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Abstract—Active user detection in a non-orthogonal multiple
access (NOMA) network is a major challenge for 5G/6G ap-
plications. However, classical algorithms that can perform this
task suffer either from complexity or reduced performances.
This work aims at proposing a quantum annealing approach
to overcome this trade-off. Firstly, we show that the maximum
a posteriori decoder of the activity pattern of the network can
be seen as the ground state of an Ising Hamiltonian. For N
users in a network with perfect channels, we propose a universal
control function to schedule the annealing process. Our approach
avoids to continuously compute the optimal control function but
still ensures high success probability while demanding a lower
annealing time than a linear control function. This advantage
holds even in the presence of imperfections in the network.

Index Terms—Quantum annealing, local adiabaticity, control
function, non-orthogonal multiple access, active user detection

I. INTRODUCTION

One of the major challenges of 5G wireless networks is to
achieve ultra-reliable low latency communications (uRLLC)
requirements to serve applications as the Industrial Internet of
Things [1]. However, the allocation of a dedicated time slot
or frequency prior to transmission for each user is no longer
adapted for typical uRLLC networks because of their growing
size [2], [3]. Instead, each time that the users wish to transmit
a signal, they must complete a random access procedure [4].

This procedure begins by an activity notification sent by
the active users in the uplink channel. To do so, the code
division multiple access (CDMA) approach can be used [5].
An identification sequence is attributed to each node of the
network and all active users simply transmit their code. This
approach permits sharing a common time-frequency resource
to all the users without interference.

It recently appeared that leveraging non orthogonal multiple
access (NOMA) in CDMA systems is promising [6]. In
practice, it allows to attribute non orthogonal identification
sequences to the nodes. Thus, one can reduce the size of these
sequences for a given size of the users’ set.

Detecting the active users − or the activity pattern − accu-
rately from the received signal is called active user detection
(AUD) [4]. It poses a significant challenge in NOMA systems
since the cross-correlations between the sequences do not
vanish. Thus, the users cannot be detected separately. While
methods like the zero-forcing technique [7] or traditional cor-

relation receiver decoders [8] offer computational efficiency,
their performance is limited. Conversely, the maximum a
posteriori (MAP) Bayesian estimator [9] is the most reliable
but computationally demanding, being NP-hard to compute.

In AUD scenarios in which the channel state is known,
one can show that the computation of the MAP estimator is
a quadratic unconstrained binary optimization (QUBO) [10]
problem. The equivalence between QUBO problems and Ising
Hamiltonians allows one to formulate the AUD problem as
a ground state searching problem. However, an exhaustive
search over the space of configurations to find the ground state
has an exponential cost with the system size.

Several methods have been investigated to avoid this ex-
haustive search. Quantum annealing (QA) originally intro-
duced by Kadowaki and Nishimori as a quantum analogue of
thermal annealing in [11] is considered today as a promising
quantum computing-based strategy for the ground state search-
ing of several classes of Hamiltonians [10], [12]. Like many
authors today, we use the term quantum annealing to refer to
QA-inspired adiabatic quantum computation [10], [13]. Much
work remains to be done regarding execution time, but QA
already outperformed classical thermal annealing in reaching
the ground state of some classes of Hamiltonians [10].

The control function that introduces transverse quantum
fluctuations in QA usually needs to be adapted according to
the parameters of the target Hamiltonian [14]. Unfortunately,
in typical AUD models several variables are not deterministic
but rather random variables [4]. This would require to compute
the control function for each received signal. This is why, in
this paper, we propose a strategy to build a generic control
function to parameterize a QA process for AUD given the
size N of the wireless network.

The rest of the paper is organized as follows. Sec. II defines
our model and build the Ising Hamiltonian associated with the
MAP estimator for AUD. In Sec. III, we briefly review the
adiabatic theorem and show how to derive a control function
for QA that ensures adiabaticity locally during the annealing
process. Then, in Sec. IV we adopt a simplified scenario of
our model to propose a universal control function to schedule
a QA approach for AUD once the size of the network has
been fixed. Finally, Sec. V takes into account the channel state
information in our AUD model.



Notations

The set of matrices over a field K of size N × M is
denoted KN×M with the usual identification KN×1 ≡ KN .
We respectively denote a scalar, vector, matrix by x, x, X .

The diagonal matrix whose diagonal elements correspond
to the components of a vector x is denoted diag(x). We also
introduce 1N = [1, . . . , 1] ∈ KN , finally the identity matrix of
size M ×M corresponds to IM = diag(1M ).

The multivariate normal distribution with the mean vector µ
and the covariance matrix Σ is denoted N (µ,Σ). The Dirac
distribution picked at x is denoted Dirac(x). The uniform
distribution over a set Ω is denoted U(Ω).

II. QA FORMULATION FOR AUD
A. Context and problem defintion

We consider a network with N users. Each user #i is
equipped with a single antenna and assigned with a bipolar
identification sequence [15] − also called code − of length
M denoted ci. This code constitutes a signal that is transmitted
by the i-th user. Its power is given by:

Psignal,i = ∥ci∥2. (1)

It is often convenient to work with normalized signals such
that Psignal,i = 1. Hence, the bipolar codes are chosen in the
set:

ci ∈
{
− 1√

M
,

1√
M

}M

. (2)

These vectors must also satisfy a quasi-linearly independence
to ensure the decodability, which is discussed in Appendix A.

