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A B S T R A C T

Many decoders of error-correcting codes use the Log-Likelihood Ratio (LLR) as an input, which involves the
probability density function (pdf) of the noise. In impulsive noise, the pdf of the noise is not accessible in closed
form and is only available through very complex numerical computation. Therefore, the LLR calculation for
Binary Phase Shift Keying (BPSK) is too complex. It becomes even more complex for high-order modulations.
Moreover, the LLR computational complexity grows as the modulation order increases. The main contribution
of our work lies in the LLR approximation for high-order modulations and its estimation using supervised
machine learning, without requiring prior knowledge of the noise distribution model. To this end, we propose
two approaches to approximate the LLR values using supervised machine learning, for high-order modulated
symbols. The first approach can also be used for BPSK modulated symbols. The second approach aims to
approximate the LLR for high-order modulated symbols in a more simplified manner compared to the first
approach. For both approaches, we estimate the parameters of the approximate LLR under known noise channel
conditions using the linear regression algorithm. To estimate these parameters without prior knowledge of the
noise distribution model, we use a binary logistic regression algorithm. Our simulations focus on the second
proposed approach to estimate the LLR with unknown noise distributions. The results are presented for the
4-ASK (Amplitude Shift Keying) modulation scheme, where the receiver is assumed to suffer from noise ranging
from Gaussian to highly impulsive models. The proposed LLR estimation is shown to achieve a comparable
performance to the one attained using the exact LLR function.
1. Introduction

Impulsive noise has been measured in various communication envi-
ronments, including power-line communications [1], shallow underwa-
ter acoustic communication [2], and a Poisson field of interference in
wireless communications [3].. The parameters of this impulsive noise
must be estimated at the channel output to compute the LLR used
by many decoders. The LLR computation depends on the pdf of this
noise, which is not available in closed form and requires complex
numerical computations. This complexity increases further for high-
order modulations, and the LLR computational complexity grows as the
modulation order increases. For this reason, in our research work, we
propose estimating the LLR for high-order modulations with unknown
noise parameters.

The impulsive nature can be accurately modeled by Symmetric 𝛼-
Stable (S𝛼S) distributions [4–7]. The S𝛼S distribution is characterized
by two parameters 𝛼 and 𝛾, where 𝛼, 0 < 𝛼 < 2, is the characteristic
exponent or stability index, and 𝛾, 𝛾 > 0, is the scale factor that
determines the impulsiveness and the spread of the noise respectively,
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where the impulsiveness of the noise decreases with the parameter 𝛼.
In wireless context, 𝛼 is directly associated with the path loss exponent
of the radio channel [8].

On the other hand, using high-order modulations is one of the most
common methods for improving the bit rate in communications systems
without increasing the required bandwidth. However, communication
systems using high-order modulations require a high signal-to-noise
ratio (SNR). To this end, it is beneficial to combine error correction
codes such as LDPC codes [9] and turbo-codes [10] with high-order
modulations. The decoder input must utilize the LLR calculation com-
puted through demapping. Since the LLR calculation is contingent upon
the chosen modulation and the pdf of the noise, estimating the noise
parameters is essential for its evaluation. However, the pdf of impulsive
noise is typically not available in closed form. It can be computed
through numerical integration of the inverse Fourier transform of the
characteristic function, which is computationally intensive. Further-
more, the computational complexity of the LLR increases rapidly with
the modulation order. It presents a challenging task to approximate and
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estimate the LLR formula for high-order modulations when the noise
parameters are unknown.

Many works have been proposed to approximate the LLR for BPSK,
in impulsive noise. In such a scenario, the LLR of the received symbols
is a non-linear function and cannot be analytically expressed requir-
ing intensive calculations for its evaluation. It has been previously
demonstrated that the LLR for BPSK modulations, under the Gaussian
assumption, are not efficient enough and can be prone to performance
degradation [5,11]. A possible scenario to circumvent this problem is
to use an approximating function for the LLR. For example, a simple
approximation using piece-wise linear segments is proposed in [12] to
feed a Viterbi decoder. The clipping method presented in [13] also rep-
resents a fairly basic approximation. The reader can refer to [11,14,15]
for more details on these approximation methods.

