the object’s vicinity where the halo is very bright in the data, es-
pecially for bad seeing conditions (2017-07-14, 2017-08-10, and
2017-08-22). Looking at the halo residuals in Fig. 9, this transi-
tion is also visible, especially for the bad seeing cases of 2019-
07-30 and 2019-08-04 with an increased noise level in the ob-
ject’s vicinity. The three moons of (130) Elektra are visible in all
the presented ZIMPOL frames (coloured circles), even when the
deconvolution is not perfect (see 2019-07-30). Indeed, by con-
struction, even if the object and the PSF are not perfectly split,
moons (point sources) remain outliers of the model and should
appear in the residuals. This is an encouraging result that shows
the robustness of the approach. The counterparts of the moons
in the robust weight maps are also nicely visible. The orange ar-
rows point towards discarded outliers, such as defective pixels or
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Fig. 8. Examples of deconvolution on (216) Kleopatra at different epochs. First column – Zoom on the main body. Panels (a,b): Data (top, red slice)
and reference deconvolution (bottom, orange slice) obtained by Vernazza et al. (2021). Panels (c,d): Estimated binary object after the estimation
of the PSF core parameters (top, grey slice) and residuals (bottom). Panels (e,f): Deconvolution with the PSF core (top, blue slice) and residuals
(bottom). Panels (g,h): Deconvolution after the alternate estimation of the PSF wing (top, green slice) and residuals (bottom). To highlight the faint
intensities, all the object representations share the same square root stretch intensity scale normalised to the data’s maximal value. The residuals are
displayed with the colour scale of Fig. 2b. Second column – Slices along the coloured lines of the first column. Third column – Data displayed with
the dual linear scale of Fig. 1a. Fourth column – PSF displayed with the colour scale of Fig. 1c (peak normalised to one). Fifth column – Residuals
of the halo model displayed with the colour scale of Fig. 1d. For information, the deconvolved main body image was inserted.

random cosmic rays as well as camera defects impacting some
columns of the detector.

The last lines of Fig. 9 present results on data obtained with
other instruments and reference PSFs measured on a star. They
show that the method is robust for a large variety of AO-PSFs.

Looking at the IFS line, my method is able to reproduce
the results of my previous pragmatic approach (Berdeu et al.
2022), extracting the three moons from the diffuse halo. The
poor AO performance of this dataset explains why the diffrac-
tion rings of the reconstructed PSF differ from the IFS reference.
Nonetheless, the diffraction spikes are visible and the recon-
structed multi-lobed core nicely matches the PSF produced by
the brightest moon (red circles): it presents a strong secondary
lobe, at the top left of the main core. A similar complex PSF

core is retrieved with ZIMPOL for the 2019-07-30 (2) frame
(secondary lobe on the right). This shows that the method is, to
some extent, robust for multi-lobed PSF cores diverging from a
simple Moffat pattern, slightly relaxing this potential limitation
of the method. The robust weights obtained with the IFS appear
quite low. This comes from the wrong noise model fitted in the
reduced data via the method presented in Appendix B. Indeed,
the reduction performed by PIC of IFS data (Berdeu et al. 2020)
is based on a spatial regularisation that biases and correlates the
noise in the reconstruction. Such an incorrect noise model can
be handled by relaxing the constraint on w̄ρ to lower values for
automatic outlier rejection.

The IRDIS data are very noisy, with a dense pollution
with defective pixels (common with infrared detectors), while
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Fig. 9. Examples of robust halo removal on (130) Elektra with different instruments (see also Fig. C.1). First (resp. second) column – Blurred data,
d (resp. deconvolved image, o, and halo model, dmod

“ p ‹ o), normalised and displayed with a dual linear scale. Third column – Deconvolved
PSF, p (peak normalised to one). Fourth column – Residuals of the halo model, d ´ dmod. Fifth column – Map of the equivalent robust weights,
wρ

`?
w
`

d ´ dmod˘˘. Orange arrows: Camera defects, dead pixel clusters, or cosmic rays. When visible, the three moons of (130) Elektra are
circled. The red arrows point towards the outer moon when it is outside the FoV. Last line – Examples of PSF on a star for each instrument.
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(130) Elektra only spans a few pixels. Despite this unfavourable
situation, the first Airy rings of the PSF are reconstructed with
the correct dynamics and with negligible signal in the residu-
als. The first ring is fragmented due to poor seeing conditions.
Unfortunately, only the brightest moon is visible because of the
high noise level and high density of unusable pixels.

