Multi-omic statistical inference of cellular heterogeneity PEPR Santé Numérique - IRP 3

<u>H. Barbot</u>¹ D. Causeur¹ Y. Blum² M. Richard³

¹IRMAR - UMR CNRS 6625, ²IGDR - UMR CNRS 6290, ³TIMC - UMR CNRS 5525

JOBIM, June 2024

Integration strategies

General framework

Perspective 000

Cellular heterogeneity

Cellular heterogeneity in bulk:

- \rightarrow refers to the variety of cell types within the bulk,
- → reflects progression of **disease state**,
- \rightarrow is a **complex mixture** signal,
- \rightarrow is **difficult to assess** from bulk molecular profiles.

50+ algorithms exist and many benchmarks to compare them [2], [3], [4]

General framework

Perspective

Supervised cell deconvolution

Cellular deconvolution **assumes** that bulk omic profiles result from **weighted sums** of so-called signature cell-specific omic profiles.

General framework

Perspective 000

Supervised cell deconvolution

Cellular deconvolution **assumes** that bulk omic profiles result from **weighted sums** of so-called signature cell-specific omic profiles.

Most of supervised methods results from Ordinary Least Squares (OLS) optimization.

$$\begin{cases} \forall i \in \llbracket 1; N \rrbracket & Y_i = X\beta_i + \varepsilon_i, \\ \mathcal{L}(\varepsilon_i) = \mathcal{N}(0, \sigma^2 I_M). \end{cases} \text{ under constraints for each } \beta_i \begin{cases} \sum_{k=1}^K \beta_{ik} = 1, \\ 0 \le \beta_{ik} \le 1. \end{cases} \end{cases}$$

Perspective

Two particular omics

Cell deconvolution framework based on extensions of OLS are not designed for a specific omic data or for estimating a vector lying whithin the K-simplex.

Cell deconvolution is frequently used on two omic data types :

• RNA-seq gene expression read counts.

• DNA methylation rates (*beta values*).

Integration strategies

General framework

Perspective

Benchmark data

Data generated in vitro, using cell types commonly found in pancreatic \Rightarrow ductal adenocarcinoma (**PDAC**), from TIMC MAGe team.

- 21104 gene expressions
- 800000 CpG sites
- *N* = 30 **independent** bulks
- K = 9 cell types

Integration strategies

General framework

Perspective

Benchmark data

Data generated in vitro, using cell types commonly found in pancreatic \Rightarrow ductal adenocarcinoma (**PDAC**), from TIMC MAGe team.

- 21104 gene expressions
- 800000 CpG sites
- N = 30 independent bulks
- K = 9 cell types

For a bulk example, same global accuracy but two different insights.

Perspective

How can we do multi-omic cell deconvolution

[5] M. Picard, MP. Scott-Boyer, A. Bodein, O. Périn, A. Droit.

Perspective 000

Common representation

 \rightarrow Methylation rates are **aggregated into gene-level** measurements by averaging over all values at CpG sites in the **promoter region** of each gene.

A negative binomial framework for cell deconvolution on expression

For $1 \le i \le N$ and $1 \le j \le M$, let y_{ij} denote the expression level of gene j for bulk i and x_j the vector of expression level of all K cell types.

 \rightarrow A negative binomial regression model is assumed for overdispersed gene expression counts.

$$\mathbb{P}(Y_{ij} = y_{ij} \mid x_j) = \frac{\Gamma(y_{ij} + \frac{1}{\alpha_i})}{\Gamma(y_{ij} + 1)\Gamma(\frac{1}{\alpha_i})} \left(\frac{1}{1 + \alpha_i \mu_i(x_j)}\right)^{\frac{1}{\alpha_i}} \left(\frac{\alpha_i \mu_i(x_j)}{1 + \alpha_i \mu_i(x_j)}\right)^{y_{ij}},$$

- $\alpha_i > 0$ is a scale parameter: $Var(Y_{ij} | x_j) = \mu_i(x_j)(1 + \alpha_i\mu_i(x_j))$,
- $\mu_i(x_j) = \mathbb{E}(Y_{ij} \mid x_j) = \beta_{0i} + \beta_{1i}x_{j1} + \ldots + \beta_{Ki}x_{jK} > 0$,
- $\beta_i = (\beta_{1i}, \dots, \beta_{Ki})'$ is the vector of proportions of each cell type, constrained to lie within the K-simplex.

