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Surrogate-based worst-case
analysis of a knee joint model
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Verification, validation, and uncertainty quantification is generally recognized as a
standard for assessing the credibility of mechanical models. This is especially
evident in biomechanics, with intricate models, such as knee joint models, and
highly subjective acquisition of parameters. Propagation of uncertainty is
numerically expensive but required to evaluate the model reliability. An
alternative to this is to analyze the worst-case models obtained within the
specific bounds set on the parameters. The main idea of the paper is to
search for two models with the greatest different response in terms of
displacement-load curve. Real-Coded Genetic Algorithm is employed to
effectively explore the high-dimensional space of uncertain parameters of a
2D dynamic knee model, while Radial Basis Function surrogates reduce the
computation by orders of magnitude to near real-time, with negligible impact
on the quality. It is expected that the studied knee joint model is very sensitive to
uncertainty in the geometrical parameters. The obtained worst-case knee
models showcase unrealistic behavior with one of them unable to fully
extend, and the other largely overextending. Their relative difference in
extension is up to 35% under ±1 mm bound set on the geometry. This
unrealistic behavior of knee joint model is confirmed by the large standard
deviation obtained from a classical sampling-based sensitivity analysis. The
results confirm the viability of the method in assessing the reliability of
biomechanical models. The proposed approach is general and could be
applied to other mechanical systems as well.
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1 Introduction

Verification, validation, and uncertainty quantification has become a standard for
assessing the credibility of complex models (Anderson et al., 2007). In biomechanics of the
musculoskeletal system, one of the most complex models have been developed for the knee
joint (Viceconti et al., 2006; Leardini et al., 2017; Roupa et al., 2022). Analytical, multibody
and more recently finite element models have been reported, e.g., (Wismans et al., 1980;
Yamaguchi and Zajac, 1989; Bei and Fregly, 2004; Parenti-Castelli et al., 2004; Erdemir,
2016). These models involved a large number of uncertain parameters. Whatever the
formulation, in either 2 or 3 dimensions, all the knee joint models involve parameters
defining the geometry–the articular surfaces and the ligament lines of actions. In case of
deformable knee joint models, additional uncertain parameters define the materials–the
contact and ligament stiffness. These parameters are influencing the joint kinematics,
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statics, or dynamics (El Habachi et al., 2015; Lenhart et al., 2015;
Valente et al., 2015; Rooks et al., 2022). Subject-specific geometric
parameters are typically derived from medical images. Studies show
that their accuracy can vary up to ±2.5 mm (Gomes et al., 2013). In
contrast, for material parameters, it is common to source the
available experimental results, which also exhibit large variation
between studies. This is then reflected in modeling studies, for
instance there can be a difference of up to 19 MPa in Young’s
modulus of articular contact based on (Machado et al., 2010;
Machado et al., 2011).

Propagation of uncertainty is a process, in which the uncertain
values of input parameters are transferred through the model to its
outputs. In other words, both the inputs and the outputs of the model
are treated as random variables. This operation is typically performed
with multiple iterations using random sampling and is crucial to
evaluate the model reliability. Nevertheless, it can be very costly,
therefore changing parameters one-at-a-time is still a popular option
in biomechanics (El Habachi et al., 2015; Lenhart et al., 2015; Valente
et al., 2015; Rooks et al., 2022). An alternative to both of these methods
might be to employ heuristic optimization and redefine the task as a
search for the worst-case models, typical in electrical circuit analysis
(Femia and Spagnuolo, 2000). In this study, this problem is posed as an
optimization-based search for two models with the greatest different
response rather than sampling the whole response space as done in a
classical sensitivity analysis, making it more efficient numerically.

The objective of the present study was to fully develop and
exploit this worst-case analysis to evaluate the reliability of a
dynamic, deformable multibody model of the knee joint in the
sagittal plane. It is expected this model is very sensitive to
uncertainty in the geometrical parameters. The search for the
two worst-case models was performed with Genetic Algorithm
augmented with surrogate modeling and custom objective,
tailored for finding representative responses in joint biomechanics.