Let us assume that a random subset NA of these users wish
to transmit their code to a base station (BS) to notify their
activity on the wireless channel. This subset constitutes the
activity pattern of the network encoded in the bit-string b(0) ∈
{0, 1}N so that one can write:

NA =
{
i ∈ {1, . . . , N} s.t b(0)i = 1

}
. (3)

Each propagation path between the i-th user and the BS
might suffer from attenuation due to the Rayleigh fading
coming from the isotropic scattering assumption [16]. It is
modelled by N fading coefficients (wi)i=1,...,N that obey
a different probability law depending on the quality of the
channels:

w ∼

{
Dirac(1N ) for perfect channels
N (0, IN ) for imperfect channels

(4)

where w = (wi)i=1,...,N . At the end, one measures the
following signal at the receiver side:

y =

N∑
i=1

wib
(0)
i ci + n, (5)

where n ∼ N (0, ξ2IM ) is an additive white Gaussian noise
that models the thermal noise at the BS.

The AUD problem consists in retrieving the activity pattern
b(0) of the network with the knowledge of the received

signal y and the fading coefficients w. As mentioned in the
introduction, the MAP estimator is the most reliable decoder
for such task. It is defined by:

b̂MAP = arg max
b∈{0,1}N

Pb|y,w(b|y,w) (6)

In the next part, we express the probability mass function
Pb|y,w(b|y,w) in terms of the variables bi.

B. QUBO formulation for the MAP detector

Eq. 5 implies that fy|b,w simply corresponds to the probabil-
ity density function of a Gaussian law. In addition, the Bayes’
formula states that [17]:

Pb|y,w(b|y,w)fy|w(y|w) = fy|b,w(y|b,w)Pb(b). (7)

From this point, a simple hypothesis consists in assuming a
uniform distribution over the activity patterns. In this scenario,
the prior distribution Pb is constant which yields:

Pb|y,w(b|y,w) ∝ exp

(
−∥y −C · diag(w) · b∥2

2ξ2

)
, (8)

where the sequences have been concatenated in the matrix
C = [c1, . . . , cN ] ∈ CM×N . Hence the MAP detector reads:

b̂MAP = arg min
b∈{0,1}N

{
∥y −C · diag(w) · b∥2

}
. (9)

The computation of b̂MAP aims at recovering b(0) with (y,w)
as inputs. Developing this objective function yields to the
expression:

∥y −C· diag(w) · b∥2 = ∥y∥2 − 2

N∑
i=1

(y · wici)bi

+

N∑
i,j=1

(wici · wjcj)bibj .

(10)

Once one throws away the irrelevant constant ∥y∥2, our
minimization problem corresponds to the general form

b̂MAP = arg min
b∈{0,1}N

∑
i,j

Qijbibj +
∑
i

aibi

 . (11)

Thus, the MAP detector can be written as a QUBO problem
[10] expressed in terms of the binary variables bi.

C. Building the Ising Hamiltonian

As underlined by the authors of [10], a QUBO problem can
be mapped to an Ising Hamiltonian by the change of variable
σi = 1− 2bi. We defer the details to appendix B and simply
give here the final expression of the problem Hamiltonian:

HP = −
∑
i

hiσi −
∑
i<j

Jijσiσj , (12)



expressed with classical Ising spins σi ∈ {+1 ≡↑,−1 ≡↓}
and the parameters:hi = −wi (ci · ỹ)

Jij = −1

2
(wiwj) (ci · cj)

, (13)

where the signal ỹ is defined by:

ỹ = y − 1

2

N∑
j=1

wjcj . (14)

In terms of Ising variables, an inactive (resp. active) user
corresponds to σi = ↑ (resp. σi = ↓). The MAP estimator is the
ground state of this Hamiltonian. It is the spin configuration
σ(0) ∈ {↑, ↓}N associated to b(0) that minimizes the energy of
the system. The decodability constraint previously mentioned
about the codes ci ensures that the ground state is unique in
the idealized situation w = 1N and ξ = 0.

Let us quickly mention a simple sanity check that confirms
that this Hamiltonian is well suited to our problem. We
adopt the scenario w = 1N , ξ = 0 and relax the NOMA
constraint by considering orthogonal identifications sequences,
ie. ci · cj = 0 for i ̸= j. Then, the activity pattern is trivially
recovered by:

b
(0)
i = |y · ci|. (15)

On the other hand, Eq. 13 in this ideal situation reduces to:{
hi = ||ci||2σ(0)

i

Jij = 0
, (16)

where σ(0) is the spin configuration associated to the initial
activity pattern b(0). The ground state of HP is trivially σ(0),
as one might reasonably expect.

