Multi-omic statistical inference of cellular heterogeneity PEPR Santé Numérique - IRP 3

H. Barbot¹ D. Causeur¹ Y. Blum² M. Richard³

 1 IRMAR - UMR CNRS 6625, 2 IGDR - UMR CNRS 6290, 3 TIMC - UMR CNRS 5525

JOBIM, June 2024

[Context](#page-1-0) **[Integration strategies](#page-7-0) Context** [General framework](#page-9-0) Context Context [Perspective](#page-14-0)

Cellular heterogeneity

Cellular heterogeneity in bulk:

- \rightarrow refers to the variety of cell types within the bulk,
- \rightarrow reflects progression of disease state,
- \rightarrow is a complex mixture signal,
- \rightarrow is difficult to assess from bulk molecular profiles.

50+ algorithms exist and many benchmarks to compare them [\[2\]](#page-16-2), [\[3\]](#page-16-3), [\[4\]](#page-16-4)

Supervised cell deconvolution

Cellular deconvolution assumes that bulk omic profiles result from weighted sums of so-called signature cell-specific omic profiles.

Supervised cell deconvolution

Cellular deconvolution assumes that bulk omic profiles result from weighted sums of so-called signature cell-specific omic profiles.

Most of supervised methods results from Ordinary Least Squares (OLS) optimization.

$$
\begin{cases}\n\forall i \in [\![1; N]\!] & Y_i = X \beta_i + \varepsilon_i, \\
\mathcal{L}(\varepsilon_i) = \mathcal{N}(0, \sigma^2 I_M).\n\end{cases}\n\text{ under constraints for each } \beta_i \begin{cases}\n\sum_{k=1}^K \beta_{ik} = 1, \\
0 \le \beta_{ik} \le 1.\n\end{cases}
$$

Two particular omics

Cell deconvolution framework based on extensions of OLS are not designed for a specific omic data or for estimating a vector lying whithin the K -simplex.

Cell deconvolution is frequently used on two omic data types :

• RNA-seq gene expression read counts.

• DNA methylation rates (beta values).

[Context](#page-1-0) **Context** [Integration strategies](#page-7-0) [General framework](#page-9-0) General framework [Perspective](#page-14-0)

OOO OOO OOO OOO

Benchmark data

Data generated in vitro, using cell types commonly found in pancreatic ⇒ ductal adenocarcinoma (PDAC), from TIMC MAGe team.

- 21104 gene expressions
- 800000 CpG sites
- $N = 30$ independent bulks
- $K = 9$ cell types

[Context](#page-1-0) **[Integration strategies](#page-7-0) Context** [General framework](#page-9-0) Context Context [Perspective](#page-14-0)

Benchmark data

Data generated in vitro, using cell types commonly found in pancreatic ductal adenocarcinoma (PDAC), from TIMC MAGe team. ⇒

- 21104 gene expressions
- 800000 CpG sites
- $N = 30$ independent bulks
- $K = 9$ cell types

For a bulk example, same global accuracy but two different insights.

How can we do multi-omic cell deconvolution

[\[5\]](#page-16-5) M. Picard, MP. Scott-Boyer, A. Bodein, O. Périn, A. Droit.

Common representation

 \rightarrow Methylation rates are **aggregated into gene-level** measurements by averaging over all values at CpG sites in the promoter region of each gene.

A negative binomial framework for cell deconvolution on expression

For $1\leq i\leq N$ and $1\leq j\leq M$, let y_{ij} denote the expression level of gene j for bulk i and x_j the vector of expression level of all K cell types.

 \rightarrow A negative binomial regression model is assumed for overdispersed gene expression counts.

$$
\mathbb{P}(Y_{ij}=y_{ij}\mid x_j) = \frac{\Gamma(y_{ij}+\frac{1}{\alpha_i})}{\Gamma(y_{ij}+1)\Gamma(\frac{1}{\alpha_i})}\Big(\frac{1}{1+\alpha_i\mu_i(x_j)}\Big)^{\frac{1}{\alpha_i}}\Big(\frac{\alpha_i\mu_i(x_j)}{1+\alpha_i\mu_i(x_j)}\Big)^{y_{ij}},
$$

- $\alpha_i > 0$ is a scale parameter: $\text{Var}(Y_{ij} | x_j) = \mu_i(x_j)(1 + \alpha_i \mu_i(x_j)),$
- $\mu_i(x_j) = \mathbb{E}(Y_{ij} | x_j) = \beta_{0i} + \beta_{1i}x_{j1} + ... + \beta_{Ki}x_{jk} > 0,$
- $\beta_i = (\beta_{1i}, \ldots, \beta_{Ki})'$ is the vector of proportions of each cell type, constrained to lie within the K−simplex.