2 Materials and methods

2.1 Assumed knee joint model

As mentioned before, the worst-case analysis was performed on a
deformable multibodymodel of the knee joint assumed after (Machado
et al., 2010). The model featured two rigid bodies representing the main
bones. The tibia and the femur could articulate through deformable
contact pairs representing the cartilage layer and modeled with the
Hertz’s contact theory. The rigid segments were connected with four
nonlinear cables, substituting the main ligaments in the joint–Anterior
Cruciate (ACL), Posterior Cruciate (PCL),Medial Collateral (MCL) and
Lateral Collateral (LCL). Each cable was defined by two attachment
vectors, with two coordinates each. These links were assumed to have a
quadratic load response defined by one stiffness coefficient. Their
resting lengths were computed based on the strain-free location of
the model. The material and inertial parameters were assumed after
(Machado et al., 2010), while the geometry was recreated from original
drawings, presenting themodel. Articular contact was substitutedwith a
sphere-to-plane contact pairs in sagittal plane defined by circle center
position and line position and slope along with Young’s Modulus and
Poisson’s coefficient. The values of the geometric and material
parameters are provided in Supplementary Material.

The model was formulated using Newton-Euler equations and
solved in dynamics using Semi-Implicit Euler (SIE) method with a
time step of 0.004 s. The simulations were initiated from a load-free
configuration, which corresponded to about 55 deg of flexion. The
model was subjected to external moment loads in two simulations.
For extension, the moment load was applied as a step function with
the following values: (0.1, 0.2, 0.4, 0.8, 2., 5.) Nm for the
corresponding timestamps: (0, 7, 11, 14, 17, 20) s. Flexion was
solved similarly, only with the moment sign reversed. Additionally,
high level of damping was applied to both the linear and angular
motion with the following equations:

Fd � – v,

Md � – 1.5ω

where: Fd/Md - the damping force/moment, v/ω - linear/
angular velocity.

These damping values were selected manually so that model was
able to achieve the equilibrium for every moment value without
significant oscillations during the transient dynamics.

2.2 Worst-case analysis

The main task of the worst-case analysis is to find a set of
parameters, for which the model exhibits the most atypical,
i.e., worst, behavior in terms of the selected objective. In this
study, it is formed by optimizing two models concurrently with
the objective being the difference in their responses, which is to be
maximized within selected bounds. If the model represents the knee
joint and its response is the function of knee angle for different
external moment loads, it can be defined as follows:

f x( ) � ∑
n

i�0
θ1 Mext,i( )–θ2 Mext,i( )
∣∣∣∣

∣∣∣∣

where: x–the vector of decision variables, θ1/θ2—the angular
displacement of model 1/2, Mext,i–the external moment i acting on
the tibia, n–the number of considered load/displacement values (see
section 2.2). The decision variable vector x contains parameters of two
distinct knee joint models, which are optimized concurrently. If both
the geometry and material parameters are optimized, then x contains
2 * 28 parameters, i.e. 56 coordinates. The first 28 coordinates of x
define the first worst-case model, while the remaining 28 refer to the
second worst-case model. The final result of the procedure represents
the two most-different models in terms of the angular displacement.
The optimization is carried out with Genetic Algorithm entirely in the
surrogate space (see section 2.3 for details). Once the search is
finished, the best solution is recomputed in the real-model space.

2.3 Approximation and optimization with
a surrogate

Metahueristic optimization methods, such as Genetic
Algorithm, rely on a large number of model evaluations during
search, often in thousands. To lower the cost of the worst-case
analysis, surrogate modeling was employed. In surrogate modeling,
an expensive model is substituted with a simplified statistic model,
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called surrogate. In order to train and test the surrogate, the original
model is sampled and solved several times. The surrogate typically
offers lower quality results but at a significantly lower numerical
cost. The field of surrogate modeling offers multiple methods for
constructing the substitute model. In this study, Radial Basis
Function (RBF) (Fasshauer, 2007) using Scipy’s implementation
with thin plane spline kernel (van der Walt et al., 2011) was selected
due to its low numerical complexity with small training datasets. In
order to obtain an RBF knee surrogate, the baseline model (section
2.1) was sampled 50 times with brute force Monte Carlo and bounds
set to ±1 mm and ±10% for geometric and material parameters,
respectively. Resting lengths were not included in the uncertain
parameters. To further lower the numerical cost, RBF was trained on
the displacement-load curve obtained by including only points after
the transient dynamics, rather than the raw model response.