The ground state of an Ising Hamiltonian can be found
with perfect accuracy through an exhaustive search in the
space of configurations {↑, ↓}N . However, such task would
require O

(
2N
)

iterations which is why it is known to be NP-
hard. In order to perform ground state searching with QA, we
promote the Ising spins σi to quantum spins σ̂z

i
1. The problem

Hamiltonian is thus encoded in the operator:

ĤP = −
∑
i

hiσ̂z
i −

∑
i<j

Jij σ̂z
i σ̂

z
j . (17)

III. STATE OF THE ART FOR QA SCHEDULING

A. Basic principle of QA

Given a quantum Hamiltonian ĤP whose ground state is
hard to find, one uses a control Hamiltonian ĤC with a
simple ground state to initialize the system in this known
configuration. In the initial formulation of QA by Kadowaki
and Nishimori [11], ĤC is chosen as the uniform transverse
field Hamiltonian:

ĤC = −
N∑
i=1

σ̂x
i , (18)

1Recall that σ̂α
i denotes the Pauli matrices acting on the i-th qubit, where

α = x, y, z

whose ground state is the uniform superposition |+⟩⊗N . The
QA process slowly evolves the system from an initial dynamic
dictated by ĤC towards a final dynamic encoded by ĤP

through the global Hamiltonian:

Ĥ(t) = (1− u(t))ĤP + u(t)ĤC . (19)

The function u(t) is a control function obeying the initial
condition u(0) = 1 so that the system starts in the ground
state |+⟩⊗N . If the control function decreases slowly towards
0 during a period T , the final state of the system is expected to
be the ground state of ĤP with high probability. This period T
is called the annealing time and its duration can be estimated
thanks to the adiabatic theorem.

B. Adiabatic approximation

The so-called adiabatic theorem is a mathematical statement
on the time evolution of the global Hamiltonian Ĥ(t) to ensure
that the instantaneous state |ψ(t)⟩ of the system remains close
to the instantaneous ground state |ϕ0(t)⟩. Several formulations
exist with different precision levels reviewed in [18], [19]. If
one denotes {εn(t), |ϕn(t)⟩} the instantaneous eigensystem of
Ĥ(t) and ∆(t) = ε1(t) − ε0(t) is the spectral gap between
the ground state and the first excited state, the most commonly
used adiabatic approximation reads [10]:

|⟨ϕ1(t)|∂tĤ(t)|ϕ0(t)⟩|
∆(t)2

≪ 1 ∀t ∈ [0, T ] ⇒ PQA(T ) ≈ 1,

(20)

where we introduced the notation used by [11]:

PQA(t) = |⟨ϕ0(T )|ψ(t)⟩|2. (21)

The success probability of QA naturally corresponds to
PQA(T ). In our case, the time dependence of Ĥ(t) is fully
contained in the control function u. Using Eq. 19, the adiabatic
approximation reads:∣∣∣∣dudt

∣∣∣∣ |⟨ĤC − ĤP ⟩1,0(u)|
∆(u)2

≪ 1 ∀t ∈ [0, T ] ⇒ PQA(T ) ≈ 1.

(22)

which constraints the control function u. It is quite easy to
show that the numerator |⟨ĤC − ĤP ⟩1,0(u)| scales at most
as O(Poly(N)) (see [19] for instance). Thus, a qualitative
discussion of the adiabatic approximation as a function of the
system size is often focused on the spectral gap ∆2. At the
end, one usually uses the following constraint on the control
function u: ∣∣∣∣dudt

∣∣∣∣∆(u)−2 ≪ 1 ∀t ∈ [0, T ]. (23)

C. Linear scheduling

Several theoretical analysis of QA use a linear control
function [20] to parameterize the annealing process:

ulin(t) = 1− t

Tlin
. (24)



(a) Eigenvalues ε0 and ε1 (b) Evolution of ∆2 (c) u(y,w)(t) (d) PQA(t)

Figure 1: Two first eigenvalues of Ĥ(u) for some values of the control function u ∈ [0, 1] (a) and corresponding evolution of
the spectral gap (b). It allows to solve numerically Eq. 28 to obtain u(y,w) (c), which yields the following evolution for the
overlap PQA(t) (d)

In this case, Tlin naturally corresponds to the annealing time.
However, the first derivative of u is constant which heavily
constraints Tlin. Indeed, Eq. 23 immediately imposes:

Tlin ≫ ∆−2
min, (25)

where ∆2
min = min

0≤u≤1
∆2(u). However, if the system encoun-

ters a first order quantum phase transition during the annealing
process, it is known that the minimum of the gap closes
exponentially with the system size [10]. Concretely, it means
that Tlin ∼ eαN with α > 1 so QA would offer no advantage
over an exhaustive search to compute b̂MAP.

The work [14] underlines that in this case one can enhance
the annealing time by looking for a control function with a
non constant derivative.

D. Optimized control function

Recall that u is a decreasing function from u(0) = 1 to
u(T ) = 0, which means that du/dt < 0. As it is done in [14],
we can fix an arbitrary small constant ϵ > 0 and impose:

du

dt
= −ϵ∆2(u(t))

u(0) = 1
, (26)

which directly comes from Eq. 23. We refer to the solution of
ordinary differential equation (ODE) as the optimized control
function. Qualitatively, this equation tells that the larger the
gap, the faster the control function can decrease. Integrating
both sides of this ODE from t = 0 to t = T yields the same
expression than [21] for the annealing time:

T =
1

ϵ

∫ 1

0

du

∆2(u)
. (27)

These two equations 26, 27 underline that once the gap is
known, one can fully determine the annealing time and the
control function associated to a problem encoded in ĤP .

