
HAL Id: hal-04664748
https://hal.science/hal-04664748v1

Submitted on 30 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-omic statistical inference of cellular heterogeneity
- JdS 2024

Hugo Barbot, David Causeur, Yuna Blum, Magali Richard

To cite this version:
Hugo Barbot, David Causeur, Yuna Blum, Magali Richard. Multi-omic statistical inference of cellular
heterogeneity - JdS 2024. JdS 2024, May 2024, Bordeaux, France. �hal-04664748�

https://hal.science/hal-04664748v1
https://hal.archives-ouvertes.fr


Multi-omic statistical inference of cellular
heterogeneity

Hugo Barbot 1 & David Causeur 2 & Yuna Blum 3 & Magali Richard 4

1 IRMAR - UMR CNRS 6625, France, hugo.barbot@institut-agro.fr
2 IRMAR - UMR CNRS 6625, France, david.causeur@institut-agro.fr

3 IGDR - UMR CNRS 6290, France, yuna.blum@univ-rennes.fr
4 TIMC - UMR CNRS 5525, France, magali.richard@univ-grenoble-alpes.fr

Résumé. L’hétérogénéité de la composition en types cellulaires d’échantillons biologiques
est un marqueur important de la progression d’une maladie, utile pour son diagnostic. Cette
composition cellulaire est cependant difficile à évaluer à partir de profils moléculaires d’un
échantillon composite, la contribution de chaque type cellulaire aux signaux observés étant
inconnue. La déconvolution cellulaire vise à estimer les proportions des différents types
cellulaires à partir de ces profils moléculaires, plusieurs types de données omiques pouvant être
utilisés dans cet objectif, tels que l’expression des gènes ou leur taux de méthylation de l’ADN.
La déconvolution cellulaire s’appuie sur l’hypothèse que le profil moléculaire de l’échantillon
composite peut être approché par une somme pondérée de profils moléculaires spécifiques des
mêmes gênes pour chaque type cellulaire considéré, les poids étant les proportions inconnues
de ces types cellulaires. La plupart des méthodes statistiques utilisées pour la déconvolution
cellulaire sont basées sur des extensions de l’algorithme des moindres carrés ordinaires, sous
les contraintes de positivité et de somme à un sur les coefficients du mélange. L’utilisation
de cet algorithme suppose implicitement l’indépendance, l’homoscédasticité et la normalité
des erreurs résiduelles, conditions sous lesquelles il offre des garanties d’optimalité. Dans le
cas présent, chacune de ces trois hypothèses est discutable. D’une part, la nature intrinsèque
des données omiques requiert des modèles mieux adaptés à leur sur-dispersion : l’expression
des gènes par séquençage de l’ARN est par exemple une donnée de comptage et le taux de
méthylation de l’ADN un pourcentage. D’autre part, la structure de dépendance induite par
le réseau de régulation des gènes est très forte. Le but de ce travail est de proposer un cadre
statistique respectant les caractéristiques inhérentes des données biologiques, et permettant
d’intégrer plusieurs types de données omiques.

L’intégration des données multi-omiques pour la déconvolution cellulaire vise à tirer
parti de points de vue complémentaires sur l’hétérogénéité cellulaire. Le cadre statistique
général que nous proposons est spécialement conçu pour l’intégration de deux types de
données omiques fréquemment utilisés pour la déconvolution cellulaire et cités précédemment,
l’expression des gènes par séquençage de l’ARN, pour lesquels un modèle contraint de régres-
sion binomiale négative est considéré, et le taux de méthylation de l’ADN, utilisant un modèle
contraint de régression pour distribution beta. Plusieurs stratégies d’optimisation simultanée
sont considérées, basées sur la maximisation sous contrainte de la vraisemblance pondérée,
les poids associés aux gènes étant introduits pour renforcer l’influence de certaines combi-
naisons spécifiques d’expressions et de taux de méthylation de l’ADN, ou sur une sélection de
gènes. Une étude comparative de méthodes de déconvolution cellulaire, utilisant conjointe-
ment plusieurs types de données omiques ou non, est menée sur des données dites benchmark,
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utilisant neuf types cellulaires communs dans les études sur le cancer du pancréas (PDAC).
Les résultats confirment à la fois le gain de l’utilisation d’une approche multi-omiques et
de distributions de probabilités ad hoc pour chaque type de données omiques. Finalement,
des perspectives d’améliorations fondées sur des modèles de dépendance entre les erreurs
d’approximation par les deux types de données omiques pour chaque gène sont présentées.