For the optimization, Real-CodedGenetic Algorithmwas employed
with roulette-wheel selection, blx-α crossover (α = 0.5) and non-
uniform mutation along with rank-based fitness scaling, more details
can be found in (Herrera et al., 1998). In this implementation, 70% of
solutions were created using crossover, 20% underwent mutation and
10% were transferred through elitism. The search was performed with
population size of 200 and generation number set to 800. Furthermore,
four additional runs were performed at 100 generations at
100 population size in both surrogate space and model space in
order to further validate surrogate’s performance.

2.4 Reference method for comparison

The worst-case models were compared in terms of the geometry
and material parameters, and their outputs in the form of the
ligament forces and anterior-posterior tibio-femoral displacement
during flexion.

For the angular displacement outputs, sampling-based sensitivity
analysis was performed to provide a reference. The model was
sampled 10,000 times with brute force Monte Carlo in the real-
model space and using the same bounds as in the worst-case analysis.
Then, the mean value and the standard deviation were computed.
These values were used to obtain the 99.7% bounds on the outputs.

3 Results

The proposed approach was tested on the 2D deformable
multibody model of the knee in three separate cases: both
geometry and material, geometry-only, material-only. The details
regarding the geometry and material case were summarized below.
Other results can be found in the Supplementary Material.

3.1 Worst-case models

As seen in Figure 1, even with the low bounds set on the geometry
and material parameters, the two worst-case models differed
significantly in terms of the angular displacement. The relative
difference was up to 35% in extension. In practical terms, this meant
that, within the selected bounds for parameters, a model, which cannot
fully extend and a model which significantly overextends could both be
achieved with only small modifications with respect to the baseline
model. Additionally, the worst-case models lie outside of the 99.7%
bounds of the sampling-based sensitivity analysis.

It is important to note that the obtained displacement-load
curves represented actual models and not an aggregate of multiple
runs. Therefore, these models could be analyzed in terms of their
parameters. As seen in Figure 2, in the worst cases, the MCL moved
in the opposite direction to the contact sphere center along the

FIGURE 1
External moment Mext with regards to the knee joint angle θ: the baseline model from (Machado et al., 2010), and the two worst-case models with
uncertain parameters being both geometric and material parameters. The orange lines represent the fifty models generated to train the surrogate of the
objective function. The yellow-green lines represent the 99.7% bounds on the outputs computed with sampling-based sensitivity.
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contact plane. Similar relationship could be seen for the ACL, in
which the pattern occurred perpendicularly to the contact plane.
PCL and ACL showedminimal change in their angles with respect to
the baseline configuration. On the other hand, for LCL and MCL, a
change of angle was observed. Finally, between the two worst cases,
the contact plane angle differed in a symmetrical way. In terms of the
stiffness, both ACL and PCL became more compliant in both worst-
case models. On the other hand, MCL became stiffer, while LCL
varied in stiffness between the obtained worst-cases.

The forces generated by the ligaments were also highly affected
by the small changes of parameters in the worst cases, as seen in
Figure 3. The worst-case model #1 exhibited very small ligament
forces up to 10 deg of overextension, whereas #2 was reaching
concerning levels of force in PCL, even before full extension. On the
contrary, this relationship was reversed for flexion.

Finally, significant difference in knee kinematics was noted in the
form of anterior-posterior tibio-femoral displacement for the obtained
models, see Figure 4. The ranges of displacement and angle aremodified
but the rolling-sliding mechanism remained unchained. Indeed, there
was always a change of slope (with more rolling) after 55 deg of flexion.

As mentioned before, similar tests were performed altering only
geometry and only material. The results obtained for the geometry-
only worst-case analysis were largely similar to that of the geometry-
and-material with only visible difference being in the position of
LCL (see Supplementary Material). The material-only worst-case
analysis resulted in only a small change in the angular displacements
between the worst-case models.

3.2 Computational efficiency

The search with a population size of 200 and generation
number set to 800 finished in 4.10 s using 15 threads of Ryzen

6800H. Furthermore, the final result in the real-model space
differed by only 4% in f(x) compared to surrogate space.
Moreover, after the four additional runs with 100 generations
and population size of 100, the surrogate search averaged at 94%
of the model search, while being over 7,572 times faster. Search in
the surrogate space finished in 0.35 s on average, while real model
search took 2,633 s to optimize the 2 * 28 parameters.
Additionally, Monte Carlo sampling, for sensitivity of the
28 parameters with 10,000 samples, took 1,246 s.