E. An example

Going back to AUD, one can build the quantum Ising
Hamiltonian 17 once the received signal y and the channel
coefficients w are known. Thus, we call a pair (y,w) a
problem instance that allows to compute the Ising parameters

of Eq. 13. Since the time dependence of the full Hamiltonian
Ĥ is entirely contained in the control function, one can take
u ∈ [0, 1] as an affine parameter to evaluate the spectral gap
as a function of u before even knowing the time dependence
u(t). Thus, we denote ∆2

(y,w)(u) the spectral gap associated to
the problem instance (y,w). From Eq. 26 and 27, one defines
the associated control function:

du(y,w)

dt
= −ϵ∆2

(y,w)(u(y,w)(t))

u(y,w)(0) = 1
, (28)

which is the optimal one for (y,w). The associated annealing
time reads:

T(y,w) =
1

ϵ

∫ 1

0

du

∆2
(y,w)(u)

. (29)

As an example, we considered a network of N = 8 users
and generated a problem instance (y,w) in the following
scenario:

Activity pattern: b(0) = (1, 0, 0, 0, 0, 0, 0, 0)

Perfect channels: w ∼ Dirac(1N )

No additive noise: ξ = 0

.

We show on Fig. 1a the two first energy levels of the
global Hamiltonian Ĥ(u). Fig. 1b gives the corresponding
spectral gap ∆2

(y,w). These results have been obtained by exact
diagonalization of the Hamiltonian using the QuTiP2 library.
Then we numerically evaluate the annealing time T(y,w) and
solve Eq. 28 on the interval [0, T(y,w)] to obtain the optimized
control function (Fig. 1c). To do so, we fixed our precision
parameter to ϵ = 0.1. The evolution of the overlap during
the annealing process scheduled with this control function
is finally shown on Fig. 1d. One can see that the success
probability PQA

(
T(y,w)

)
reached at the end of the evolution

is very close to 1, as expected. However, it would be very long
and inconvenient to require to compute T(y,w) and u(y,w)

for each instance (y,w) of our problem. The goal of the
following sections is to emphasize the possibility to build a
generic approach to parameterize a QA process for AUD.

2https://qutip.org
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Figure 2: Several gaps ∆2
(y,w) associated to random samples

of (y,w = 1N ) and their mean value (in red) for N = 8.

IV. PROPOSITION: GENERIC CONTROL FUNCTION WITH
PERFECT CHANNELS

We would like to check if, despite the randomness of the
parameters (y,w), we can estimate a generic control function
for a given size of the network N . We first consider a simple
scenario with perfect channels.

A. Mean gap in the absence of additive noise

Let us begin with a scenario where the size of the network
N is fixed and where the additive Gaussian noise is neglected,
which amounts to fix ξ = 0. We randomly generated 30
samples of (y,w) to check how the associated gaps ∆2

(y,w)

behave. The signals y are generated from uniform samples of
activity patterns b(0) and the channel coefficients are given by
w = 1N . Interestingly, Fig. 2 shows that a pattern emerges
for the shape of the gap against u despite the dependence of
the local magnetic fields hi in y.

These results motivate the definition of the mean gap:

∆2
(mean),N (u) = E(y,w)

(
∆2
)
. (30)

In our specific case, this quantity can be exactly computed.
Indeed, the channel coefficients are fixed to w = 1N and the
received signal y is fully determined from the initial activity
pattern b(0). Using that b(0) is uniformly distributed, one has:

∆2
(mean),N =

1

2N

∑
b(0)∈{0,1}N

∆2
(y,w=1N )(u). (31)

Then, we can use this mean gap to compute the associated
annealing time T(mean),N with Eq. 27:

T(mean),N =
1

ϵ

∫ 1

0

du

∆2
(mean),N (u)

, (32)

and the resulting control function u(mean),N (t) from Eq. 26:
du(mean),N

dt
= −ϵ∆2

(mean),N

(
u(mean),N (t)

)
u(mean),N (0) = 1

. (33)

Once for all, we adopt the precision level ϵ = 0.1. We
reported the shape obtained for u(mean),N (s) for N = 6, . . . , 9
on Fig. 3 with respect to the normalized time s = t/T(mean),N .

Figure 3: Shape of the mean control functions obtained for
N = 6, . . . , 9 with respect to s = t/T(mean),N

Then, we must test for each value of N whether these
functions are good candidates to schedule a QA process on
the period t ∈ [0, T(mean),N ] to estimate b̂MAP.