Mots-clés. Déconvolution cellulaire, inférence en grande dimension, Intégration de
données multi-omiques, Régression

Abstract. Cellular heterogeneity in biological tissues reflects progression of disease state
and is therefore useful for improved diagnostic and prognosis. Cellular composition of tissues
is however difficult to assess from bulk molecular profiles, with all cells present in the tissue
contributing to the recorded signals. Cell deconvolution is a common approach to unravel
the heterogeneous molecular profiles observed in bulk tissues, by inferring the underlying
relative abundance of individual cell types using one or more omics data, such as RNA-seq
gene expressions or DNA methylation rates. So far, cellular deconvolution assumes that
bulk omic profiles result from weighted sums of so-called signature cell-specific omic profiles,
weights being the unknown proportions of those cell types. Consistently, most statistical
methods used for cellular deconvolution are based on extensions of the Ordinary Least Squares
(OLS) optimization algorithm, under nonnegativity and sum-to-one constraints on those
unknown mixing coefficients. Using OLS implicitly assumes independence, homoscedasticity
and normality of the residual errors, conditions under which OLS optimization guarantees
optimal estimation. In cellular deconvolution applied to bulk molecular profile, all three
assumptions are highly questionable. Indeed, strong violations of those assumptions may be
due to the instrinsic nature of omics data, RNA-seq data being overdispersed read counts
and DNA methylation rates being percentages for example, or to the dependence structure
induced by the gene regulatory network, some key genes being more influent on deconvolution
accuracy than others. The goal of this work is to provide a well defined statistical framework
that respects the inherent characteristics of biological data for deconvolution, using multi-
omic data.

Multi-omic data integration for cellular deconvolution aims at leveraging complementary
viewpoints on cellular heterogeneity. The general statistical framework we propose is espe-
cially designed for integration of two frequently used omic data types for cell deconvolution
mentioned previously, RNA-seq gene expression data, for which a constrained negative bi-
nomial regression model is assumed, and DNA methylation rates, using a constrained beta
regression model. Many simultaneous optimization strategies are considered, either based
on constrained and weighted maximum likelihood, weights being introduced to strengthen
the influence of some genes based on their specific combination of signature expressions and
DNA-methyation rates, or on gene selection. An extensive comparative study of cell decon-
volution performance with leading single or multi-omic methods is conducted on benchmark
data and using nine cell types commonly found in PDAC (pancreatic cancer). Results confirm
both the gain in a multi-omic integration approach and in the use of ad-hoc probability dis-
tributions for each -omic data type. Additional improvements based on dependence models
between approximation errors by the two -omic data types for each gene are finally discussed.

Keywords. Cell deconvolution, High-dimensional inference, Multi-omic data integration,
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Regression

1 Introduction to single-omic cell deconvolution

The basic principles of cell deconvolution are introduced hereafter, based on a single genomic
profile of gene expressions. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let yij denote the expression
level of gene j for bulk i. Let yi = (yi1, . . . , yim)

′ denote the complete expression profile for
bulk i. The signature expressions xj = (xj1, . . . , xjK)

′, j = 1, . . . ,m of all genes for K cell
types of interest is also available. In standard so-called supervised cell deconvolution models,
the gene expression profiles are assumed to result from a linear combination of the signature
expressions, the mixing coefficients of this linear decomposition being the unknown propor-
tions βi = (β1i, . . . , βKi)

′ of each cell type within each bulk, up to an additive error term.
Consistently, most cell deconvolution approaches are variants of the following constrained
least-squares minimization issue:

(β̂0i, β̂
′
i) = argmin(β0i,β′

i)

m∑
j=1

(yij − β0i − x′
jβi)

2,

where β0i is an intercept and the coefficients βi are constrained to lie within the K−simplex

SK =
{
β = (β1, . . . , βK), 0 ≤ βk ≤ 1,

∑K
k=1 βk = 1

}
.