4 Discussion

4.1 Worst-cases search using Genetic
Algorithm and surrogate model

Applying Genetic Algorithm to find the worst-case models is
an established method in electrical circuit analysis (Skelboe,
1979; Femia and Spagnuolo, 2000). Nonetheless, its use in
mechanics or biomechanics is rather limited (Ciszkiewicz,
2020). The method offers unique advantages when compared
to more common Monte Carlo sensitivity. Namely, the worst-
case analysis returns actual models, not bounds on output.
Bounds might be misleading, as for instance no one knee
model within the bounds can overextend and overflex at the
same–worst-case analysis covers this with the two most different
models. Interestingly, even if the worst-case models are treated as
bounds, these bounds match Monte Carlo sampling only in the
flexion phase of the motion (θ > ~55 deg), whereas in extension
(θ < ~55 deg) they are significantly more extensive, see Figure 1.
This suggests asymmetry in load distribution in the two phases of
knee motion and should be studied more in the future. The
results show that both approaches to sensitivity are different, but

FIGURE 2
Worst-case models for the knee joint with uncertain being both geometric and material parameters. The model is at about 55 deg of flexion (load-
free configuration for the baseline model (Machado et al., 2010)).
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FIGURE 3
Ligament forces Fi with regards to the knee joint angle θ in the worst-case models with uncertain parameters being both geometric and material
parameters.

FIGURE 4
Anterior-posterior tibio-femoral displacement with regards to the knee joint angle θ, in the worst-case models with uncertain parameters being
both geometric and material parameters.
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complement each other to provide a balanced overview of
model’s reliability.

Defining the objective of the worst-case analysis is a difficult
task, compounded by the intricate nature of the studied model. In
this study, the objective is based on the angular displacement of
the joint. With regards to the formulation of the objective,
maximizing the difference between two models is general and
encompasses different other possible objectives, providing an
elegant and easy way to analyze outputs. The decision variable
vector is however doubled in dimensionality, which makes the
problem more complex, which was a limiting factor in a
preliminary study on a static model of the ankle joint
(Ciszkiewicz, 2020).

The use of the surrogate simplifies the optimization problem
but causes a difference of 4% in the objective function. When
combined with the substantial time-gain under surrogates, this
drop in quality can be considered a worthwhile trade-off, allowing
for much more extensive optimization in feasible time (seconds, as
seen in the results, compared to hours or days in real-model space).
As seen in the results, even when performing only 100 generations
at 100 population size, the computation already takes 46 min in
real-model space. This computation time for the optimization of
the 2 * 28 parameters in real-model space matches the
computation time of the Monte Carlo sampling for sensitivity
with 10,000 samples of the 28 parameters (i.e. 46 vs 21 min). The
optimization finishes in 0.35 s in the surrogate space. This means
that it is viable to run very large numbers of generations and
populations in the surrogate space–for instance, 800 generations
with population size of 200, as seen in the main search–allowing for
better solutions than real-model space could ever achieve
(assuming reasonable computation time) and partially
alleviating the problem with the stochastic nature of
metaheuristic optimization as used in the worst-case analysis.
RBF was selected, due to its low numerical complexity with a
moderate number of training models, namely, fifty Monte Carlo
simulations in the present study. This choice was deliberate and at
approximately double of the assumed model’s number of
parameters. Due to RBF’s nature, increasing it significantly
affected the time needed for optimization, which should be
taken into account for models with very large parameter counts.
Note that, in the worst-case analysis, only preserving the shape of
the objective function is important. RBF surrogates do not need to
directly match the knee model outputs, which may require
more training.

