N

N

Evolution of the mitochondrial ribosomal proteome
Elie Desmond-Le Quéméner, Celine Brochier-Armanet, Patrick Forterre,
Simonetta Gribaldo

» To cite this version:

Elie Desmond-Le Quéméner, Celine Brochier-Armanet, Patrick Forterre, Simonetta Gribaldo. Evo-
lution of the mitochondrial ribosomal proteome. 16th Annual Meeting of the Society of Molecular
Biology and Evolution (SMBE’08), Jun 2008, Barcelone, Spain. hal-04665004

HAL Id: hal-04665004
https://hal.science/hal-04665004
Submitted on 31 Jul 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04665004
https://hal.archives-ouvertes.fr

Institut Pasteur

P-347

Evolution of the mitochondrial ribosomal proteome

Elie Desmond!, Celine Brochier?, Patrick Forterre! and Simonetta Gribaldo!

Institut Pasteur, Biologie Moléculaire du Gene chez les Extrémophiles, 25 et 28 rue du Docteur Roux 75724 Paris CEDEX 15

{edesnond, forterre, sino}@asteur.fr

> Equipe Genome, Evolution, Bioinformatique, Laboratoire de Chimie Bacterienne (CNRS - UPR9043),
Institut de Biologie Structurale et de Microbiologie 31 chemin Joseph Aiguier 13402 MARSEILLE CEDEX 20

celine. brochier@ip.univ-nrs. fr

1. Background

It is now fairly well accepted that all present-day eukaryotes derive from an
ancestor (Last Eukaryotic Common Ancestor : LECA) that already harboured
the x-proteobacterial endosymbiont that gave rise to the mitochondrion.

The explosive increase of genomic data from eukaryotes, especially
protists, coupled to the improvement of molecular phylogeny tools and
approaches such as multigene analyses suggests a rapid divergence of
eukaryotic lineages into a number of major supergroups [1]. Based on the
distribution of two shared derived characters it has been proposed that the first
divergence in the evolution of present-day eukaryotes may have separated an
ancestrally unicilate lineage that led to Opistokonts and Amoebozoa (Unikonts)
on one side from an ancestrally biciliate lineage that led to all other supergroups
(Bikonts).

4. Phylogenomic approaches

The last ten years have witnessed an explosive increase of genomic data
from representatives of the three domains of life. This allows the application of
phylogenomics approaches to understand the evolution of different cellular
systems. These approaches consist in investigating the distribution of the
homologs of the components of a particular cellular system over the species
tree and to analyse their phylogeny.

Starting from experimentally characterized proteins, a recent analysis
iInvestigated the evolution of mitochondrial ribosomes by exploring the
distribution and phylogeny of their components over 18 eukaryotic genomes [6].
We have extended this analysis by building recursive HMM models to search
exhaustively for MRPs homologs over a wider sample of 38 eukaryotic
genomes, including a whole new supergroup (Heterokonts). Since MRPs are
often very small and divergent proteins, our larger sampling allowed us to
detect a number of previously unreported homologs.
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3. Proteomic characterizations

On the way to become an organelle, the «-proteobacterial endosymbiont
reduced drastically its genome, part being lost and part being relocated to the
host genome. It is known that mitochondrial ribosomes experienced a very
dynamic evolutionary history, having notably reduced their RNA components
and acquired eukaryotic-specific proteins.

Currently, proteomic characterizations of mitochondrial ribosomal proteins
(MRPs) are available only from representatives of mammals [2] & [3], yeast [4]
and kinetoplastids [5] which represent only two eukaryotic supergroups.
However, these characterizations have already highlighted a high number of
lineage-specific innovations. For example, 94 proteins are characteristic of the
mitochondrial ribosomes of kinetoplastids, the majority of them having no
homologs in any other eukaryotic lineage.

H. sapiens S. cerevisiae
— ‘b
Number of mitochondrial ribosomal proteins (MRPs)
Mitochondrial ribosomal LSU characterized experimentally in mammals, yeast

T. brucei

and kinetoplastids in the large subunit (LSU) and
small subunit (SSU) of the mitoribosome.
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Mitochondrial ribosomal SSU )
T. brucei

5. Reconstruction of ancestral mitochondrial ribosomal proteomes

We infer that the ancestral mitochondrial ribosome of the LECA contained already 72 proteins, with only one loss (S20) but 19 innovations with respect to the «-
proteobacterial ancestor. That means that a long time probably elapsed between the acquisition of the mitochondrion and the radiation of eukaryotes.

Subsequent evolution of the mitochondrial ribosomal proteome was then very dynamic and different in the various lineages. In some phyla we predict such a
large amount of MRP losses that the ribosome would hardly be viable. It is thus likely that these losses are compensated by novel acquisitions, although this can
only be verified by proteomic characterization of mitoribosomes from representatives of these lineages. This is the case of kinetoplastids where the evolution of
mitochondrial ribosomes appear to have been dramatic, involving acceleration of evolutionary rates and a high number of losses which proteomic characterization
indicates to have been replaced by novel MRP acquisitions, to obtain a very protein rich mitoribosome with 133 MRP, of which 94 are unique innovations of the

Kinetoplastid lineage.

In photosynthetic organisms some MRP losses may be compensated by chloroplastic copies, this implying for some of them export from the chloroplast and

Import into the mitochondrion.
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7. Concatenations

We tried to use different datasets of MRPs to reconstruct the eukaryotic
phylogeny. Although the trees are not completely resolved a number of
supergroups are recovered.
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Concatenation of 39 MRPs (3476 positions) present in at
least 50% of the eukaryotic genomes analyzed.

Opisthokonts

Concatenation of 29 MRPs (2583 positions) encoded in
nuclear genomes and present in at least 66% of the eukaryotic
genomes analyzed.

8. Conclusions

The mitoribosome of the LECA was already a very complex structure, very
different from its «-proteobacterial ancestor, notably including already 19 novel
MRPs. This indicates that the acquisition of the mitochondrion probably does
not coincide with the radiation of eukaryotes, contrary to what often assumed.

The mitochondrial ribosomes appear to have undergone a very dynamic
history with respect to cytoplasmic ribosomes, having notably experienced
differential losses that appear to be still ongoing. Importantly, the available
current proteomic data -albeit still limited- indicates that there is no evolutionary
gradual trend towards protein-rich mitochondrial ribosomes, but that many novel
components have been independently added in different eukaryotic lineages.
The integration of phylogenomics and proteomics approaches will reveal
essential in the future to dissect the evolution of cellular systems.
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