To improve the performance of the approximated LLR with easy
implementation, the authors in [8] simplified the LLR formula for
BPSK modulations, to a family of functions, (min(

√

2
𝛾 𝑦, 2 𝛼+1

𝑦 )), with
performance close to the true LLR, for a S𝛼S noise distribution. The
use of this approximation implies the estimation of the two noise
parameters 𝛼 and 𝛾, by two well-known approaches [8]: the first one
proposed by Koutrovelis in [16] and the second one presented in [17]
by McCulloch. In [8] the robustness of the proposed approximation
in [8] has been studied in other interference models: Middleton class
A noise, 𝜖-contaminated noise, and a mixture of Gaussian and alpha-
stable noise. The authors in [18] used two parameters 𝑎 and 𝑏 instead
of 𝛼 and 𝛾 in the proposed approximation in [8], where 𝑎 =

√

2
𝛾

and 𝑏 = 2(𝛼 + 1), and they show that these new parameters can be
estimated by direct estimation of 𝛼 and 𝛾 as shown in [8], or by two
other methods, using a training sequence: from the estimated pdf of the
noise using kernel density estimation, or by maximization of the mutual
information. The authors in [19] extended the work of [18], to improve
the performance, by approximating the LLR using a function with three
parameters 𝐿𝑎𝑏𝑐 = sign(𝑦) min(𝑎|𝑦|, 𝑐, 𝑏∕|𝑦|). In [15], the authors also
proposed a novel simple approximation for BPSK modulations, which
is not a function of 𝛾. The authors in [20] estimated the LLR for BPSK
modulations, with unknown impulsive noise distribution, using the
concept of maximization of the mutual information proposed in [18].

However, to the best of our knowledge, the approximation and
estimation of the LLR for high-order modulations have not been pre-
viously addressed in the literature. Given that the noise parameters
must be estimated at the channel output to compute the LLR, there
is an advantage to estimating the LLR without knowing the noise
distribution. This work proposes three main contributions to address
this problem, as outlined below:

• Contribution 1 (Approach 1): The LLR is approximated by a
system of simple linear equations using a linear regression that
is supervised machine learning. To approximate the LLR using
simple linear regression, the LLR must be linearly related to the
channel input 𝑦, with fixed channel parameters 𝛼 and 𝛾. Then
the parameters of each equation are estimated via the gradient
descent algorithm to minimize the mean squared error between
the predicted and exact LLR values. Therefore, since the LLR is
a non-linear function, we first divide the interval of 𝑦 associated
with the LLR into sub-intervals based on the shape of the LLR,
where the LLR of each sub-interval can be well approximated
by a linear equation. Thus, the LLR can be approximated by a
system of simple equations. We then estimate the parameters of
each equation via the gradient descent algorithm. This approach
can be applied to any modulation type and order. However, as
the modulation order increases, the number of equations also
increases, resulting in a large number of parameters to estimate.
Therefore, we propose Approach 2.

• Contribution 2 (Approach 2): The LLR for high-order modu-
lation is approximated in a more simplified manner compared
to the first approach. This includes 22𝑝-Quadrature Amplitude
231
Modulation (QAM) and 2𝑛-Amplitude Shift Keying (ASK), where
𝑝 and 𝑛 are integers. We have demonstrated that LLRs of 22𝑝-
QAM and 2𝑛-ASK modulated symbols can be obtained from the
LLR of BPSK. Then, the exact LLR of BPSK is replaced by its
approximation using Approach 1. Therefore, Approach 2 requires
the estimation of the parameters for only the approximated LLR
of BPSK modulated symbols.
In both approaches, simple linear regression is used to approxi-
mate the LLR function, where the LLR is related to the channel
input 𝑦, with fixed channel parameters 𝛼 and 𝛾. The noise distri-
bution must be known; therefore, the channel parameters 𝛼 and
𝛾 must be estimated at the channel output.

• Contribution 3: The LLR is approximated by a system of simple
linear equations, without prior knowledge about the noise distri-
bution model, using binary logistic regression that is supervised
machine learning. Therefore, it is not necessary to estimate the
channel parameters. We first use the simplified LLR function
(Approach 2) to estimate the parameters for only the approxi-
mated LLR of BPSK modulated symbols. Then, we estimate the
approximation parameters, using binary logistic regression that
requires the channel output 𝑦, and its corresponding LLR deci-
sion. We consider the channel input as the LLR decision of its
corresponding channel output 𝑦. However, the channel input is
unknown at the receiver. Therefore, as used in [20], we generate
a random input channel 𝑥̃, and the corresponding channel output
is formulated as 𝑦̃ = 𝑥̃ + 𝑤̃, we then extract the noise 𝑤̃ from the
channel output 𝑦 to obtain the same parameters estimations since
these parameters depend on the noise distribution, as introduced
in [20] for BPSK modulation. We have extended this work for
other modulations. This is a new method to estimate the LLR for
BPSK modulations.

In our simulation, we have used the second proposed approach to
estimate the LLR with unknown noise distributions, for a 4-ASK modu-
lation, assuming a receiver affected by noise ranging from Gaussian to
highly impulsive models.