4.2 Knee joint model reliability

It is known that knee joint models are generally sensitive to
ligament geometry and materials (Farshidfar et al., 2022). It was
also expected that the model was more sensitive to geometry than
material parameters, as in (Beynnon et al., 1996). However, the
worst-cases revealed two unrealistic knee models with one of
them unable to fully extend, and the other largely overextending,
all this with only ±1 mm bounds set on the geometry. This
unrealistic behavior of knee joint model could be also intuited by
the large standard deviation of the sampling-based sensitivity
analysis. ACL and PCL forces, reaching 300N, appeared

somewhat overestimated for passive knee flexion (Kia et al.,
2016; Farshidfar et al., 2022). Despite large changes in the
ligament forces, the worst-case models did not reveal major
differences in the anterior-posterior tibio-femoral
displacement, with a change of slope at the load-free
configuration. It seems that the quadratic load response of the
ligaments in this model (Machado et al., 2010) creates a very
peculiar behavior. The bounds set on the geometry and material
parameters, ±1.0 mm and 10%, were in the lower range of the
literature (Farshidfar et al., 2022) and the ligament resting
lengths were not included in the uncertain parameters not to
produce too unrealistic outputs. This knee joint model, not being
fully reliable, was therefore illustrative of the relevance of
the method.

Searching for the worst-case could be particularly advantageous
in orthopedic applications of models, as the worst-case explicitly
provides the parameters of the model, which could be taken into
account in surgical planning. For the knee joint, this can be applied
to ligament balancing in total knee arthroplasty (Smith et al., 2016;
Montgomery et al., 2024) or ACL or anterolateral ligament fixation
in ligament repair (Thaunat et al., 2020).

4.3 Limitations

The assumed knee model is a high-dimensional representation
of the joint. Its complexity (dynamic computation, deformable
contact and nonlinear ligaments) was considered appropriate to
benchmark the proposed worst-case analysis. Nevertheless, the
study has some limitations. Firstly, the biomechanical
interpretation of the 2D knee joint model is limited, especially in
terms of its contact formulation, and its reliability was found
questionable (see section 4.1). Only passive knee flexion-
extension was studied with ligament resting lengths not included.
Second, contrary to a global sensitivity analysis, the proposed worst-
case analysis cannot directly identify the most influential
parameters. It can be an alternative or a complement only to
propagation of uncertainty.

5 Conclusion

A computationally-efficient method for computing worst-cases
in knee joint models was proposed and evaluated in this study to
evaluate the reliability of a deformable multibody knee joint model.
The approach was based on Genetic Algorithm, which explored the
solution space of surrogate knee models with a general objective of
finding two, most-different structures within the selected parameter
bounds. A very high difference in the displacement-load curve was
observed in the obtained models, with one of them unable to fully
extend, while the other easily reaching unrealistic levels of
overextension. All of this achieved with very moderate bounds
set on parameters. These results showcased both the sensitivity of
the model, especially to the origins and insertions of ligaments, as
well as the need for efficient methods to analyze it in the context of
model credibility. The general nature of the worst-case analysis
makes it applicable in a variety of mechanical problems. Themethod
complements more standard approaches to sensitivity.
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1 Additional details regarding the assumed model of the knee 

The values of the geometric parameters of the assumed knee joint model were obtained from a 
schematic drawing of the sphere-to-plane model variant presented in (Machado et al., 2010). The 
material and inertial parameters were assumed directly after (Machado et al., 2010), which in turn 
assumed them after (Engin and Tumer, 1993, Li et al., 2001, Wismans et al., 1980, Yamaguchi, 2001) 
and given in Supplementary Table 1 and 2. 

Supplementary Table 1. Contact and inertial parameters of the assumed knee joint model after 
(Machado et al., 2010) and in turn (Engin and Tumer, 1993, Li et al., 2001, Wismans et al., 1980, 
Yamaguchi, 2001), where: l – the upper index signifying the local reference frame of the tibia,  
𝑎, (𝑏,

 ) – the coordinate j ∈ [x, y] of the position vector of i = c, the center of the contact sphere in 
the global/femur reference frame, or, for i ∈ [ p1, p2], the points on the line representing the contact 
plane as seen in the sagittal plane in the local/tibia reference frame, E and ν – the Young's modulus and 
the Poisson's ratio of the contact pair, m and I – the mass and the moment of inertia for the tibia.  