The nonnegativity and sum-to-one constraints on β makes the above constrained opti-
mization issue more challenging than its unconstrained version, which explains the variety of
algorithmic solutions available for this task [1]. Moreover, variants of the least-squares objec-
tive function have been proposed, aiming for example at more robustness regarding outliers or
inspired by popular machine learning methods such as penalized or support vector regression.

Choosing a least-squares type objective function is convenient since well-studied and
proven unconstrained minimization algorithms can be used to inspire cell deconvolution meth-
ods incorporating nonnegativity and sum-to-one constraints. Moreover, in the maximum-
likelihood estimation theory, ordinary least-squares guarantees desirable properties, such as
unbiasedness and minimum variance, under the standard assumptions of the linear regression
model:

yi = β0i1m + xβi + εi, (1)

where 1m is them−vector whose entries are all equal to 1, x is them×K signature expression
matrix whose jth row is xj and εi is an error term assumed to be normally distributed with
mean 0m, the m−vector whose all entries are zero, and positive variance-covariance matrix
Σ = σ2Im, with σ > 0. In other words, independence, homoscedasticity and normality
of the residual error terms are required to guarantee optimality of unconstrained ordinary
least squares estimation of the regression coefficients βi. In the present situation, all three
assumptions are highly questionable. Indeed, whereas in the standard approach of gene
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expression data analysis, genes are usually considered as features measured on independent
statistical units being different biological samples, in cell deconvolution methods, statistical
units are genes and features are bulks. Yet, gene expressions notoriously show different levels
of variability and are driven by a gene regulatory network that induces a graph-structured
stochastic dependence pattern across genes. Moreover, their distribution is highly skewed,
especially when expression data are read counts deduced from RNA-sequencing methods.

For an illustrative purpose, model (1) is fitted to cell deconvolution data in which a profile
of m = 21104 gene expressions is available on n = 30 independent bulks and the signature
matrix contains the gene expressions of those m genes in K = 9 cell types. The former
dataset is generated with the aim of serving as a benchmark reference for comparison of
cell deconvolution algorithms. Therefore, it is obtained under a strict control of the true
proportions of each of the 9 cell types in the composition of each bulk. Figure 1 displays a
heatmap of those true proportions, after a reordering of both cell types and bulks so that
similar bulks in terms of cellular composition are grouped in clusters. The plot shows that
bulks have different cellular compositions: fibroblasts are obviously dominant in all bulks
and the bulks can be divided into two clusters, one with a much larger proportion of classical
than basal cancer cells and the other one with more basal than classical cancer cells.
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Figure 1: Heatmap of the true proportions of each cell types (columns) within the 30 bulks
(rows).

Constrained least-squares approximations of the proportions are now calculated, using

4



the R package nnls [2], implementing a nonnegative least-squares estimation algorithm for
linear regression models, widely used for cell deconvolution. For each gene, n = 30 values
of residual errors are calculated as the differences between observed gene expressions in each
bulk and linear scores of the signature expressions resulting from the nnls algorithm. Figure
2 displays histograms of residual standard deviations (log-transformed for a clearer visual-
ization) and correlations. It shows both a strong heteroscedasticity and dependence across
genes, with a strong imbalance between positive and negative correlations and a marked peak
of correlations close to 1.
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Figure 2: Histogram of log-transformed residual standard deviations (left plot) and residual
correlations (right plot).

2 A general statistical framework for multi-omic cell

deconvolution

Gene expression values obtained using RNA-sequencing technologies are overdispersed read
counts between the start and stop codons of each gene. Most of the models used in statistical
genomics for analysing such data are based on assumptions of a nonnormal distribution, either
Poisson or negative binomial for the most popular.