The remainder of the paper is organized as follows: Section 2
presents the system model and LLR computation. Section 3 introduces
the proposed Approach 1, which uses simple linear regression to esti-
mate the LLR of BPSK and high-order modulations. Section 4 presents
the proposed Approach 2, where the simplified LLR of high-order
modulations is used to approximate the LLR of 22𝑝-QAM and 2𝑛-ASK
modulations and ends up getting another LLR approximation. Section
5 presents the proposed method to estimate the LLR, using Approach 2,
based on binary logistic regression, with unknown noise distributions.
Then, simulation results for a 4-ASK modulation are presented in
Section 5. Finally, the paper is concluded with some final remarks in
Section 6.

2. System model and LLR computation

In this paper, we assume that the channel output 𝑦 is modeled by
𝑦 = 𝑥 + 𝑤, where 𝑤 is an independent and identically distributed
noise, following a S𝛼S distribution, and 𝑥 is the input channel. At
the transmitter, a binary codeword of length 𝑁 is mapped by a Gray
mapping into a symbols sequence from a 2𝑛-ary signal constellation 
of size ∣  ∣= 2𝑛, where each block of 𝑛 bits, [𝑏0, 𝑏1,… , 𝑏𝑛−1], is mapped
nto a symbol 𝑥 from  . At the receiver, LLRs are computed for each bit
ssociated to a transmitted symbol and then used to feed the decoder
nput. The code used is a (𝑐, 𝑟)-regular LDPC code of rate 𝑅 = 𝐾∕𝑁 ,
here 𝑐 and 𝑟 are column and row weights, respectively, of the regular

parse parity check matrix, of size ((𝑁−𝐾)×𝑁), representing this code.
The LLR for the 𝑖th transmitted bit, 𝑏𝑖(𝑥), associated with the trans-

itted symbol 𝑥 ∈  , is given by

LR𝑖(𝑦) = log

∑

𝑥∈ 𝑖
0
𝑓𝛼(𝛾; 𝑦 − 𝑥)

∑

𝑖 𝑓 (𝛾; 𝑦 − 𝑥)
, (1)
𝑥∈1
𝛼
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where  𝑖
𝑗 = {𝑥|𝑏𝑖(𝑥) = 𝑗}, 𝑓𝛼(.) is the pdf of the noise 𝑤. Such pdf cannot

be analytically expressed, except for special cases: Lévy and Cauchy
distributions. It can be calculated numerically using the Inverse Fourier
Transform of the characteristic function:

𝑓𝛼(𝛾; 𝑦) =
1
𝜋 ∫

+∞

0
exp(−𝛾𝛼 ∣ 𝑡 ∣𝛼) cos(𝑦𝑡)𝑑𝑡. (2)

By letting 𝛼 = 0.5, 1, we obtain the special cases: Lévy and Cauchy
distributions, respectively. For Gaussian distribution, the exponent 𝛼 =
2 and the scale factor 𝛾 is similar to the variance 𝜎2, where 𝛾 = 𝜎

√

2
. In

our simulation, we involved 𝛾 as a measurement of the strength of the
noise since the impulsive noise power is not well-defined and the SNR
is meaningless [8].

The pdf in (2) requires intensive calculations to evaluate it. There-
fore, the computation of the LLR in (1) is too complex, and the
complexity increases with the order of the modulation, ∣  ∣= 2𝑛. Thus,
approximating the LLR by a simple formula is a significant challenge.
In our work, we propose two approaches to approximate the LLR for
BPSK and high-order modulations in impulsive noise environments. Our
proposed approximations can be applied to any noise type. We also
propose a method to estimate the LLR with unknown noise parameters.

To clearly illustrate the principle of our proposal, we explained the
case of the 4-ASK modulation (∣  ∣= 22), and simulations presented
in this research paper consider this modulation. The LLR expressions
of 4-ASK are the same as the LLR related to the in-phase and the
quadrature components of 16-QAM, where ∣  ∣= 24. QAM of order 22𝑝

can be considered as two independent 2𝑝-ASK, modulating two carriers,
in-phase and quadrature parts. The 𝑝 LLR expressions related to the in-
phase components (real part) and the other 𝑝 LLR expressions related
to the quadrature components (imaginary part) are identical. From (1),
LLRs of 4-ASK, where  = {±1,±3}, are given by

LLR0(𝑦) = log
𝑓𝛼(𝛾; 𝑦 − 1) + 𝑓𝛼(𝛾; 𝑦 − 3)
𝑓𝛼(𝛾; 𝑦 + 1) + 𝑓𝛼(𝛾; 𝑦 + 3)

, (3)

and

LLR1(𝑦) = log
𝑓𝛼(𝛾; 𝑦 − 1) + 𝑓𝛼(𝛾; 𝑦 + 1)
𝑓𝛼(𝛾; 𝑦 − 3) + 𝑓𝛼(𝛾; 𝑦 + 3)

. (4)

The LLR of BSPK modulations is given by

LLR𝑏(𝑦) = log
𝑓𝛼(𝛾; 𝑦 − 1)
𝑓𝛼(𝛾; 𝑦 + 1)

. (5)

3. Approach 1: LLR approximation for BPSK and high-order mod-
ulations

This section discusses the proposed Approach 1 in detail, which em-
ploys simple linear regression to approximate the LLR function from the
LLR shape, without simplifying the LLR formula. This approach can be
used for any modulation type and order. Here simple linear regression
algorithm is presented first. After, we present the LLR approximation
for a BPSK modulation. Then, we present the LLR approximation for
4-ASK modulations.