Contact   

Parameter Unit Value 

𝑎,௫ [mm] -12.43

𝑎,௬ [mm] -4.72

𝑏ଵ,௫
  [mm] 212.82

𝑏ଵ,௬
  [mm] 47.75

𝑏ଶ,௫
  [mm] 213.65

𝑏ଶ,௬
  [mm] -17.42

𝐸 [MPa] 5.000

𝜈 [–] 0.460

  

Inertial  

𝑚 [kg] 3.750

𝐼 [kgm2] 0.165
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Supplementary Table 2. Ligament parameters of the assumed knee joint model assumed after 
(Machado et al., 2010), where: ACL, PCL, LCL and MCL – the four considered ligaments in the knee 
joint, l – the upper index signifying the local reference frame of the tibia, 𝑎, (𝑏,

 ) – the coordinate  
j ∈ [x, y] of the position vector of: the ligament i ∈ [ACL, PCL, LCL, MCL] attachment in the 
global/femur (local/tibia) reference frame, ki – the stiffness parameter for the ligament i ∈ [ACL, PCL, 
LCL, MCL]. 

Ligaments   

Parameter Unit Value 

𝑎,௫ [mm] -32.59

𝑎,௬ [mm] -17.32

𝑎,௫ [mm] -19.07

𝑎,௬ [mm] -14.04

𝑎,௫ [mm] -24.09

𝑎,௬ [mm] -18.99

𝑎ெ,௫ [mm] -23.26

𝑎ெ,௬ [mm] -14.27

𝑏,௫
  [mm] 212.27

𝑏,௬
  [mm] -8.79

𝑏,௫
  [mm] 210.06

𝑏,௬
  [mm] 35.14

𝑏,௫
  [mm] 179.02

𝑏,௬
  [mm] 25.15

𝑏ெ,௫
  [mm] 164.08

𝑏ெ,௬
  [mm] 8.35

𝑘 [N/m2] 35.00E+06

𝑘 [N/m2] 30.00E+06

𝑘 [N/m2] 15.00E+06

𝑘ெ [N/m2] 15.00E+06

 

2 Supplementary results for worst-cases in geometry alone and material parameters alone 

The following supplementary results showcase the two cases mentioned in the main paper – worst-
case search with geometric parameters only and worst-cases with material parameters only. For the 
latter, only the angular displacement curve is shown.  
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2.1 Worst-case search with geometric parameters only 

 

Supplementary Figure 1. External moment Mext with regards to the knee joint angle θ: the baseline 
model from (Machado et al., 2010) and the two worst-case models with uncertain parameters being 
geometric only. The orange lines represent the fifty models generated to train the surrogate. 

 

Supplementary Figure 2. Worst-case models for the knee joint with uncertainty in geometry only. 
The model is at about 55 deg of flexion (load-free configuration for the baseline model (Machado et 
al., 2010)). 
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Supplementary Figure 3.  Ligament forces Fi with regards to the knee joint angle θ in the worst-case 
models with uncertain parameters being only geometric. 

 

 

Supplementary Figure 4.  Anterior-posterior tibio-femoral displacement with regards to the knee joint 
angle θ, in the worst-case models with uncertain parameters being only geometric. 
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2.2 Worst-case search with material parameters only 

 

Supplementary Figure 5.  External moment Mext with regards to the knee joint angle θ: the baseline 
model from (Machado et al., 2010), and the two worst-case models with uncertain parameters being 
only material. The orange lines represent the fifty models generated to train the surrogate. 

 

3 Worst-case search in both geometry and material parameters, with extended geometric 
parameter bounds 

In order to assess the scalability of the procedure with the bounds, additional run was performed with  
higher bounds on the geometry, at ±2.5 mm. In this case the bounds on material parameters were set 
to 10% and the results were obtained under 800 generations with a population size of 200 – the same 
as in main simulations. 
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Supplementary Figure 6.  External moment Mext with regards to the knee joint angle θ: the baseline 
model from (Machado et al., 2010), and the two worst-case models with uncertain parameters being 
both geometric (bounds set to ±2.5 mm) and material (bounds set to 10 %). The orange lines represent 
the fifty models generated to train the surrogate. 

 

 

Supplementary Figure 7. Worst-case models for the knee joint with uncertainty both in the geometric 
(bounds set to ±2.5 mm) and material parameters (bounds set to 10 %). The model is at about 55 deg 
of flexion (load-free configuration for the baseline model (Machado et al., 2010)). 
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