Similarly, the following constrained negative binomial regression model [3, 4] is now as-
sumed for Yij:

P(Yij = yij | xj) =
Γ(yij +

1
αi
)

Γ(yij + 1)Γ( 1
αi
)

( 1

1 + αiµi(xj)

) 1
αi

( αiµi(xj)

1 + αiµi(xj)

)yij
, (2)
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where αi > 0, µi(xj) = E(Yij | xj) = β0i + β1ixj1 + . . . + βKixjK > 0, β0i > 0 and βi =
(β1i, . . . , βKi)

′ is the vector of proportions of each cell type, with, for all k = 1, . . . , K,
0 ≤ βki ≤ 1 and

∑K
k=1 βki = 1.

Overdispersion with respect to a Poisson regression model that might result from unob-
served heterogeneity within the gene expression data is accounted for by parameter αi:

Var(Yij | xj) = µi(xj)(1 + αiµi(xj)) > µi(xj).

Under assumption that the gene expression values are independent given the signature
expressions, the weighted log-likelihood L(α, β0, β; y, x, ωy) of model (2) is given below (index
i for the bulk has been omitted):

L(α, β0, β; y, x, ωy) =
m∑
j=1

ωyjlogΓ(yj +
1

α
)−

m∑
j=1

ωyjlogΓ(yj + 1)−mlogΓ(
1

α
)−

1

α

m∑
j=1

ωyjlog
(
1 + αµ(xj)

)
+

m∑
j=1

yjωyjlog
(
αµ(xj)

)
−

m∑
j=1

yjlog
(
1 + αµ(xj)

)
,

where the weights ωy = (ωy1, . . . , ωym) are positive, with
∑m

j=1 ωyj = m. Introducing weights
for each gene in the expression of the log-likelihood aims at giving more importance to some
influential genes, or even selecting subsets of active genes.

In the PDAC benchmark study introduced above, M-values of methylation levels at more
than 800,000 CpG sites over the genome are also available for each of the 30 bulks and corres-
pondingly for the 9 cell types. In order to favor the simultaneous use of DNA methylation and
gene expression data in the cell deconvolution task, those methylation rates are aggregated
into gene-level measurements by averaging over all values at CpG sites in the promoter region
of each gene.

Given the K−profile x̃j = (x̃j1, . . . , x̃jK)
′ of signature methylation rates for gene j in the

cell types of interest, it is now assumed that the M-values Zij of methylation rates in bulk i
are distributed according to a Beta distribution with density [5, 6] :

φ(z | x̃j) =
Γ(ϕi)

Γ(µi(x̃j)ϕi)Γ((1− µi(x̃j))ϕi)
zµi(x̃j)ϕi−1(1− z)(1−µi(x̃j))ϕi−1,

where ϕi > 0, µi(x̃j) = E(Zij | x̃j) = β̃0i + β1ix̃j1 + . . . + βpix̃jp > 0, β̃0i is an intercept
parameter and βi = (βi1, . . . , βiK)

′ is the vector of proportions of each cell type, with, for all
k = 1, . . . , K, 0 ≤ βik ≤ 1 and

∑K
k=1 βik = 1.

Under assumption that the M-values are independent given the signature methylation
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rates, the weighted log-likelihood L(ϕ, β̃0, β; z, x̃, ωz) of the above model is given below:

L(ϕ, β̃0, β; z, x̃, ωz) = mlogΓ(ϕ)−
m∑
j=1

ωzjlogΓ(µ(x̃j)ϕ)−
m∑
j=1

ωzjlogΓ((1− µ(x̃j))ϕ) +

m∑
j=1

ωzj

(
µ(x̃j)ϕ− 1)log(zj) +

m∑
j=1

ωzj

(
(1− µ(x̃j))ϕ− 1)

)
log(1− zj).

As above for the weighted log-likelihood of the gene expression values, gene weights ωz =
(ωz1, . . . , ωzm)

′ are also introduced here in order to adjust individual gene contributions to
the estimation of the cell deconvolution model.

In a multi-omic data integration perspective, we propose a Cyclic Coordinate Descent
(CCD) algorithm to optimize L(α, β0, β; y, x, ωy) + L(ϕ, β̃0, β; z, x̃, ωz) with respect to all
parameters, for given weights ωy and ωz. Initial values of the proportion parameters and
intercept are obtained by any standard cell deconvolution algorithm, such as nnls [2] or rlm
[7]. Those two algorithms are computationally fast, rlm being the most efficient for the time
of execution among the three methods handling outlier with bulk data in the benchmark of
Avila Cobos et al [8]. In order to ensure nonnegativity of estimation, at each update of an
estimated proportion parameter, if the marginal maximization of the log-likelihood provides
a negative update, then the current value of the proportion parameter is set to zero. Also at
each update, the updated vector of proportion parameters is scaled so that it sums to one.