Finally, with NIRC2, (130) Elektra is barely resolved, with
an angular size similar to that of the first diffraction ring of the
instrument PSF. Despite this challenging situation, the charac-
teristic hexagonal shape of this ring, due to the fragmentation
of the Keck II mirror with hexagonal segments, is nicely recov-
ered. So are the secondary diffraction peaks (two in green at the
top right of the core for the first order and a few in yellow for the
second order) that produce replicated images of (130) Elektra in
the saturated data. Concerning the moons, only the brightest is
visible in the residuals, highlighting the need for more frames
and epochs and dedicated detection algorithms to increase the
signal-to-noise ratio.

5. Conclusions and perspectives

In this paper, I have presented a novel blind deconvolution tech-
nique that can retrieve both the object and the faint wings of
AO-PSFs. The only main priors on the object are that it be con-
trasted with a smooth shape and sharp edges. Contrary to most
of the existing blind deconvolution algorithms, it is not based
on a parametric model of the PSF, allowing one to reconstruct
a large variety of shapes and structures, as featured by PSFs af-
ter an AO correction. The proposed inverse problem approach
is an alternate deconvolution with an edge-preserving regulari-
sation for the object and a regularisation on the smoothness of
the gradients for the PSF with intensity whitening. Tested on
simulated and real data, my method outperforms state-of-the-art
techniques (Fétick et al. 2019b; Vernazza et al. 2021; Lau et al.
2023; Yan et al. 2023), by both efficiently reconstructing details
at the surface of the objects and faithfully retrieving the features
of the AO-PSFs. It produces a physical and realistic model of
the bright halo surrounding the object, which can then be care-
fully removed. This enhances faint moons in its close vicinity
with a better contrast and at closer distances than previous halo-
subtraction methods (Assafin et al. 2008; Yang et al. 2016; Pa-
juelo et al. 2018; Berdeu et al. 2022).

Implemented in a general framework and with a limited
number of assumptions, my method can be applied to different
instruments mounted on different telescopes equipped with dif-
ferent AO systems. It paves the way for the study of resolved
asteroids or moon systems around the giant planets of our Solar
System via archival data of different instruments for which pre-
vious methods could not reveal the companions. It also prepares
the arrival of the future generation of ELTs, whose complex and
sensitive PSFs and AO systems will require robust and versatile
processing techniques. Nonetheless, as is discussed below, there
are several ways to further improve this method.

Solving the dual deconvolution problem implies carefully
tuning the method. This is mainly done through the hyperparam-
eters of the regularisations on the object and the PSF, namely
µobj, ϵobj, µpsf, and w̄ρ. In particular, one could decide to first
keep a strong regularisation on the object to prioritise the PSF
reconstruction, and to relax it the second time, once the PSF has
been correctly estimated, to better retrieve the object’s details.
Providing an automatic tuning of such parameters to get a fully
unsupervised algorithm is an active field of research (Thé et al.
2022) and implementing such methods was beyond the scope of
this paper. In this work, these parameters were manually tuned

and fixed once and for all for each instrument. The fact that they
worked for all the tested datasets is encouraging and shows their
good admissible range in terms of noise level, object shape, and
seeing conditions. This thus limits the need for further manual
tuning by the user.

It was emphasised in Sect. 4 that lots of datasets suffer from
poor AO-PSF quality or even motion blur. Robustness is ob-
tained via a higher regularisation level, but this can degrade the
image quality or produce over-deconvolution. To increase the
resolution and the deconvolution quality, and since the targets
are very bright, one should work on the individual ZIMPOL
DITs rather than the stacked image. The results also show that
the method reaches the limits of the ZIMPOL reduction pipeline,
whose artefacts dominate the residuals in some datasets. Imple-
menting such changes implies modifying the reduction pipeline
and was beyond the scope of this paper.