3.1. Simple linear regression algorithm

A simple linear regression algorithm is a supervised machine learn-
ing algorithm. It predicts the output, which is linearly related to the
input, where the input is a single unknown variable. Hence, this re-
gression technique is set to find a linear relationship between the exact
output, outputexact, and the associated input, which is based on known
data.

This linear regression equation can be represented as: outputpredicted =
𝜃0.input + 𝜃1, where 𝜃0 and 𝜃1 are two real variables that are to be
estimated. To estimate the optimal parameters of the equation, we
construct a cost function and reduce it to minimize the error between
outputpredicted and the corresponding value of outputexact, and solve
by implementing an optimization algorithm. In our research work, we
232
Table 1
Estimated parameters for BPSK.
𝛼 𝛾 𝜃0 𝜃1 𝜃2
1.8 0.682 2.172 3.084 7.383
1.6 0.617 2.527 2.954 6.084
1.4 0.552 2.807 2.790 5.239

Fig. 1. Comparison between LLR of BPSK and its approximation for 𝛼 = 1.4 and
𝛾 = 0.552.

used the gradient-descent algorithm to reduce the cost function, which
represents the mean squared error, given as

𝐽 (𝜃0, 𝜃1) =
1
2𝑚

𝑚
∑

𝑖=1
((𝜃0.input(𝑖) + 𝜃1) − output(𝑖)exact)

2, (6)

where m is the length of outputexact.
To approximate the LLR from the LLR shape, using simple linear

regression, the LLR must be linearly related to the channel input 𝑦, with
fixed parameters 𝛼 and 𝛾. However, the LLR is a non-linear function.
Therefore, we divide the interval of 𝑦 associated to the LLR into sub-
intervals, where the LLR of each sub-interval can be well approximated
by a linear equation. Thus, the LLR can be approximated by a system
of simple equations as we show, in the following, for BPSK and 4-ASK
modulations.

3.2. LLR approximation for BPSK modulations

As illustrated in Fig. 1, LLR𝑏(𝑦) can be divided into three parts to
obtain a system of simple equations. Thus, LLR𝑏(𝑦) can be approximated
by

𝐿𝑏(𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃0𝑦 if ∣ 𝑦 ∣≤ 1.2, ∣ 𝑦 ∣≤
√

𝜃2
𝜃0
,

𝜃1 if 1.2 <∣ 𝑦 ∣≤ 2.3, 𝜃1𝜃0
<∣ 𝑦 ∣≤ 𝜃2

𝜃1
,

sign(𝑦) 𝜃2∣𝑦∣ otherwise.

(7)

Here, the estimated parameters 𝜃𝑗 , 𝑗 ∈ {0, 1, 2}, are given in Table 1. To
find the last equation’s parameter for 𝐿𝑏(𝑦), we convert this equation
to a linear form. A comparison between the LLR of BPSK symbols in
(5) and its approximation from (7), using the estimated parameters in
Table 1 for 𝛼 = 1.4 and 𝛾 = 0.552, is presented in Fig. 1. The proposed
approximation is very close to the exact computation of the LLR.

In the case of noise with a Gaussian distribution, the approximated
LLR is: 1.852 × 𝑦, where 𝜎 = 1. The parameters are determined offline
for fixed values of 𝛼 and 𝛾 (𝜎 in a Gaussian distribution).

3.3. LLR approximation for 4-ASK modulations

As we can see on Fig. 2, LLR0(𝑦) and LLR1(𝑦), for 4-ASK modulations,
can be divided into five and four parts respectively to obtain a system
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Table 2
Estimated parameters for 𝐿0(𝑦).
𝛼 𝛾 𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8
1.8 0.682 2.25 1.65 0.60 1.03 1.89 −0.521 6.99 20.05 −0.60
1.6 0.617 2.61 0.99 1.54 0.97 1.59 −0.82 7.44 15.69 −0.35
1.4 0.552 2.89 0.39 2.34 1.14 0.88 −1.06 7.91 13.15 −0.23