B. Definition of the metrics

We will compare for several (y,w) the success probability
of a QA process scheduled with our approach with the one
that would been obtained with an optimal scheduling for each
problem instance. To do so, one need to define appropriate
metrics. We first generate a pair (y,w) and simulate a QA
process parameterized with u(mean),N by numerically solving
the Schrödinger’s equation:

i∂t |ψ(t)⟩ = Ĥ(u(mean),N (t)) |ψ(t)⟩ , t ∈ [0, T(mean),N ],
(34)

with the initial condition |ψ(0)⟩ = |+⟩⊗N (we work with
natural units where ℏ = 1) using again the QuTiP library. The
obtained success probability is denoted with the short-hand
notation:

PQA
(
T(mean),N ; (y,w)

)
≡ P

(mean)
QA (y,w). (35)

On the other hand, the reference success probability is the
one corresponding to a QA process scheduled with the well-
suited optimized control function u(y,w) (Eq. 26) and the
corresponding annealing time T(y,w) (Eq. 27). We adopt also
a short hand notation:

PQA
(
T(y,w); (y,w)

)
≡ P

(opti)
QA (y,w). (36)

Since the instances (y,w) are randomly distributed, P (mean)
QA

P
(opti)
QA are random variables. Thus, we propose to use their

expectation values to quantify the reliability of each scheduling
strategy. We turn on the additive Gaussian noise to realize the
performance analysis, hence the expectation values are given
by:

E(y,w)

(
P

(α)
QA

)
=

∑
b(0)∈{0,1}N

∫
dnf(b(0),n)P

(α)
QA (y,w),

(37)

for α ∈ {mean, opti}. The function f(b(0),n) is the prob-
ability density function associated to the instances (y,w).



(a) N = 6 (b) N = 7 (c) N = 8 (d) N = 9

Figure 4: Distributions of P (mean)
QA (in blue) and P

(opti)
QA (in red) for several network sizes N . The noise level corresponds to

SNR = 20dB We performed Nsamples = 500 samples for each histogram.

(a) N = 6 (b) N = 7 (c) N = 8 (d) N = 9

Figure 5: Same distributions than Fig. 4 but with SNR = 15dB.

The channel coefficients are still fixed to w = 1N but the
signal y is now generated from the sample of an activity
pattern b(0) and a Gaussian vector n. Those two parameters
are independently distributed, respectively following the laws
U
(
{0, 1}N

)
and N (0, ξ2). Thus, the weights of Eq. 37 are

given by:

f(b(0),n) =
1

2N
× 1

(2πξ)M/2
exp

(
−∥n∥2

2ξ2

)
. (38)

We also need a metric to quantify the intensity of the
Gaussian noise. A well adapted one is the signal-to-noise ratio
(SNR) expressed in dB. Since the power of the signal sent
individually by each user is normalized to Psignal,i = 1, the
SNR roughly reads:

SNR = −20 log10 (ξ) . (39)

C. Reliability of our strategy

The instances (y,w) have no longer a finite support. Thus,
we generated Nsamples = 500 pairs (y,w = 1N ) according
to the weights of Eq.38 for N = 6, . . . , 9 to estimate the
distributions of P (mean)

QA and P (opti)
QA . The expectation values for

α ∈ {mean, opti} are estimated by:

E(y,w)

(
P

(α)
QA

)
=

1

Nsamples

∑
(y,w)∈samples

P
(α)
QA (y,w). (40)

We reported on Fig. 4 the obtained histograms for a noise
level corresponding to SNR = 20dB. We can observe that
the values of P (mean)

QA are more spread out along the axis

than the values of P (opti)
QA which is not surprising. Indeed,

the control function umean,N cannot be well suited for all
possible outcomes (y,w). Nevertheless, the expectation value
E(y,w)

(
P

(mean)
QA

)
is always above 0.8 which is reasonably

below E(y,w)

(
P

(opti)
QA

)
.

We also reported the obtained distributions for a level
of noise corresponding to SNR = 15dB. The gap between
E(y,w)

(
P

(mean)
QA

)
and E(y,w)

(
P

(opti)
QA

)
is higher but our ap-

proach can still offer a mean success probability above 0.7.
Thus, our generic control function appears as a good com-

promise to schedule a QA approach for any set of parameters
(y,w) given a size of the network N

D. Advantage over a linear control function

Once the annealing time T(mean),N is known thanks to Eq.
32, one might question the necessity to use the control func-
tion u(mean),N on the annealing period [0, T(mean),N ]. Indeed,
the differential equation 26 to obtain the optimized control
function associated to a given gap results from several approx-
imations. Thus, one might be tempted to simply use a linear
control function with an annealing period Tlin,N = T(mean),N
and expect the resulting success probability to be not too low
even if the condition of Eq. 25 is not satisfied. To answer this
question, we define the success probability of a QA process
planned according to this strategy:

PQA
(
T(lin),N = T(mean),N ; (y,w)

)
≡ P

(lin)
QA (y,w). (41)



(a) N = 6 (b) N = 7 (c) N = 8 (d) N = 9

Figure 6: Distributions of P (mean)
QA (in blue) and P (lin)

QA (in green) for several network sizes N . The noise level corresponds to
SNR = 20dB We performed Nsamples = 500 samples for each histogram.

(a) N = 6 (b) N = 7 (c) N = 8 (d) N = 9

Figure 7: Same distributions than Fig. 6 but with SNR = 15dB.