As is shown in Sect. 4, most of the outliers, such as defective
pixels or cosmic rays, are successfully and robustly identified
and discarded on the fly by the proposed algorithm. Nonethe-
less, some of them are missed, and so are the faintest moons. As
is discussed in Sect. 3, the proposed method consequently suffers
from slight self-subtraction, which could dim the signal of poten-
tial moons. Even if it is less pronounced than with other methods
(Yang et al. 2016; Pajuelo et al. 2018), some precautions must be
taken when fitting the photometry of a moon that can be under-
estimated, or when announcing the absence of moons below a
given noise-limited contrast. It is possible to assess these biases
by injecting false moons as is done in the standard exoplanet
detection algorithm to quantitatively estimate the contrast per-
formance (Flasseur et al. 2018). This was beyond the scope of
the paper, but should be kept in mind for further studies.

Finally, the natural next step of this method is to use to the re-
constructed PSF within matching filter algorithms to detect even
fainter moons in the residuals. Combined with the refined noise
model and with the robust weights to limit false positive detec-
tions by discarding outliers, this would push the detection limits
even further. Echoing the challenges of exoplanet detection, it
comes nonetheless with the additional difficulty of the rapid mo-
tion of the moons around the main object (Showalter et al. 2019;
Berdeu et al. 2022) and is an open research field.
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Appendix A: Pseudo-codes of the method

This appendix gathers the pseudo-codes of the different steps
of the proposed method, described in Sect. 2. In practice, all
the code is implemented in MATLAB within the open-source
GlobalBioIm framework (Soubies et al. 2019). I also detail in
this appendix how the different cost functions are minimised.

Appendix A.1: Estimation of the point spread function core

The different parameters of the first step of Sect. 2.1 were alter-
nately fitted, as was described in Algorithm 1. Indeed, applying
a threshold to the data is not a differentiable operation, compli-
cating the minimisation with iterative gradient descent methods.
A first set of parameters of the PSF core was guessed, Line 3,
on a coarse grid of threshold values, Line 2. These values were
then refined by alternating five fits on (i) the threshold on the
data, along with the amplitude parameter, Line 5, and (ii) the
PSF core parameters, Line 6. The optimisation problems were
solved with the simplex search method of Lagarias et al. (1998).
For each problem, 200 iterations were performed. The param-
eters of the Moffat profiles were initialised with α “ 3 and
β “ 1.6, which are standard values (see Fétick et al. 2019a).
To reweight, w, Line 1, a general threshold of 2.5 % was applied
to the data. From the perspective of the dynamic of the PSF, this
value roughly corresponds to the transition between its wind-
driven core and its wings (see Fig. 1c). Only the meaningful pix-
els in the brightest part of the halo, not shaded in red, Fig. 2a,
are thus kept in the data fidelity term.

Algorithm 1 Fit of the object threshold and PSF core.

1: wpxq Ð
Eq. (8)

#

0 if dpxq ď 2.5 % f maxpdq

1{pηdpxq ` vronq otherwise
Ź Confidence map

2: DÐ t30 %, 35 %, ¨ ¨ ¨ , 65 %, 70 %u Ź Set for rough initialisation
3:

`

d̄, γ, x0,α, β, θ
˘

Ð argmin
dPD,γ̃,x̃0 ,α̃,β̃,θ̃

C core
d,w

`

d, γ̃, x̃0, α̃, β̃, θ̃
˘

Ź 1st guess

4: for i from 1 to 5 do Ź Alternate fit to minimise Eq. (5)
5:

`

d̄, γ
˘

Ð argmin
d̃,γ̃

C core
d,w

`

d̃, γ̃, x0,α, β, θ
˘

Ź Object threshold

6: pγ, x0,α, β, θq Ð argmin
γ̃,x̃0 ,α̃,β̃,θ̃

C core
d,w

`

d̄, γ̃, x̃0, α̃, β̃, θ̃
˘

Ź PSF core

7: return
`

d̄, γ, x0,α, β, θ
˘

Appendix A.2: Alternate object and point spread function
deconvolution

Algorithm 2 details the implementation of the dual deconvolu-
tion algorithm of the object and the PSF wings of Sects. 2.2
and 2.3. The role of Line 8 is to define the main object sup-
port. I empirically chose a threshold of d̄sup between 15 % and
25 % of the maximal value of the median-filtered deconvolved
object, f medpoq (kernel of 5 ˆ 5 pixels, as in Appendix 3). Such
a threshold is low enough to account for partially illuminated
pixels on the object’s edge, while being conservative enough to
correctly constrain and tackle the ‘corona artefacts’ mentioned in
Sect. 4. In practice, this threshold was applied only in the vicin-
ity of the main body. To further avoid crenellated edges on the
segmented image, this support was dilated by one pixel. The rest
of the FoV was automatically excluded to avoid bright moons or
artefacts, such as cosmic rays in the deconvolved image, exceed-
ing this threshold.