Table 3
Estimated parameters for 𝐿1(𝑦).
𝛼 𝛾 𝜃𝑎 𝜃𝑏 𝜃𝑐 𝜃𝑑 𝜃𝑒 𝜃𝑓 𝜃𝑔 𝜃ℎ
1.8 0.682 −1.11 3.47 −2.15 4.32 −0.45 −1.18 −14.75 0.83
1.6 0.617 −0.49 3.09 −2.51 5.04 0.19 −3.39 −10.84 0.57
1.4 0.552 0.061 −2.71 2.89 5.82 0.62 −4.81 −8.66 0.44

of simple equations. Thus, LLR0(𝑦) and LLR1(𝑦) can be approximated
respectively by

𝐿0(𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜃0𝑦 if ∣ 𝑦 ∣≤ 1,
sign(𝑦).(𝜃1 ∣ 𝑦 ∣ +𝜃2) if 1 <∣ 𝑦 ∣≤ 2,
sign(𝑦).(𝜃3 ∣ 𝑦 ∣ +𝜃4) if 2 <∣ 𝑦 ∣≤ 3.2,
sign(𝑦).(𝜃5 ∣ 𝑦 ∣ +𝜃6) if 3.2 <∣ 𝑦 ∣≤ 4.8,
sign(𝑦).( 𝜃7∣𝑦∣ + 𝜃8) otherwise,

(8)

and

𝐿1(𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑎 ∣ 𝑦 ∣ +𝜃𝑏 if 0 ≤∣ 𝑦 ∣≤ 1,
𝜃𝑐 ∣ 𝑦 ∣ +𝜃𝑑 if 1 <∣ 𝑦 ∣≤ 3,
𝜃𝑒 ∣ 𝑦 ∣ +𝜃𝑓 if 3 <∣ 𝑦 ∣≤ 4.8,
𝜃𝑔
∣𝑦∣ + 𝜃ℎ otherwise,

(9)

Here, the estimated parameters 𝜃𝑗 , 𝑗 ∈ {0, 1, ..8}, and 𝜃𝑘, 𝑘 ∈ {𝑎, 𝑏, ..ℎ}
are given in Tables 2 and 3 respectively. Fig. 2 shows that the LLRs
of 4-ASK, LLR0(𝑦) in (3) and LLR1(𝑦) in (4), are very close to their
approximations, L0(𝑦) in (8) and L1(𝑦) in (9).

Moreover, as the modulation order increases, the number of equa-
tions also increases (from the LLR shape), giving rise to enormous
parameters. Therefore, we propose Approach 2, which simplifies the ap-
proximation of the LLR for high-order modulations. It requires the pa-
rameter estimation for only the approximated LLR of BPSK modulated
symbols. This methodology is explained in the following section:

4. Approach 2: LLR approximation for high-order modulations

This section discusses the proposed Approach 2 in detail. We first
introduce the LLR simplification for high-order modulations. The sim-
plified LLR is then used to extract the LLR of 22𝑝-QAM and 2𝑛-ASK
modulated symbols from the LLR of BPSK. Following that, the approxi-
mated LLR of the 4-ASK modulation, as a function of the approximated
LLR of BPSK modulations, is shown.

4.1. LLR simplification for high-order modulations

The LLR of high-order modulations in (1), can be reformulated as

LLR𝑖(𝑦) = log
ℜ ∫ +∞

0
∑

𝑥∈ 𝑖
0
exp(−𝛾𝛼 ∣ 𝑡 ∣𝛼 −𝑗𝑡(𝑦 − 𝑥))𝑑𝑡

ℜ ∫ +∞
0

∑

𝑥∈ 𝑖
1
exp(−𝛾𝛼 ∣ 𝑡 ∣𝛼 −𝑗𝑡(𝑦 − 𝑥))𝑑𝑡

. (10)

Using ∑

𝑗 exp(−𝑥𝑗 ) ≃ exp(−min𝑗 ∣ 𝑥𝑗 ∣), the LLR in (10) can be simplified
as

LLR𝑖(𝑦) ≃ log
∫ +∞
0 exp(−𝛾𝛼 ∣ 𝑡 ∣𝛼) cos(min𝑥∈ 𝑖

0
∣ 𝑦 − 𝑥 ∣ 𝑡)𝑑𝑡

∫ +∞
0 exp(−𝛾𝛼 ∣ 𝑡 ∣𝛼) cos(min𝑥∈ 𝑖

1
∣ 𝑦 − 𝑥 ∣ 𝑡)𝑑𝑡

≃ log
𝑓 (min𝑗 ∣ 𝑦 − 𝑎0𝑖,𝑗 ∣)

1
.

(11)
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𝑓 (min𝑗 ∣ 𝑦 − 𝑎𝑖,𝑗 ∣)
Fig. 2. Comparisons between LLRs of 4-ASK and their approximations (Approach 1)
for 𝛼 = 1.4 and 𝛾 = 0.552: (a) LLR0(𝑦), (b) LLR1(𝑦).