The maximisation of the **weighted log-likelihood** $\mathcal{L}(\alpha, \beta_0, \beta; y, x, \omega_y)$ is the objective function.

A beta framework for cell deconvolution on methylation

For $1 \le i \le N$ and $1 \le j \le M$, let z_{ii} denote the methylation rates of aggregated cites j for bulk i and $\tilde{\mathbf{x}}_j$ the vector of methylation rates of all K cell types.

 \rightarrow A Beta regression model is assumed for DNA methylation rates.

$$
\varphi(z_{ij}\mid \tilde x_j) \ = \ \frac{\Gamma(\phi_i)}{\Gamma(\mu_i(\tilde x_j)\phi_i)\Gamma((1-\mu_i(\tilde x_j))\phi_i)}z^{\mu_i(\tilde x_j)\phi_i-1}(1-z)^{(1-\mu_i(\tilde x_j))\phi_i-1},
$$

- $\phi_i > 0$ is a precision parameter: $\text{Var}(Z_{ij} | x_j) = \frac{\mu_i(x_j)(1-\mu_i(x_j))}{1+\phi_i}$ $\frac{(1-\mu_i(\gamma_j))}{1+\phi_i},$
- $\mu_i(\tilde{x}_j) = \mathbb{E}(Z_{ij} | \tilde{x}_j) = \tilde{\beta}_{0i} + \beta_{1i}\tilde{x}_{j1} + \dots + \beta_{Ki}\tilde{x}_{jk} > 0,$
- $\beta_i = (\beta_{i1}, \dots, \beta_{iK})'$ is the vector of proportions of each cell type, constrained to lie within the K−simplex.

The maximisation of the weighted log-likelihood $\mathcal{L}(\phi, \tilde{\beta}_0, \beta; z, \tilde{x}, \omega_z)$ is the objective function.

A different weighting strategy

- PCA on the reference matrix of methylation data and first,
- Evaluate the log likelihood and the precision of estimation on subset of aggregated methylation data.

MSE of the local BR model

A different weighting strategy

- • PCA on the reference matrix of methylation data and first,
- Evaluate the log likelihood and the precision of estimation on subset of aggregated methylation data.

MSE of the local BR model

[Context](#page-1-0) [Integration strategies](#page-7-0) Context **[General framework](#page-9-0) [Perspective](#page-14-0) Perspective**

Intermediate multi-omic framework

Cyclic Coordinate Descent (CCD) to maximise $\left(\mathcal{L}(\alpha, \beta_0, \beta; y, x, \omega_y) + \mathcal{L}(\phi, \tilde{\beta}_0, \beta; z, \tilde{x}, \omega_z) \right).$

Multi-omic integration and use of ad-hoc probability distribution improve the estimation of cell types proportions.

Efficiency of 5 cell deconvolution method **PDAC** study

[Context](#page-1-0) [Integration strategies](#page-7-0) Context Reports Context Integrative P**erspective**

Next step

Ongoing works

A larger comparative study:

- \rightarrow with new and mixed integration strategies,
- \rightarrow on simulations and other benchmark dataset.
	- Accounting for the gene regulation network in the estimation,
	- Introduction of a dependence model between expression and methylation data.

HADACA 3rd edition

 \rightarrow Registration open from 01/09/2024 to 06/10/2024 (<https://hadaca3.sciencesconf.org/>)

References

Jean Fan, Kamil Slowikowski, and Fan Zhang.

Single-cell transcriptomics in cancer: computational challenges and opportunities. Experimental & Molecular Medicine, 52(9):1452–1465, 2020.

Clémentine Decamps, Alexis Arnaud, Florent Petitprez, et al.

DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. BMC Bioinformatics, 22(1):473, October 2021.

Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E Powell, et al. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nature communications, 11(1):5650, 2020.

Lana X Garmire, Yijun Li, Qianhui Huang, et al.

Challenges and perspectives in computational deconvolution of genomics data. Nature Methods, pages 1–10, 2024.

Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, et al. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19:3735–3746, 2021.

Alexander J Titus, Gregory P Way, Kevin C Johnson, and Brock C Christensen.

Deconvolution of dna methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes. Scientific reports, 7(1):11594, 2017.