Conversely, for Line 6 and Line 13, the w̄ρ threshold was ap-
plied only in the halo to exclude the moons or artefacts, such

as cosmic rays, but not in the main body vicinity, to keep this
area (see Fig. 5b). Indeed, this area is critical to fit the PSF core
features but hard to fit due to the artificial threshold on the decon-
volved image and the edge-preserving regularisation, as is seen
in the robust weights of Fig. 9. I typically used the conservative
value of 50 %, as it is important to remove any moon suspicion
while the deconvolution of the smoothly varying PSF is robust
for a high rate of missing data. In the presence of strong outliers
(dead pixels) on the object support or its vicinity, as in Fig. 5b,
it is still possible to apply a less conservative threshold to this
region, typically below 10 %.

The two minimisation problems of Line 8 and Line 14 were
solved with 1000 iterations of the variable metric with lim-
ited memory-bounded algorithm (VMLM-B, Thiébaut 2002), a
limited-memory quasi-Newton method with Broyden-Fletcher-
Goldfarb-Shanno updates (BFGS, Nocedal 1980) that handles
bound constraints. In the case of strong motion blur, typically
nalt “ 30 alternate iterations are looped.

In Line 6 and Line 13, the weights were robustly updated
only after a few alternate loops, nwgt “ 5. I would like to remark
here that if a proper calibration of the reduced data has been
made, the robust weights, Line 2, can be initialised with a map
of already known aberrant pixels. This was done for the IRDIS
dataset.

Algorithm 2 Alternate object and PSF wing deconvolution.
1: p Ð pcorep0,α, β, θ, γq Ź Initialisation of the PSF with the fitted core
2: wrob Ð 1 Ź Initialisation of the robust weights without outliers
3: wpxq Ð

Eq. (8)
1{pηdpxq ` vronq Ź Data-based confidence map

4: for i from 1 to nalt do Ź nalt alternate fits to minimise Eqs. (10) and (19)

—- Object deconvolution —-
5: if i ą nwgt then
6: wpxq Ð

Eq. (18)
0 if wrobpxq ď w̄ρ Ź Removing outliers

7: o Ð
Eq. (10)

argmin
õě0

C obj
d,p,wpõq Ź Object deconvolution

8: ōpxq Ð

#

0 if opxq ď d̄sup f max
`

f medpoq
˘

opxq otherwise
Ź Keeping the main

body
9: dmod

Ð
Eq. (17)

p ‹ ō Ź Updating model of the data

10: wpxq Ð
Eq. (18)

1{
`

ηdmodpxq ` vron
˘

Ź Model-based confidence map

11: wrob Ð
Eq. (15)

wρ
`?

w
`

d ´ dmod˘˘
Ź Updating robust weights

—- PSF deconvolution —-
12: if i ą nwgt then
13: wpxq Ð

Eq. (18)
0 if wrobpxq ď w̄ρ Ź Removing outliers

14: p Ð
Eq. (19)

argmin
p̃ě0

C psf
d,ō,wp p̃q Ź PSF wing deconvolution

15: dmod
Ð

Eq. (17)
p ‹ ō Ź Updating model of the data

16: wpxq Ð
Eq. (18)

1{
`

ηdmodpxq ` vron
˘

Ź Model-based confidence map

17: wrob Ð
Eq. (15)

wρ
`?

w
`

d ´ dmod˘˘
Ź Updating robust weights

18: return
`

o, p, dmod,wrob
˘

Appendix B: Empirical noise model

The attentive reader may notice that the proposed method im-
plies knowledge of the noise model parameters, pη, vronq, in
Eq. (8). If they are known in the simulated case of Sect. 3, they
are a priori unknown for the real data of Sect. 4. In principle,
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Fig. B.1. Empirical fit of the noise model, ηdpxq ` vron, directly from
the data. Panel a: Visualisation of the arcs centred on the main object
on which the model is fitted. Panel b: Approximated map of the noise
after removing a median filter on the data. Panel c: Estimated noise
model (black curve) compared with the true model (dashed curve). In
blue (resp. red): points that are kept (resp. discarded) by the robust fit.
The green box is a zoom on the relevant points.