Therefore, the simplified LLR can be written as

LLR𝑖(𝑦) ≃ log
𝑓𝛼(𝛾; min𝑥∈ 𝑖

0
∣ 𝑦 − 𝑥 ∣)

𝑓𝛼(𝛾; min𝑥∈ 𝑖
1
∣ 𝑦 − 𝑥 ∣)

. (12)

In the following, we use this simplified version to obtain the LLR of
22𝑝-QAM and 2𝑛-ASK modulated symbols from the LLR of BPSK. We
explain the case of 4-ASK modulations.

4.2. LLR approximation of 22𝑝-QAM and 2𝑛-ASK modulations

Using the simplified LLR in (12), LLR0(𝑦) in (3) and LLR1(𝑦) in (4)
for 4-ASK can be simplified respectively as

LLR0(𝑦) ≃

⎧

⎪

⎨

⎪

⎩

log 𝑓𝛼 (𝛾;𝑦−1)
𝑓𝛼 (𝛾;𝑦+1)

if ∣ 𝑦 ∣≤ 2,

sign(𝑦). log 𝑓𝛼 (𝛾;∣𝑦∣−3)
𝑓𝛼 (𝛾;∣𝑦∣+1)

if ∣ 𝑦 ∣> 2,
(13)

and

LLR1(𝑦) ≃ log
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −1)
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −3)

, (14)

where log 𝑓𝛼 (𝛾;𝑦−1)
𝑓𝛼 (𝛾;𝑦−3)

= LLR𝑏(𝑦) in (5), log 𝑓𝛼 (𝛾;∣𝑦∣−1)
𝑓𝛼 (𝛾;∣𝑦∣−3)

= −LLR𝑏(∣ 𝑦 ∣ −2), and
log 𝑓𝛼 (𝛾;∣𝑦∣−3)

𝑓𝛼 (𝛾;∣𝑦∣+1)
can be written as

log
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −3)
𝑓𝛼(𝛾; ∣ 𝑦 ∣ +1)

= log
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −3).𝑓𝛼(𝛾; ∣ 𝑦 ∣ −1)
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −1).𝑓𝛼(𝛾; ∣ 𝑦 ∣ +1)

= log
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −3)
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −1)

+ log
𝑓𝛼(𝛾; ∣ 𝑦 ∣ −1)
𝑓𝛼(𝛾; ∣ 𝑦 ∣ +1)

(15)
= LLR𝑏(∣ 𝑦 ∣ −2) + LLR𝑏(∣ 𝑦 ∣).
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𝑦

Fig. 3. Comparisons between LLRs of 4-ASK and their approximations (Approach 2)
for 𝛼 = 1.4 and 𝛾 = 0.552: (a) LLR0(𝑦), (b) LLR1(𝑦).

Therefore, the simplified LLR expressions, for 4-ASK, becomes:

LLR0(𝑦) ≃

{

LLR𝑏(𝑦) if ∣ 𝑦 ∣≤ 2,
sign(𝑦).(LLR𝑏(∣ 𝑦 ∣ −2) + LLR𝑏(∣ 𝑦 ∣)) if ∣ 𝑦 ∣> 2,

(16)

and

LLR1(𝑦) ≃ −LLR𝑏(∣ 𝑦 ∣ −2). (17)

Relations (16) and (17) show that LLRs of 4-ASK can be obtained from
the LLR of BPSK. In the same way, we simplify the LLRs of the other
modulations. Fig. 3 show that the simplified LLRs are close to the exact
LLRs.

Thus, the approximated LLRs of 22𝑝-QAM and 2𝑛-ASK modulated
symbols can be obtained from the approximated LLR of BPSK, where
the LLR of BPSK in (5) is replaced by its approximation, as follows

𝐿𝐿0(𝑦) ≃

{

𝐿𝑏(𝑦) if ∣ 𝑦 ∣≤ 2,
sign(𝑦).(𝐿𝑏(∣ 𝑦 ∣ −2) + 𝐿𝑏(∣ 𝑦 ∣)) if ∣ 𝑦 ∣> 2,

(18)

and

𝐿𝐿1(𝑦) ≃ −𝐿𝑏(∣ 𝑦 ∣ −2). (19)

Therefore, this approach requires the estimation parameters for only
the approximated LLR of BPSK modulated symbols. As explained before
(simple linear regression algorithm), The parameters approximation
of the approximated LLR, for two approaches, can be estimated by
reducing the cost function in (6), using gradient descent algorithm,
to minimize the error between the approximated LLR and the corre-
sponding exact LLR, with fixed parameters 𝛼 and 𝛾 (noise distribution
is known). In the following section, we show the parameter estimation,
using Approach 2, with unknown noise distributions.