Following the same approach than above, we reported on
Fig. 6 the distributions of P

(lin)
QA and P

(mean)
QA for a level

of noise corresponding to SNR = 20dB. The expectation
value E(y,w)

(
P

(mean)
QA

)
is higher than E(y,w)

(
P

(lin)
QA

)
which

confirms the advantage of using umean,N .
As the noise increases, Fig. 7 shows that the gap between the

two expectation values E(y,w)

(
P

(mean)
QA

)
and E(y,w)

(
P

(lin)
QA

)
is reduced. Nevertheless at SNR = 15dB, our control function
is still expected to yield a success probability higher than the
one that would been obtained with a linear control function

V. CONTROL FUNCTION IN THE GENERAL CASE

In the previous section we proposed a generic method to
evaluate an appropriate control function and demonstrated its
validity on random problem instances with thermal noise at
the BS. However in more realistic scenarios, the received
signal can also be impacted by the channel coefficients. In
this section, we take into account the channels between the
users and the BS. From now on, the channel coefficients are
normal variables to account for Rayleigh fading:

w ∼ N (0, IN ). (42)

A. Behavior of the gap

First of all, let us go back to our scenario of N = 8 users
with an initial activity pattern b(0) = (1, 0, 0, 0, 0, 0, 0, 0).
We generate one random problem instance (y,w) with no
additional Gaussian noise by independently sampling the N

(a) Eigenvalues ε0 and ε1 (b) Evolution of ∆2

Figure 8: Two first eigenvalues of Ĥ(u) in a scenario with
attenuation (a) and corresponding spectral gap against u (b).

Figure 9: Shape of the mean control functions with fading
coefficients in the network obtained for N = 6, . . . , 9 with
respect to s = t/T(mean),N



(a) N = 6 (b) N = 7 (c) N = 8 (d) N = 9

Figure 10: Distributions of P (mean)
QA (in blue) and P (opti)

QA (in red) for several network sizes N with channel imperfections taken
into account. The noise level corresponds to SNR = 15dB. We performed Nsamples = 500 samples for each histogram.

channel coefficients according to the standard normal distri-
bution.

As done before, we reported on Fig. 8 the eigenvalues ε0,1
of the global Hamiltonian Ĥ and the corresponding spectral
gap. This time, the minimum of the gap is reached at the end
of the annealing process when the control function vanishes.

This new behavior can be explained by the modifications
induced in the spectrum of the Ising Hamiltonian ĤP . In the
case where a user i is strongly attenuated by a coefficient wi

close from 0, the spin flip σi → −σi will not significantly
modify the associated eigenenergy. Thus, taking into account
the attenuation on the propagation paths between the users and
the access point strongly reduces the gaps between the eigen-
values of the associated Ising Hamiltonian ĤP . It suggests that
the mean gap should be estimated again in this new scenario.

B. Mean control function with fading coefficients

As done previously, we first neglect the additive Gaussian
noise in order to evaluate the mean gap from several problem
instances. From this quantity, we derive the associated mean
control function u(mean),N defined on [0, T(mean),N ]. Since the
channel coefficients w are now also randomly distributed, Eq.
31 is generalized to:

∆2
(mean),N (u) =

∑
b(0)∈{0,1}N

∫
dwf(b(0),w)∆2

(y,w)(u).

(43)

Since b(0) and w are independently distributed, the above
probability density function is simply given by:

f(b(0),w) =
1

2N
× 1

(2π)N/2
exp

(
−∥w∥2

2

)
. (44)

Contrarily to the scenario with perfect channels, the mean gap
cannot be evaluated exactly through Eq. 43. Thus, we sample
the probability distribution f(b(0),w) with Nsamples, gap =
2000 samples and evaluate the mean gap with the estimator:

∆2
(mean),N (u) =

1

Nsamples, gap

∑
(y,w)∈samples

∆2
(y,w)(u). (45)

As done previously, we reported on Fig. 9 the shape of the
control functions against the normalized time s = t/T(mean),N
for N = 6, . . . , 9. These shapes indicate that the first deriva-
tive is monotonically decreasing over the annealing period,
which is expected regarding the previous comments about the
behavior of the gaps ∆2

(y,w). Let us now check whether this
approach still offers a good compromise in terms of success
probability.

C. Mean success probability

As we did with the perfect channel scenario, we would like
to check that the mean control function still offers a good suc-
cess probability when the noise is taken into account. We use
again the metrics P (mean)

QA and P (opti)
QA . The expression of their

expectation values is modified according to the distribution of
the instances (y,w):

E(y,w)

(
P

(α)
QA

)
=

∑
b(0)∈{0,1}N

∫
dndwf(b(0),n,w)P

(α)
QA (y,w).

(46)

for α ∈ {mean, opti}. Using again the independence of
the parameters used to generate a pair (y,w), the above
probability distribution is given by:

f(b(0),n,w) =
1

2N
× 1

(2πξ)M/2
exp

(
−∥n∥2

2ξ2

)
× 1

(2π)N/2
exp

(
−∥w∥2

2

)
.