the noise model can be obtained through proper calibration and
analysis of both calibration and science data (see for example,
Berdeu et al. 2020; Denneulin et al. 2021). Nonetheless, most
of the data used in this paper are ZIMPOL data from the ESO
Large Programme described in Sect. 4.1 that were already re-
duced (Vernazza et al. 2021). It was beyond the scope of this
paper to fully recharacterise the ZIMPOL sensor noise and rerun
a reduction procedure. As a consequence, I chose to implement
a pragmatic approach that could empirically fit these parame-
ters directly in the data of interest and that could be easily ap-
plied to reduced data from other instruments. The principle of
the method is pictured in Fig. B.1.

The noise model of Eq. (8) is basically an affine law that links
the data intensity and its associated variance. With the assump-
tion that the noise parameters are constant over the FoV, Eq. (22),
the two noise parameters, pη, vronq, can be fitted on the full data
image using the diversity of information, as is implemented in
Algorithm 3.

First, as is shown in Fig. B.1b, the noise map was approx-
imated by removing from the data, a smoothed image obtained
after applying a median filter of 5 ˆ 5 pixels, Line 1. The pixels

were then split among narc arcs (with a typical width of 5 pix-
els and length of 20 pixels for the ZIMPOL data) centred on the
main body, shown in Fig. B.1a. The intensities (resp. variances)
of the model were empirically estimated by averaging the data
(resp. by computing the variance of the noise map) on each arc,
Line 3 (resp. Line 4). To be robust with regard to the presence
of outliers among this point cloud, Fig. B.1c, the affine law was
robustly fitted via an approach based on the median absolute de-
viation of the model from the empirical points, Line 7, a robust
estimator of the standard deviation (Huber 2011).

This method was tested on the simulated data of Sect. 3, for
which the true noise parameters are known. The results of the fit,
given in Fig. B.1c, show that the noise model was successfully
estimated.

I point out here that these noise parameters could be iter-
atively refined during the iterations of the alternate algorithm
once the model of the convolution between the object and the
PSF, namely the theoretical intensity map, and the model of the
halo residuals, namely the theoretical noise map, are better con-
strained.1 This was nonetheless beyond the scope of this paper
and is kept for a future work. Indeed, the homogeneity of the
weight maps in Figs. 9 and C.1 shows that the proposed method
is a good enough approximation, correctly whitening both the
readout noise and the photon shot noise.

Algorithm 3 Empirical fit of the noise model.
1: dnoise

Ð d ´ f medpdq Ź Applying a median filter to the data
2: for a from 1 to narc do Ź Loop on the arcs
3: รpaq Ð f avg

`

tdpxquxParca

˘

Ź Empirical average value on ath arc

4: งpaq Ð f var
´

␣

dnoisepxq
(

xParca

¯

Ź Empirical variance on ath arc

5: Vval Ð ⟦1, narc⟧ Ź Initialisation: all arcs are valid
6: r Ð pη, vron, aq ÞÑ งpaq ´ pηรpaq ` vronq Ź Defining the residuals
7: for i from 1 to 10 do Ź 10 robust fits
8: pη, vronq “ argmin

η̃ě0,ṽ0ě0

ř

aPVval

∣∣∣rpη̃, ṽ0, aq
∣∣∣ Ź Robust linear fit

9: σ “ 1.4826 f med
´

␣

∣∣∣rpη, vron, aq
∣∣∣(

aPVval

¯

Ź Median absolute

deviation of the fit residuals
10: Vval Ð

␣

a P ⟦1, narc⟧ s.t.
∣∣∣rpη, vron, aq

∣∣∣ ă 3σ
(

Ź Updating set
of valid arcs

11: return pη, vronq

Appendix C: Additional frames of (130) Elektra

Figure C.1 comes in addition to Fig. 9 and presents the sec-
ond frame of the couples introduced in Fig. 7. This figure sup-
ports the consistency of my method that produces similar results
within each epoch, in terms of PSF structures and dynamics as
well as moon enhancement.
1 See for example the documentation of the Epifluorescence DE-
convolution MICroscopy plug-in (EpiDEMIC, Soulez et al. 2012) at
https://icy.bioimageanalysis.org/plugin/epidemic/.
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Fig. C.1. Additional frames of (130) Elektra with ZIMPOL (see caption of Fig. 9).
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