Weights ωy and ωz can be used to select genes based on their signature profiles of DNA
methylation and/or expression values. Indeed, for an illustrative purpose of the former point,
a standard hierarchical clustering algorithm applied on the signature profiles of M−values
provides four clusters showing a gradient of methylation rates for all cell types: in the first
cluster, genes have low methylation rates whereas, at the opposite, in the fourth cluster,
they have large methylation rates. The weighting strategy considered in the comparative
study reported below consists in selecting genes with low methylation rates to fit the cell
deconvolution model by setting to zero all weights for genes out of the first cluster, containing
5833 genes.

3 A taste of a comparative study

In the present situation where the true proportions βi of each cell type in each bulk are
controlled and therefore can be assumed to be known, cell deconvolution methods can be
compared using their Mean-Squared-Errors (MSEs) of Estimation, for each bulk over the
nine cell types. Part of a large comparative study is reported below, focusing on five cell
deconvolution algorithms: first, constrained least-squares approximations of the proportions
are calculated for each of the 30 bulks using only the gene expression dataset of the PDAC
study, with the R package nnls, implementing a nonnegative least-squares estimation algo-
rithm for linear regression models, and function rlm in the R package MASS, implementing
a robust estimation of a linear regression model using an M-estimator. In the latter case,
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negative estimates of the proportions are set to zero and, in both cases, the resulting vector
of nonnegative estimated proportions is scaled so that it sums to one. The unweighted log-
likelihood of the negative binomial cell deconvolution model (2) is also maximized to provide
alternative estimations (NBR) of the proportions of cell types using only the gene expression
data. M-values in the DNA methylation rates of the PDAC study are introduced in two ways:
first by a weighted variant w-NBR of the NBR algorithm, where, as mentioned previously, the
weights are set to zero for genes outside of the first cluster of genes with low methylation
rates, and then by combining the former weighting strategy for both omic data types and
maximizing the multi-omic log-likelihood (w-NBR-Beta).

Figure 3 displays boxplots of an estimation accuracy metric obtained by dividing the MSE
for each bulk by the median MSE of the nnls method over all bulks. The former relative
efficiency measure is introduced in order to figure out the gain with respect to the best OLS-
based method in the present study. Additionally, boxplots of the former relative efficiency
measures is also provided only for the 14 bulks with more basal than classical cell types. First,
it turns out that nnls shows better estimation accuracy than rlm, and is outperformed by
the cell deconvolution approaches we propose. This is especially true when a selection of
genes with low methylation rates is introduced in the estimation algorithm and even more
when the two -omics data types are simultaneously accounted for in the estimation of the
proportions of cell types. The gain in using a multi-omic approach is more obvious when the
comparison is restricted to bulks for which the proportion of basal cancer cells exceeds those
of basal cancer cells.

4 Perspectives

The partial results shown above of a larger comparative study we have conducted based
on simulations and on the benchmark datasets of the PDAC study confirms that multi-
omic approaches can improve cell deconvolution. The presentation will discuss in which
conditions the added value of a multi-omic approach can be expected. Moreover, it will
compare a large panel of gene weighting or selection strategies. Finally, the introduction of
a dependence model between gene expressions and methylation rates within the statistical
framework introduced above will be presented as a possible extension.
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Figure 3: Relative efficiencies of the OLS-based cell deconvolution methods (rlm and nnls)
and three proposed methods: unweighted negative binomial cell deconvolution (nbr) based
on gene expressions, a weighted negative binomial cell deconvolution (w-nbr) also based on
gene expressions with weights set to 0 for genes with large methylation rates and a weighted
multi-omic (negative binomial + beta regression) cell deconvolution algorithm (w-nbr-beta).
Left plot: all bulks. Right plot: bulks with more basal than classical cancer cells.
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