(47)

An estimation of the distributions of P (mean)
QA and P (opti)

QA at
SNR = 15dB is shown on the histograms of Fig. 10. These
results have been obtained by performing again Nsamples = 500

samples of problem instances to evaluate P (mean)
QA (y,w) and

P
(opti)
QA (y,w). Unfortunately, the mean success probability

E(y,w)

(
P

(mean)
QA

)
is around 0.65 while a well-suited control

function for each problem instance still ensures a mean success
probability E(y,w)

(
P

(opti)
QA

)
above 0.9. We must then investi-

gate a way to improve the mean control function in this more
complex AUD scenario.



(a) λ = 1 (b) λ = 2 (c) λ = 3 (d) λ = 4

Figure 11: Distributions P (mean)
QA (in blue) and P (opti)

QA (in red) for N = 8 and SNR = 15dB with different dilatation factors λ.
The annealing period [0, T(mean)] is extended to [0, λT(mean)] and [0, T(y,w)] is left unchanged.

(a) λ = 1 (b) λ = 2 (c) λ = 3 (d) λ = 4

Figure 12: Distributions P (mean)
QA (in blue) and P (lin)

QA (in green) for N = 8 and SNR = 15dB with different dilatation factors λ.

D. Time dilatation

The reduction of the mean success probability
E(y,w)

(
P

(mean)
QA

)
is likely due to the fact that u(mean),N

decreases too fast at the end of the annealing process. Indeed,
the example previously shown on Fig. 8 suggests that when
the control function approaches 0, the gap closes which
means that u must decrease slowly enough to offer a good
reliability. In order to force u(mean),N to decrease slower, we
propose to apply a time dilatation factor λ to its associated
annealing period [0, T(mean),N ]. In practice, it amounts to use
the time-dilated mean control function:

u(mean),λ,N (t) = u(mean),N

(
t

λ

)
. (48)

Consequently, the annealing period is extended to
[0, λT(mean),N ]. Of course, we aim at keeping λ reasonably
low to preserve the order of magnitude of the annealing time.

Nevertheless, we show on Fig. 11 that time dilatation factors
of λ = 2, 3, 4 already allow to boost the mean success
probability E(y,w)

(
P

(mean)
QA

)
. These results correspond to a

network with N = 8 users and a level of additive noise fixed
to SNR = 15dB. For instance, picking λ = 2 allows to reach
a mean success probability above 0.75 which is significantly
better than the results obtained in the previous paragraph.

We also compared again our proposal to a linear con-
trol function parameterized over the same annealing pe-
riod [0, λT(mean),N ]. The results on Fig. 12 confirm that

u(mean),λ,N offers significantly a higher mean success prob-
ability E(y,w)

(
P

(mean)
QA

)
than a linear control function.

Thus, our strategy is also promising in this more complex
AUD scenario. A time dilatation can be applied to the mean
control function to improve the performances.

VI. CONCLUSION

A. Contributions

In this work, we proposed a generic strategy to parame-
terize a QA process with the usual transverse Hamiltonian to
compute the MAP estimator for AUD in a NOMA network.
Despite the randomness of several parameters involved in the
couplings and the local fields of the corresponding targeted
Ising Hamiltonian, the evolution of the spectral gap of the
global Hamiltonian against u(t) follows a recurrent shape.
We have shown that our mean control function ensures a
reasonable expectation value for the success probability of
QA after (if wanted) applying a time dilatation operation. This
function has the advantage to be universal once the size of the
network N is fixed and permits to reach better performances
than the simple linear control function.

B. Scalability with N

The work conducted in this paper is limited to small network
sizes. For larger values of N , the computation of the quantum
gaps like those involved in Eq. 45 would be too long with the
exact diagonalization method of the full Hamiltonian used in



this work. A further improvement would be to use Quantum
Monte Carlo methods as done by [22] to extract quantum gaps
involved in the mean gap estimator in order to compute it for
N ≥ 9.

C. Knowledge of the channel coefficients

Regarding the AUD model, another improvement would be
to relax some assumptions we made. In fact, the knowledge
of the channel coefficients w at the access point is a strong
assumption that does not hold true in practice. Some modern
formulations of AUD assume that the statistics of the channel
vector w (which is a Gaussian law in this work) is known by
the access point but not the realizations. A further perspective
to this work could be to adapt the signal processing model to
such case.
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APPENDIX A
CHOICE OF THE SEQUENCES

The identification sequences of the users must be chosen
such that each activity pattern b(0) yields a different signal
y in the absence of imperfections. It means that in the case
ξ = 0 and w = 1N , one requires:{

y
(
b(0),n = 0,w = 1N

)
= y

(
b(1),n = 0,w = 1N

)}
⇒
{
b(0) = b(1)

}
.

(49)

One can show that this condition is ensured if and only if:{
∃λ ∈ {−1, 0, 1}N s.t

N∑
i=1

λici = 0

}
⇒ {λ = 0} . (50)

Throughout this work, we used coding schemes constructed
by a random selection of N codes of size M followed by
an exhaustive verification of the condition 50. We give below
the matrices C = [c1, . . . , cN ] ∈ CM×N corresponding to the
codes we used for N = 6, . . . , 9.