5. Parameters estimation for LLR approximation with unknown
noise distributions

This section discusses the parameters estimation for LLR approxi-
mation, using Approach 2, with no prior knowledge about the noise
234
distribution model, we know only the channel output. This estimation
can also be used for BPSK modulation. Here binary logistic regression
algorithm is presented first. After, we present the method to extract the
data from the channel output, for binary logistic regression algorithm,
to estimate the parameters of the approximated LLR.

5.1. Binary logistic regression algorithm

Binary logistic regression is a supervised machine learning clas-
sification algorithm that predicts the outcome, 𝑑, of a categorical
dependent variable, based on the concept of probability. Therefore,
the outcome must be a binary value, which means that there are only
two possible classes. In simple terms, the dependent variable is binary,
having data coded as either 1 or 0.

The adopted logistic regression algorithm uses the Sigmoid func-
tion, 𝑆, to convert the outcome into a categorical value. It maps the
predicted values to probabilities, as follows:

Pr(𝑦) =
{

𝑆(𝑦) if 𝑑 = 1
1 − 𝑆(𝑦), if 𝑑 = 0

(20)

Therefore, Pr(𝑦) = 𝑆(𝑦)𝑑 × (1 − 𝑆(𝑦))(1−𝑑), so that, 0 ≤ 𝑆(𝑦) ≤ 1 and
the Sigmoid function is given by:

𝑆(𝑦) = 1
1 + 𝑒−(𝜃𝑎𝑦+𝜃𝑏)

, (21)

where 𝜃𝑎𝑦+ 𝜃𝑏 is a linear equation representing the approximated LLR,
such that, LLR(𝑦) = 𝜃𝑎𝑦 + 𝜃𝑏, where 𝜃𝑎 and 𝜃𝑏 are the parameters to be
estimated. Hence, the pdf in (2) can be estimated by Pr(𝑦) in (20).

To estimate the optimal parameters, we define a cost function and
aim to find the minimum error between the predicted outcome and the
corresponding exact value. The cost function is defined as shown below,

𝐽 (𝜃𝑎, 𝜃𝑏) =
1
2𝑚

𝑚
∑

𝑖=1
[𝑑(𝑖) log(𝑆(𝑦(𝑖))) + (1 − 𝑑(𝑖)) log(𝑆(1 − 𝑦(𝑖)))]. (22)

where m is the length of the outcome. In this work, we apply the logistic
regression from the sklearn library of Python. To apply logistic regres-
sion in our work, it requires the channel output 𝑦 and its corresponding
LLR decision. In the following section, we demonstrate how to find the
LLR decision given the channel output.

Algorithm 1: Parameters estimation for LLR approximation
Input: Channel output (Received symbols) 𝑦.
Output: Estimation of the LLR function.
1: 𝑤̃ = 𝑦 − (3 × sign(𝑦)), where ∣ 𝑦 ∣≥ 3.
2: Generate a random BPSK symbol 𝑥̃.
3: 𝑦̃ = 𝑥̃ + 𝑤̃.
4: Find the optimal parameters, 𝜃𝑎 and 𝜃𝑏, using binary logistic regres-

sion, where the data are 𝑦̃ and 𝑥̃ (decision of the LLR): ̃LLR(𝑦) =
𝜃𝑎𝑦̃ + 𝜃𝑏.

5: Replace estimated parameters in equations of the approximated LLR
that corresponds to 𝑦: LLR(𝑦) = −𝜃𝑎𝑦 − 𝜃𝑏.

5.2. LLR estimation under unknown noise distributions

Estimating the approximation parameters, using binary logistic re-
gression, requires the channel output 𝑦, where 𝑦 = 𝑥 + 𝑤, and its
corresponding LLR decision. We can consider the channel input 𝑥 as the
LLR decision of its corresponding channel output 𝑦. However, the chan-
nel input is unknown at the receiver. Therefore, we generate a random
input channel 𝑥̃, and the corresponding channel output is formulated as
̃ = 𝑥̃+𝑤̃, where the noises 𝑤̃ and 𝑤 have the same distribution to obtain
the same parameters estimations since these parameters depend on the
noise distribution. However, the noise distribution 𝑤 is also unknown
at the receiver.
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To apply a noise 𝑤̃, where 𝑤̃ and 𝑤 have the same distribution,
we extract the noise from the channel output 𝑦 as introduced in [20]
for BPSK modulation, and extend this work for other modulations. The
authors in [20] show that, for BPSK modulation, the noise obtained
from the channel output is 𝑤̃ = 𝑦−sign(𝑦), where sign(𝑦) corresponds to
the channel input 𝑥 = ±1. In our work, we extract the noise as follows:

For 4-ASK modulations,  = {±1,±3}, where 𝑥 = ±1 corresponds to
sign(𝑦), and 𝑥 = ±3 corresponds to 3 × sign(𝑦). We thus take ∣ 𝑦 ∣≥ 3 to
reduce the probability of having 𝑦 correspond to 𝑥 = ±1, and to close
extracted noise, 𝑤̃, to the channel noise, 𝑤. How good is the resulting
LLR approximation depends on how close is the extracted noise, 𝑤̃, to
the channel noise, 𝑤, since the estimation parameters depend on the
noise distribution. We thus extract the noise for 4-ASK modulation, as
follows:

𝑤̃ = 𝑦 − (3 × sign(𝑦)) ∣ 𝑦 ∣≥ 3. (23)

To estimate the approximation parameters, we consider the channel
input 𝑥̃ as the LLR decision of its corresponding channel output 𝑦̃.
Following that, since the noises 𝑤̃ and 𝑤 follow the same distribution,
we apply the estimated parameters in the approximated LLR, which
corresponds to the channel output 𝑦.

To obtain good estimation parameters with an extracted noise,
the shape of the LLR𝑏(𝑦) is divided into three segments to obtain a
system of equations with a good approximation. Thus, LLR𝑏(𝑦) can be
approximated by

L𝑏(𝑦) =
⎧

⎪

⎨

⎪

⎩

𝜃0𝑦 if ∣ 𝑦 ∣≤ 1.2,
sign(𝑦)(𝜃1 ∣ 𝑦 ∣ +𝜃2) if 1.2 <∣ 𝑦 ∣≤ 2.3,
sign(𝑦) 𝜃3∣𝑦∣ otherwise,

(24)

where 𝜃𝑗 , 𝑗 ∈ {0, 1, 2, 3}, are the estimation parameters.
Algorithm 1 shows how to estimate the parameters of the LLR

approximation, for all modulation orders, given uncertainty about the
noise distribution. In this Algorithm, we emphasize that the approxi-
mated LLR uses the opposite values of the estimated parameters since
the LLR used in the logistic regression algorithm is the inverse of the
LLR used in our work.

6. Simulations

In this section, assuming 4-ASK modulated symbols, we use the bit
error rate (BER) to compare the developed LLR function, with the exact
LLR expression. The BER is considered as a function of the 𝛼-stable
noise dispersion, 𝛾. In our results, 𝛾 is interpreted as a measurement of
the noise strength since the impulsive noise power is not well-defined
and the signal-to-noise ratio (SNR) is meaningless [8].

The used code in our simulations is a (3, 6)-regular LDPC of length
20,000 bits using the Belief propagation algorithm. The channel is
assumed to be S𝛼S, where 𝛼 ∈ {1.8, 1.6, 1.4, 1.2}. Comparisons are made
between the BER obtained using the estimated LLR functions in (18)
and (19), where the approximated LLR of BPSK modulation is given
in (24), and the BER obtained using the exact LLR computed via the
numerical integration in (3) and (4). Performance comparisons for
various values of 𝛼, shown in Fig. 4, demonstrate that the estimated
LLR expression for 4-ASK modulated symbols, yields a comparable BER
performance to that achieved by the exact LLR function. This result
comes with the advantage of reduced complexity brought about by the
proposed LLR approximation method.

It is necessary to show that the LLR approximation, given in (18)
and (19), generalizes to all noise cases, including Gaussian noise.
Hence, in Fig. 5, the BER versus the SNR per bit is plotted for a receiver
under Gaussian noise. It is clear that the proposed technique yields
comparable results to the exact LLR when Gaussian noise is present.
Hence, our proposed techniques are effective under different types of
receiver noise distributions. Also, as mentioned earlier, the proposed
approximation requires estimation parameters only once (for BPSK
modulated symbols).
235
Fig. 4. Comparison between the BER obtained using the exact and estimated LLR of
4-ASK for: (a) 𝛼 = 1.8, (b) 𝛼 = 1.6, (c) 𝛼 = 1.4, (d) 𝛼 = 1.2.
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Fig. 5. Comparison between the BER obtained using the exact and approximated LLR
of 4-ASK and its approximation, for Gaussian channel (𝛼 = 2).

7. Conclusion

In this work, we have proposed a method to estimate the LLR
for high-order modulated symbols and BPSK modulations, with no
prior knowledge of the noise distribution model. Two approaches were
proposed to approximate the LLR values using supervised machine
learning, for high-order modulated symbols. The second approach is
proposed to approximate the LLR for high-order modulated symbols
in a simple way. We have used the second proposed approach to
estimate the LLR with unknown noise distributions, using supervised
machine learning. Our results show that the proposed estimation of the
LLR yields comparable results to those obtained using the exact LLR
function. The perspective of this work includes extending the proposed
approach to estimate the LLR with no prior knowledge about the
noise distribution model under channels with attenuation. Additionally,
future research could focus on estimation without prior knowledge
about the modulation type and order. This could significantly enhance
the flexibility and applicability of the proposed methods in various
communication scenarios.
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