The maximisation of the weighted log-likelihood $\mathcal{L}(\alpha, \beta_0, \beta; y, x, \omega_y)$ is the objective function.

A beta framework for cell deconvolution on methylation

For $1 \le i \le N$ and $1 \le j \le M$, let z_{ij} denote the methylation rates of aggregated cites j for bulk i and \tilde{x}_i the vector of methylation rates of all K cell types.

 \rightarrow A Beta regression model is assumed for DNA methylation rates.

$$\varphi(z_{ij} \mid \tilde{x}_j) = \frac{\Gamma(\phi_i)}{\Gamma(\mu_i(\tilde{x}_j)\phi_i)\Gamma((1-\mu_i(\tilde{x}_j))\phi_i)} z^{\mu_i(\tilde{x}_j)\phi_i-1} (1-z)^{(1-\mu_i(\tilde{x}_j))\phi_i-1},$$

- $\phi_i > 0$ is a precision parameter: $Var(Z_{ij} | x_j) = \frac{\mu_i(x_j)(1-\mu_i(x_j))}{1+\phi_i}$,
- $\mu_i(\tilde{x}_j) = \mathbb{E}(Z_{ij} \mid \tilde{x}_j) = \tilde{\beta}_{0i} + \beta_{1i}\tilde{x}_{j1} + \ldots + \beta_{Ki}\tilde{x}_{jK} > 0$,
- $\beta_i = (\beta_{i1}, \dots, \beta_{iK})'$ is the vector of proportions of each cell type, constrained to lie within the K-simplex.

The maximisation of the weighted log-likelihood $\mathcal{L}(\phi, \tilde{\beta}_0, \beta; z, \tilde{x}, \omega_z)$ is the objective function.

Perspective 000

A different weighting strategy

- PCA on the reference matrix of methylation data and first,
- Evaluate the log likelihood and the precision of estimation on subset of aggregated methylation data.

Perspective 000

A different weighting strategy

- PCA on the reference matrix of methylation data and first,
- Evaluate the log likelihood and the precision of estimation on subset of aggregated methylation data.

MSE of the local BR model

Integration strategies

General framework

Perspective

Intermediate multi-omic framework

Cyclic Coordinate Descent (CCD) to maximise $(\mathcal{L}(\alpha, \beta_0, \beta; y, x, \omega_y) + \mathcal{L}(\phi, \tilde{\beta}_0, \beta; z, \tilde{x}, \omega_z)).$

Multi-omic integration and use of *ad-hoc* probability distribution improve the estimation of cell types proportions.

Integration strategies

General framework

Perspective •00

Next step

Ongoing works

A larger comparative study:

- $\rightarrow\,$ with new and mixed integration strategies,
- $\rightarrow\,$ on simulations and other benchmark dataset.
 - Accounting for the gene regulation network in the estimation,
 - Introduction of a dependence model between expression and methylation data.

HADACA 3rd edition

 $\rightarrow \text{ Registration open from } 01/09/2024 \text{ to } 06/10/2024 \\ (https://hadaca3.sciencesconf.org/)$

Integration strategies

General framework

Perspective

References

Jean Fan, Kamil Slowikowski, and Fan Zhang.

Single-cell transcriptomics in cancer: computational challenges and opportunities. Experimental & Molecular Medicine, 52(9):1452–1465, 2020.

Clémentine Decamps, Alexis Arnaud, Florent Petitprez, et al.

DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. BMC Bioinformatics, 22(1):473, October 2021.

Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E Powell, et al.

Benchmarking of cell type deconvolution pipelines for transcriptomics data. *Nature communications*, 11(1):5650, 2020.

Lana X Garmire, Yijun Li, Qianhui Huang, et al.

Challenges and perspectives in computational deconvolution of genomics data. *Nature Methods*, pages 1–10, 2024.

Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, et al.

Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19:3735–3746, 2021.

Alexander J Titus, Gregory P Way, Kevin C Johnson, and Brock C Christensen.

Deconvolution of dna methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes. Scientific reports, 7(1):11594, 2017.