C6 =
1√
5


−1 −1 1 1 −1 −1
1 1 −1 1 1 −1
−1 −1 1 1 1 1
1 −1 1 1 −1 −1
−1 1 1 1 −1 1

 ,

C7 =
1√
6


1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 1
1 −1 −1 1 −1 1 1
−1 1 1 1 1 −1 −1
1 1 1 −1 −1 1 −1
−1 −1 1 −1 −1 −1 1

 ,

C8 =
1√
6


1 1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 −1 1 1
−1 1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 1 −1 1 1 1 −1 1
−1 1 −1 1 −1 −1 −1 −1

 ,

C9 =
1√
7



−1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1 1 −1 1
−1 −1 −1 1 −1 1 −1 −1 1
−1 1 1 −1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 1 −1 1
−1 1 1 1 1 1 1 1 1
−1 −1 1 −1 −1 1 1 1 1


.

APPENDIX B
QUBO - ISING MAPPING

One uses the change of variable σi = 1 − 2bi in the
expression of the objective function 10 without taking into
account the irrelevant constant ||y||2:

∥y −C· diag(w) · b∥2 ∼ −2

N∑
i=1

(y · wici)

(
1

2
(1− σi)

)

+

N∑
i,j=1

(wici · wjcj)

(
1

2
(1− σi)

)(
1

2
(1− σj)

)
.

(51)

We throw away the constant terms (ie. not depending on the
σ’s) to obtain:

∥y −C· diag(w) · b∥2 ∼
N∑
i=1

σi

wiy · ci −
1

2
wici ·

∑
j

wjcj


+

1

4

N∑
i,j=1

(wiwjci · cj)σiσj .

(52)

Using that σ2
i = 1, the diagonal contribution of the double sum

is also an irrelevant constant. Since the sum is symmetric under
i↔ j, we can use

∑
i ̸=j ≡ 2

∑
i<j . Hence the expression of

the couplings in the main text:

Jij = −1

2
(wiwj)(ci · cj). (53)

As for the local fields, one can directly identify:

hi = −wici ·

y − 1

2

∑
j

wjcj

 . (54)

It matches the expression of the main text:

hi = −wici · ỹ, (55)

with the signal ỹ expressed as in Eq. 14



REFERENCES

[1] P. Popovski, C. Stefanovic, J. J. Nielsen, et al., “Wire-
less Access in Ultra-Reliable Low-Latency Communica-
tion (URLLC)”, en, IEEE Transactions on Communications,
vol. 67, no. 8, pp. 5783–5801, Aug. 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8705373/.

[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M.
Abu-Mahfouz, “A Survey on 5G Networks for the Internet
of Things: Communication Technologies and Challenges”,
en, IEEE Access, vol. 6, pp. 3619–3647, 2018. [Online].
Available: http://ieeexplore.ieee.org/document/8141874/.

[3] Y. L. Lee, D. Qin, L.-C. Wang, and G. H. Sim, “6G Massive
Radio Access Networks: Key Applications, Requirements and
Challenges”, en, IEEE Open Journal of Vehicular Technology,
vol. 2, pp. 54–66, 2021. [Online]. Available: https://ieeexplore.
ieee.org/document/9295376/.

[4] L. Chetot, M. Egan, and J.-M. Gorce, “Active User Detection
and Channel Estimation for Grant-Free Random Access with
Gaussian Correlated Activity”, en, in 2023 IEEE 97th Ve-
hicular Technology Conference (VTC2023-Spring), Florence,
Italy: IEEE, Jun. 2023, pp. 1–6. [Online]. Available: https :
//ieeexplore.ieee.org/document/10199877/.

[5] A. K. Fletcher, S. Rangan, and V. K. Goyal, On-Off Ran-
dom Access Channels: A Compressed Sensing Framework,
arXiv:0903.1022 [cs, math] version: 2, Mar. 2009. [Online].
Available: http://arxiv.org/abs/0903.1022.

[6] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo,
“A Survey of Non-Orthogonal Multiple Access for 5G”, en,
IEEE Communications Surveys & Tutorials, vol. 20, no. 3,
pp. 2294–2323, 2018. [Online]. Available: https://ieeexplore.
ieee.org/document/8357810/.

[7] J. Xiao, X. Ma, and S. W. McLaughlin, “Quantifying infor-
mation rate losses with zero-forcing and maximum-likelihood
detectors”, en, in 2010 IEEE International Conference on
Acoustics, Speech and Signal Processing, Dallas, TX, USA:
IEEE, 2010, pp. 3342–3345. [Online]. Available: http : / /
ieeexplore.ieee.org/document/5496010/.

[8] C. Goursaud, A. Julien-Vergonjanne, C. Aupetit-Berthelemot,
J.-P. Cances, and J.-M. Dumas, “DS-OCDMA receivers based
on parallel interference cancellation and hard limiters”, en,
IEEE Transactions on Communications, vol. 54, no. 9,
pp. 1663–1671, Sep. 2006. [Online]. Available: http : / /
ieeexplore.ieee.org/document/1703824/.
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